Correlations for an anisotropic polarized stochastic gravitational wave background in pulsar timing arrays

Author(s)

Bernardo, Reginald Christian, Liu, Guo-Chin, Ng, Kin-Wang

Abstract

The recent compelling observation of the nanohertz stochastic gravitational wave background has brought to light a new galactic arena to test gravity. In this paper, we derive a formula for the most general expression of the stochastic gravitational wave background correlation that could be tested with pulsar timing and future square kilometer arrays. Our expressions extends the harmonic space analysis, also often referred to as the power spectrum approach, to predict the correlation signatures of an anisotropic polarized stochastic gravitational wave background with subluminal tensor, vector, and scalar gravitational degrees of freedom. We present the first few nontrivial anisotropy and polarization signatures in the correlation and discuss their dependence on the gravitational wave speed and pulsar distances. Our results set up tests that could potentially be used to rigorously examine the isotropy of the stochastic gravitational wave background and strengthen the existing constraints on possible non-Einsteinian polarizations in the nanohertz gravitational wave regime.

Figures

 : \ $l = 0$ : \ $l = 1$

: \ $l = 0$ : \ $l = 1$


 : (a) Correlations induced by tensor modes for $l = m = 0$ (isotropic unpolarized case) and (b) for $l = 1$ for $v = 1.0, 0.5, 0.1$ with $fD = 10^3$. : Caption not extracted

: (a) Correlations induced by tensor modes for $l = m = 0$ (isotropic unpolarized case) and (b) for $l = 1$ for $v = 1.0, 0.5, 0.1$ with $fD = 10^3$. : Caption not extracted


 : \ $l = 2$ : \ $l = 3$

: \ $l = 2$ : \ $l = 3$


 : (a) Correlations induced by tensor modes for $l = 2$ and (b) for $l = 3$ for $v = 1.0, 0.5, 0.1$ with $fD = 10^3$. : Caption not extracted

: (a) Correlations induced by tensor modes for $l = 2$ and (b) for $l = 3$ for $v = 1.0, 0.5, 0.1$ with $fD = 10^3$. : Caption not extracted


Correlations induced by tensor modes for $l = 4$ for $v = 1.0, 0.5, 0.1$ with $fD = 10^3$.

Correlations induced by tensor modes for $l = 4$ for $v = 1.0, 0.5, 0.1$ with $fD = 10^3$.


 : \ $l = 0$ : \ $l = 1$

: \ $l = 0$ : \ $l = 1$


 : (a) Correlations induced by vector modes for $l = m = 0$ (isotropic unpolarized case) and (b) for $l = 1$ for $v = 0.9, 0.5, 0.1$ with $fD = 10^3$. : Caption not extracted

: (a) Correlations induced by vector modes for $l = m = 0$ (isotropic unpolarized case) and (b) for $l = 1$ for $v = 0.9, 0.5, 0.1$ with $fD = 10^3$. : Caption not extracted


Correlations induced by vector modes for $l = 2$ for $v = 0.9, 0.5, 0.1$ with $fD = 10^3$.

Correlations induced by vector modes for $l = 2$ for $v = 0.9, 0.5, 0.1$ with $fD = 10^3$.


Correlations induced by scalar modes for $l \leq 3$ for $v = 1.0, 0.5, 0.2$ with $fD = 10^3$.

Correlations induced by scalar modes for $l \leq 3$ for $v = 1.0, 0.5, 0.2$ with $fD = 10^3$.


References
  • [1] R. W. Hellings and G. W. Downs, “Upper limits on the isotropic gravitational radiation background from pulsar timing analysis,” Astrophys. J. Lett. 265, L39–L42 (1983).
  • [2] Fredrick A. Jenet and Joseph D. Romano, “Understanding the gravitational-wave Hellings and Downs curve for pulsar timing arrays in terms of sound and electromagnetic waves,” Am. J. Phys. 83, 635 (2015), arXiv:1412.1142 [gr-qc].
  • [3] Gabriella Agazie et al. (NANOGrav), “The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background,” Astrophys. J. Lett. 951, L8 (2023), arXiv:2306.16213 [astro-ph.HE].
  • [4] Daniel J. Reardon et al., “Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array,” Astrophys. J. Lett. 951, L6 (2023), arXiv:2306.16215 [astro-ph.HE].
  • [5] J. Antoniadis et al., “The second data release from the European Pulsar Timing Array I. The dataset and timing analysis,” (2023), 10.1051/0004-6361/202346841, arXiv:2306.16224 [astro-ph.HE].
  • [6] Heng Xu et al., “Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I,” Res. Astron. Astrophys. 23, 075024 (2023), arXiv:2306.16216 [astro-ph.HE].
  • [7] R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA), “GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run,” (2021), arXiv:2111.03606 [gr-qc].
  • [8] Joseph D. Romano and Bruce Allen, “Answers to frequently asked questions about the pulsar timing array Hellings and Downs correlation curve,” (2023), arXiv:2308.05847 [gr-qc].
  • [9] Steven L. Detweiler, “Pulsar timing measurements and the search for gravitational waves,” Astrophys. J. 234, 1100–1104 (1979).
  • [10] Joseph D. Romano and Neil J. Cornish, “Detection methods for stochastic gravitational-wave backgrounds: a unified treatment,” Living Rev. Rel. 20, 2 (2017), arXiv:1608.06889 [gr-qc].
  • [11] Sarah Burke-Spolaor et al., “The Astrophysics of Nanohertz Gravitational Waves,” Astron. Astrophys. Rev. 27, 5 (2019), arXiv:1811.08826 [astro-ph.HE].
  • [12] Nihan S. Pol et al. (NANOGrav), “Astrophysics Milestones for Pulsar Timing Array Gravitational-wave Detection,” Astrophys. J. Lett. 911, L34 (2021), arXiv:2010.11950 [astro-ph.HE].
  • [13] Zu-Cheng Chen, Chen Yuan, and Qing-Guo Huang, “Pulsar Timing Array Constraints on Primordial Black Holes with NANOGrav 11-Year Dataset,” Phys. Rev. Lett. 124, 251101 (2020), arXiv:1910.12239 [astro-ph.CO].
  • [14] Zaven Arzoumanian et al. (NANOGrav), “Searching for Gravitational Waves from Cosmological Phase Transitions with the NANOGrav 12.5-Year Dataset,” Phys. Rev. Lett. 127, 251302 (2021), arXiv:2104.13930 [astro-ph.CO].
  • [15] Xiao Xue et al., “Constraining Cosmological Phase Transitions with the Parkes Pulsar Timing Array,” Phys. Rev. Lett. 127, 251303 (2021), arXiv:2110.03096 [astro-ph.CO].
  • [16] Christopher J. Moore and Alberto Vecchio, “Ultra-low-frequency gravitational waves from cosmological and astrophysical processes,” Nature Astron. 5, 1268–1274 (2021), arXiv:2104.15130 [astro-ph.CO].
  • [17] Adeela Afzal et al. (NANOGrav), “The NANOGrav 15 yr Data Set: Search for Signals from New Physics,” Astrophys. J. Lett. 951, L11 (2023), arXiv:2306.16219 [astro-ph.HE].
  • [18] J. Antoniadis et al. (EPTA), “The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe,” (2023), arXiv:2306.16227 [astro-ph.CO].
  • [19] Sunny Vagnozzi, “Inflationary interpretation of the stochastic gravitational wave background signal detected by pulsar timing array experiments,” JHEAp 39, 81–98 (2023), arXiv:2306.16912 [astro-ph.CO].
  • [20] Gabriele Franciolini, Davide Racco, and Fabrizio Rompineve, “Footprints of the QCD Crossover on Cosmological Gravitational Waves at Pulsar Timing Arrays,” (2023), arXiv:2306.17136 [astro-ph.CO].
  • [21] Yang Bai, Ting-Kuo Chen, and Mrunal Korwar, “QCD-Collapsed Domain Walls: QCD Phase Transition and Gravitational Wave Spectroscopy,” (2023), arXiv:2306.17160 [hep-ph].
  • [22] Eugenio Megias, Germano Nardini, and Mariano Quiros, “Pulsar Timing Array Stochastic Background from light KaluzaKlein resonances,” (2023), arXiv:2306.17071 [hep-ph].
  • [23] Jun-Qian Jiang, Yong Cai, Gen Ye, and Yun-Song Piao, “Broken blue-tilted inflationary gravitational waves: a joint analysis of NANOGrav 15-year and BICEP/Keck 2018 data,” (2023), arXiv:2307.15547 [astro-ph.CO].
  • [24] Zhao Zhang, Chengfeng Cai, Yu-Hang Su, Shiyu Wang, Zhao-Huan Yu, and Hong-Hao Zhang, “Nano-Hertz gravitational waves from collapsing domain walls associated with freeze-in dark matter in light of pulsar timing array observations,” (2023), arXiv:2307.11495 [hep-ph].
  • [25] Daniel G. Figueroa, Mauro Pieroni, Angelo Ricciardone, and Peera Simakachorn, “Cosmological Background Interpretation of Pulsar Timing Array Data,” (2023), arXiv:2307.02399 [astro-ph.CO].
  • [26] Ligong Bian, Shuailiang Ge, Jing Shu, Bo Wang, Xing-Yu Yang, and Junchao Zong, “Gravitational wave sources for Pulsar Timing Arrays,” (2023), arXiv:2307.02376 [astro-ph.HE].
  • [27] Xuce Niu and Moinul Hossain Rahat, “NANOGrav signal from axion inflation,” (2023), arXiv:2307.01192 [hep-ph].
  • [28] Paul Frederik Depta, Kai Schmidt-Hoberg, and Carlo Tasillo, “Do pulsar timing arrays observe merging primordial black holes?” (2023), arXiv:2306.17836 [astro-ph.CO].
  • [29] Katsuya T. Abe and Yuichiro Tada, “Translating nano-Hertz gravitational wave background into primordial perturbations taking account of the cosmological QCD phase transition,” (2023), arXiv:2307.01653 [astro-ph.CO].
  • [30] Géraldine Servant and Peera Simakachorn, “Constraining Post-Inflationary Axions with Pulsar Timing Arrays,” (2023), arXiv:2307.03121 [hep-ph].
  • [31] John Ellis, Malcolm Fairbairn, Gabriele Franciolini, Gert Hütsi, Antonio Iovino, Marek Lewicki, Martti Raidal, Juan Urrutia, Ville Vaskonen, and Hardi Veermäe, “What is the source of the PTA GW signal?” (2023), arXiv:2308.08546 [astro-ph.CO].
  • [32] Nilanjandev Bhaumik, Rajeev Kumar Jain, and Marek Lewicki, “Ultra-low mass PBHs in the early universe can explain the PTA signal,” (2023), arXiv:2308.07912 [astro-ph.CO].
  • [33] Waqas Ahmed, Talal Ahmed Chowdhury, Salah Nasri, and Shaikh Saad, “Gravitational waves from metastable cosmic strings in Pati-Salam model in light of new pulsar timing array data,” (2023), arXiv:2308.13248 [hep-ph].
  • [34] Stefan Antusch, Kevin Hinze, Shaikh Saad, and Jonathan Steiner, “Singling out SO(10) GUT models using recent PTA results,” (2023), arXiv:2307.04595 [hep-ph].
  • [35] Mohammad Aghaie, Giovanni Armando, Alessandro Dondarini, and Paolo Panci, “Bounds on Ultralight Dark Matter from NANOGrav,” (2023), arXiv:2308.04590 [astro-ph.CO].
  • [36] R. A. Konoplya and A. Zhidenko, “Asymptotic tails of massive gravitons in light of pulsar timing array observations,” (2023), arXiv:2307.01110 [gr-qc].
  • [37] Spyros Basilakos, Dimitri V. Nanopoulos, Theodoros Papanikolaou, Emmanuel N. Saridakis, and Charalampos Tzerefos, “Gravitational wave signatures of no-scale Supergravity in NANOGrav and beyond,” (2023), arXiv:2307.08601 [hep-th].
  • [38] Spyros Basilakos, Dimitri V. Nanopoulos, Theodoros Papanikolaou, Emmanuel N. Saridakis, and Charalampos Tzerefos, “Induced gravitational waves from flipped SU(5) superstring theory at nHz,” (2023), arXiv:2309.15820 [astro-ph.CO].
  • [39] Ido Ben-Dayan, Utkarsh Kumar, Udaykrishna Thattarampilly, and Amresh Verma, “Probing the early Universe cosmology with NANOGrav: Possibilities and limitations,” Phys. Rev. D 108, 103507 (2023), arXiv:2307.15123 [astro-ph.CO].
  • [40] Moslem Ahmadvand, Ligong Bian, and Soroush Shakeri, “A Heavy QCD Axion model in Light of Pulsar Timing Arrays,” (2023), arXiv:2307.12385 [hep-ph].
  • [41] Sayantan Choudhury, Ahaskar Karde, Sudhakar Panda, and M. Sami, “Scalar induced gravity waves from ultra slow-roll Galileon inflation,” (2023), arXiv:2308.09273 [astro-ph.CO].
  • [42] Mohan Rajagopal and Roger W. Romani, “Ultralow frequency gravitational radiation from massive black hole binaries,” Astrophys. J. 446, 543–549 (1995), arXiv:astro-ph/9412038.
  • [43] E. S. Phinney, “A Practical theorem on gravitational wave backgrounds,” (2001), arXiv:astro-ph/0108028.
  • [44] Alberto Sesana, Alberto Vecchio, and Carlo Nicola Colacino, “The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays,” Mon. Not. Roy. Astron. Soc. 390, 192 (2008), arXiv:0804.4476 [astro-ph].
  • [45] V. Ravi, J. S. B. Wyithe, R. M. Shannon, and G. Hobbs, “Prospects for gravitational-wave detection and supermassive black hole astrophysics with pulsar timing arrays,” Mon. Not. Roy. Astron. Soc. 447, 2772 (2015), arXiv:1406.5297 [astroph.CO].
  • [46] R. M. Shannon et al., “Gravitational waves from binary supermassive black holes missing in pulsar observations,” Science 349, 1522–1525 (2015), arXiv:1509.07320 [astro-ph.CO].
  • [47] Chiara M. F. Mingarelli et al., “The Local Nanohertz Gravitational-Wave Landscape From Supermassive Black Hole Binaries,” Nature Astron. 1, 886–892 (2017), arXiv:1708.03491 [astro-ph.GA].
  • [48] Tingting Liu and Sarah J. Vigeland, “Multi-messenger Approaches to Supermassive Black Hole Binary Detection and Parameter Estimation: Implications for Nanohertz Gravitational Wave Searches with Pulsar Timing Arrays,” Astrophys. J. 921, 178 (2021), arXiv:2105.08087 [astro-ph.HE].
  • [49] Zaven Arzoumanian et al. (NANOGrav), “The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background,” Astrophys. J. Lett. 923, L22 (2021), arXiv:2109.14706 [gr-qc].
  • [50] Gabriella Agazie et al. (NANOGrav), “The NANOGrav 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries,” Astrophys. J. Lett. 951, L50 (2023), arXiv:2306.16222 [astro-ph.HE].
  • [51] J. Antoniadis et al. (EPTA), “The second data release from the European Pulsar Timing Array IV. Search for continuous gravitational wave signals,” (2023), arXiv:2306.16226 [astro-ph.HE].
  • [52] John Ellis, Malcolm Fairbairn, Gert Hütsi, Juhan Raidal, Juan Urrutia, Ville Vaskonen, and Hardi Veermäe, “Gravitational Waves from SMBH Binaries in Light of the NANOGrav 15-Year Data,” (2023), arXiv:2306.17021 [astro-ph.CO].
  • [53] Enrico Cannizzaro, Gabriele Franciolini, and Paolo Pani, “Novel tests of gravity using nano-Hertz stochastic gravitationalwave background signals,” (2023), arXiv:2307.11665 [gr-qc].
  • [54] Sydney J. Chamberlin and Xavier Siemens, “Stochastic backgrounds in alternative theories of gravity: overlap reduction functions for pulsar timing arrays,” Phys. Rev. D 85, 082001 (2012), arXiv:1111.5661 [astro-ph.HE].
  • [55] Yungui Gong, Shaoqi Hou, Eleftherios Papantonopoulos, and Dimitrios Tzortzis, “Gravitational waves and the polarizations in Hořava gravity after GW170817,” Phys. Rev. D 98, 104017 (2018), arXiv:1808.00632 [gr-qc].
  • [56] Wenzer Qin, Kimberly K. Boddy, and Marc Kamionkowski, “Subluminal stochastic gravitational waves in pulsar-timing arrays and astrometry,” Phys. Rev. D 103, 024045 (2021), arXiv:2007.11009 [gr-qc].
  • [57] Qiuyue Liang and Mark Trodden, “Detecting the stochastic gravitational wave background from massive gravity with pulsar timing arrays,” Phys. Rev. D 104, 084052 (2021), arXiv:2108.05344 [astro-ph.CO].
  • [58] Reginald Christian Bernardo and Kin-Wang Ng, “Stochastic gravitational wave background phenomenology in a pulsar timing array,” Phys. Rev. D 107, 044007 (2023), arXiv:2208.12538 [gr-qc].
  • [59] Yu-Mei Wu, Zu-Cheng Chen, and Qing-Guo Huang, “Search for stochastic gravitational-wave background from massive gravity in the NANOGrav 12.5-year dataset,” Phys. Rev. D 107, 042003 (2023), arXiv:2302.00229 [gr-qc].
  • [60] Qiuyue Liang, Meng-Xiang Lin, and Mark Trodden, “A test of gravity with Pulsar Timing Arrays,” JCAP 11, 042 (2023), arXiv:2304.02640 [astro-ph.CO].
  • [61] Reginald Christian Bernardo and Kin-Wang Ng, “Testing gravity with cosmic variance-limited pulsar timing array correlations,” (2023), arXiv:2306.13593 [gr-qc].
  • [62] Chiara M. F. Mingarelli and Trevor Sidery, “Effect of small interpulsar distances in stochastic gravitational wave background searches with pulsar timing arrays,” Phys. Rev. D 90, 062011 (2014), arXiv:1408.6840 [astro-ph.HE].
  • [63] Kin-Wang Ng, “Redshift-space fluctuations in stochastic gravitational wave background,” Phys. Rev. D 106, 043505 (2022), arXiv:2106.12843 [astro-ph.CO].
  • [64] Reginald Christian Bernardo and Kin-Wang Ng, “Constraining gravitational wave propagation using pulsar timing array correlations,” Phys. Rev. D 107, L101502 (2023), arXiv:2302.11796 [gr-qc].
  • [65] Reginald Christian Bernardo and Kin-Wang Ng, “Beyond the Hellings-Downs curve: Non-Einsteinian gravitational waves in pulsar timing array correlations,” (2023), arXiv:2310.07537 [gr-qc].
  • [66] Zu-Cheng Chen, Yu-Mei Wu, Yan-Chen Bi, and Qing-Guo Huang, “Search for Non-Tensorial Gravitational-Wave Backgrounds in the NANOGrav 15-Year Data Set,” (2023), arXiv:2310.11238 [astro-ph.CO].
  • [67] Yan-Chen Bi, Yu-Mei Wu, Zu-Cheng Chen, and Qing-Guo Huang, “Constraints on the velocity of gravitational waves from NANOGrav 15-year data set,” (2023), arXiv:2310.08366 [astro-ph.CO].
  • [68] B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi-GBM, INTEGRAL), “Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A,” Astrophys. J. Lett. 848, L13 (2017), arXiv:1710.05834 [astro-ph.HE].
  • [69] R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA), “Tests of General Relativity with GWTC-3,” (2021), arXiv:2112.06861 [gr-qc].
  • [70] Bruce Allen, “Variance of the Hellings-Downs correlation,” Phys. Rev. D 107, 043018 (2023), arXiv:2205.05637 [gr-qc].
  • [71] Bruce Allen and Joseph D. Romano, “The Hellings and Downs correlation of an arbitrary set of pulsars,” (2022), arXiv:2208.07230 [gr-qc].
  • [72] Reginald Christian Bernardo and Kin-Wang Ng, “Pulsar and cosmic variances of pulsar timing-array correlation measurements of the stochastic gravitational wave background,” JCAP 11, 046 (2022), arXiv:2209.14834 [gr-qc].
  • [73] Reginald Christian Bernardo and Kin-Wang Ng, “Hunting the stochastic gravitational wave background in pulsar timing array cross correlations through theoretical uncertainty,” JCAP 08, 028 (2023), arXiv:2304.07040 [gr-qc].
  • [74] Mark Srednicki, “Cosmic variance of the three point correlation function of the cosmic microwave background,” Astrophys. J. Lett. 416, L1 (1993), arXiv:astro-ph/9306012.
  • [75] Jonathan Gair, Joseph D. Romano, Stephen Taylor, and Chiara M. F. Mingarelli, “Mapping gravitational-wave backgrounds using methods from CMB analysis: Application to pulsar timing arrays,” Phys. Rev. D 90, 082001 (2014), arXiv:1406.4664 [gr-qc].
  • [76] Chiara M. F. Mingarelli, Trevor Sidery, Ilya Mandel, and Alberto Vecchio, “Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays,” Phys. Rev. D 88, 062005 (2013), arXiv:1306.5394 [astro-ph.HE].
  • [77] Stephen R. Taylor and Jonathan R. Gair, “Searching For Anisotropic Gravitational-wave Backgrounds Using Pulsar Timing Arrays,” Phys. Rev. D 88, 084001 (2013), arXiv:1306.5395 [gr-qc].
  • [78] Ryo Kato and Jiro Soda, “Probing circular polarization in stochastic gravitational wave background with pulsar timing arrays,” Phys. Rev. D 93, 062003 (2016), arXiv:1512.09139 [gr-qc].
  • [79] Yu-Kuang Chu, Guo-Chin Liu, and Kin-Wang Ng, “Observation of a polarized stochastic gravitational-wave background in pulsar-timing-array experiments,” Phys. Rev. D 104, 124018 (2021), arXiv:2107.00536 [gr-qc].
  • [80] Gabriela Sato-Polito and Marc Kamionkowski, “Pulsar-timing measurement of the circular polarization of the stochastic gravitational-wave background,” Phys. Rev. D 106, 023004 (2022), arXiv:2111.05867 [astro-ph.CO].
  • [81] Guo-Chin Liu and Kin-Wang Ng, “Timing-residual power spectrum of a polarized stochastic gravitational-wave background in pulsar-timing-array observation,” Phys. Rev. D 106, 064004 (2022), arXiv:2201.06767 [gr-qc].
  • [82] Gabriella Agazie et al. (NANOGrav), “The NANOGrav 15 yr Data Set: Search for Anisotropy in the Gravitational-wave Background,” Astrophys. J. Lett. 956, L3 (2023), arXiv:2306.16221 [astro-ph.HE].
  • [83] Gianmassimo Tasinato, “Kinematic anisotropies and pulsar timing arrays,” Phys. Rev. D 108, 103521 (2023), arXiv:2309.00403 [gr-qc].
  • [84] Neha Anil Kumar and Marc Kamionkowski, “All the Pretty Overlap Reduction Functions,” (2023), arXiv:2311.14159 [astro-ph.CO].
  • [85] Reginald Christian Bernardo and Kin-Wang Ng, “PTAfast: PTA correlations from stochastic gravitational wave background,” Astrophysics Source Code Library, record ascl:2211.001 (2022).
  • [86] Wenzer Qin, Kimberly K. Boddy, Marc Kamionkowski, and Liang Dai, “Pulsar-timing arrays, astrometry, and gravitational waves,” Phys. Rev. D 99, 063002 (2019), arXiv:1810.02369 [astro-ph.CO].
  • [87] Reginald Christian Bernardo and Kin-Wang Ng, “Looking out for the Galileon in the nanohertz gravitational wave sky,” Phys. Lett. B 841, 137939 (2023), arXiv:2206.01056 [astro-ph.CO].
  • [88] Deyan P. Mihaylov, Christopher J. Moore, Jonathan Gair, Anthony Lasenby, and Gerard Gilmore, “Astrometric effects of gravitational wave backgrounds with nonluminal propagation speeds,” Phys. Rev. D 101, 024038 (2020), arXiv:1911.10356 [gr-qc].
  • [89] Adrian Boı̂tier, Tanguy Giroud, Shubhanshu Tiwari, and Philippe Jetzer, “Series expansion of the overlap reduction function for scalar and vector polarizations for gravitational wave search with pulsar timing arrays,” Phys. Rev. D 105, 084006 (2022), arXiv:2111.12563 [gr-qc].