Non-Gaussianities and the large $|\eta|$ approach to inflation

Author(s)

Tasinato, Gianmassimo

Abstract

The physics of primordial black holes can be affected by the non-Gaussian statistics of the density fluctuations that generate them. Therefore, it is important to have good theoretical control of the higher-order correlation functions for primordial curvature perturbations. By working at leading order in a $1/|\eta|$ expansion, we analytically determine the bispectrum of curvature fluctuations for single field inflationary scenarios producing primordial black holes. The bispectrum has a rich scale and shape dependence, and its features depend on the dynamics of the would-be decaying mode. We apply our analytical results to study gravitational waves induced at second order by enhanced curvature fluctuations. Their statistical properties are derived in terms of convolution integrals over wide momentum ranges, and they are sensitive on the scale and shape dependence of the curvature bispectrum we analytically computed.

Figures

\footnotesize The quantity $\Pi(\kappa)$ introduced in eq \eqref{defPa}, evaluated for $\Pi_0=10^3$.

\footnotesize The quantity $\Pi(\kappa)$ introduced in eq \eqref{defPa}, evaluated for $\Pi_0=10^3$.


\footnotesize{ {\bf Left}: the squeezed bispectrum satisfies Maldacena consistency relation. Red: $(1-n_\zeta)$, Dashed black the squeezed non-linear parameter $5\,f_{\rm NL}^{\rm sq}/6$ defined in eq \eqref{deffsq}. {\bf Right}: The function $G(\kappa)$ defined in eq \eqref{NLC1}, divided by $\Pi_0^2$ (black line). The quantity $(ns-1)/2$ divided by $\Pi_0^{1/2}$ (dashed blue line). The normalization factors are introduced to obtain comparable variables for the two quantities introduced. In both panels, $\Pi_0=10^3$.}

\footnotesize{ {\bf Left}: the squeezed bispectrum satisfies Maldacena consistency relation. Red: $(1-n_\zeta)$, Dashed black the squeezed non-linear parameter $5\,f_{\rm NL}^{\rm sq}/6$ defined in eq \eqref{deffsq}. {\bf Right}: The function $G(\kappa)$ defined in eq \eqref{NLC1}, divided by $\Pi_0^2$ (black line). The quantity $(ns-1)/2$ divided by $\Pi_0^{1/2}$ (dashed blue line). The normalization factors are introduced to obtain comparable variables for the two quantities introduced. In both panels, $\Pi_0=10^3$.}


\footnotesize{ {\bf Left}: the squeezed bispectrum satisfies Maldacena consistency relation. Red: $(1-n_\zeta)$, Dashed black the squeezed non-linear parameter $5\,f_{\rm NL}^{\rm sq}/6$ defined in eq \eqref{deffsq}. {\bf Right}: The function $G(\kappa)$ defined in eq \eqref{NLC1}, divided by $\Pi_0^2$ (black line). The quantity $(ns-1)/2$ divided by $\Pi_0^{1/2}$ (dashed blue line). The normalization factors are introduced to obtain comparable variables for the two quantities introduced. In both panels, $\Pi_0=10^3$.}

\footnotesize{ {\bf Left}: the squeezed bispectrum satisfies Maldacena consistency relation. Red: $(1-n_\zeta)$, Dashed black the squeezed non-linear parameter $5\,f_{\rm NL}^{\rm sq}/6$ defined in eq \eqref{deffsq}. {\bf Right}: The function $G(\kappa)$ defined in eq \eqref{NLC1}, divided by $\Pi_0^2$ (black line). The quantity $(ns-1)/2$ divided by $\Pi_0^{1/2}$ (dashed blue line). The normalization factors are introduced to obtain comparable variables for the two quantities introduced. In both panels, $\Pi_0=10^3$.}


\footnotesize{ {\bf Left:} The right hand side of eq \eqref{equaiqu} (black line) versus the left hand side of the same equation (dashed red line) {\bf Right:} The quantity $f_{\rm NL}^{\rm eq}$ defined in eq \eqref{deffeq}. In both panels, $\Pi_0=10^3$. }

\footnotesize{ {\bf Left:} The right hand side of eq \eqref{equaiqu} (black line) versus the left hand side of the same equation (dashed red line) {\bf Right:} The quantity $f_{\rm NL}^{\rm eq}$ defined in eq \eqref{deffeq}. In both panels, $\Pi_0=10^3$. }


\footnotesize{ {\bf Left:} The right hand side of eq \eqref{equaiqu} (black line) versus the left hand side of the same equation (dashed red line) {\bf Right:} The quantity $f_{\rm NL}^{\rm eq}$ defined in eq \eqref{deffeq}. In both panels, $\Pi_0=10^3$. }

\footnotesize{ {\bf Left:} The right hand side of eq \eqref{equaiqu} (black line) versus the left hand side of the same equation (dashed red line) {\bf Right:} The quantity $f_{\rm NL}^{\rm eq}$ defined in eq \eqref{deffeq}. In both panels, $\Pi_0=10^3$. }


\footnotesize Triangular plots of the function $S(\kappa, x_2, x_3)$ of eq \eqref{deffS}, represented with the criteria discussed in the text. {\bf Left} $S(\kappa_{\rm dip}, x_2, x_3)$. {\bf Right} $S(1, x_2, x_3)$.

\footnotesize Triangular plots of the function $S(\kappa, x_2, x_3)$ of eq \eqref{deffS}, represented with the criteria discussed in the text. {\bf Left} $S(\kappa_{\rm dip}, x_2, x_3)$. {\bf Right} $S(1, x_2, x_3)$.


\footnotesize Triangular plots of the function $S(\kappa, x_2, x_3)$ of eq \eqref{deffS}, represented with the criteria discussed in the text. {\bf Left} $S(\kappa_{\rm dip}, x_2, x_3)$. {\bf Right} $S(1, x_2, x_3)$.

\footnotesize Triangular plots of the function $S(\kappa, x_2, x_3)$ of eq \eqref{deffS}, represented with the criteria discussed in the text. {\bf Left} $S(\kappa_{\rm dip}, x_2, x_3)$. {\bf Right} $S(1, x_2, x_3)$.


\footnotesize Triangular plots of the function $S(\kappa, x_2, x_3)$ of eq \eqref{deffS}, represented with the criteria discussed in the text. {\bf Left} $S(\kappa_{\rm dip}, x_2, x_3)$. {\bf Right} $S(1, x_2, x_3)$.

\footnotesize Triangular plots of the function $S(\kappa, x_2, x_3)$ of eq \eqref{deffS}, represented with the criteria discussed in the text. {\bf Left} $S(\kappa_{\rm dip}, x_2, x_3)$. {\bf Right} $S(1, x_2, x_3)$.


\footnotesize Triangular plots of the function $S(\kappa, x_2, x_3)$ of eq \eqref{deffS}, represented with the criteria discussed in the text. {\bf Left} $S(\kappa_{\rm dip}, x_2, x_3)$. {\bf Right} $S(1, x_2, x_3)$.

\footnotesize Triangular plots of the function $S(\kappa, x_2, x_3)$ of eq \eqref{deffS}, represented with the criteria discussed in the text. {\bf Left} $S(\kappa_{\rm dip}, x_2, x_3)$. {\bf Right} $S(1, x_2, x_3)$.


\footnotesize {\bf Left:} plot of the gravitational wave energy density induced by a scalar spectrum derived from eq \eqref{defph}, with $\Pi_0=10^3$, under the conditions discussed in the main text. {\bf Right:} plot of the non-linear parameter $f_{\rm NL}^{TTS}$ in eq \eqref{defttsf} computed with the same curvature spectrum of the left figure.

\footnotesize {\bf Left:} plot of the gravitational wave energy density induced by a scalar spectrum derived from eq \eqref{defph}, with $\Pi_0=10^3$, under the conditions discussed in the main text. {\bf Right:} plot of the non-linear parameter $f_{\rm NL}^{TTS}$ in eq \eqref{defttsf} computed with the same curvature spectrum of the left figure.


\footnotesize {\bf Left:} plot of the gravitational wave energy density induced by a scalar spectrum derived from eq \eqref{defph}, with $\Pi_0=10^3$, under the conditions discussed in the main text. {\bf Right:} plot of the non-linear parameter $f_{\rm NL}^{TTS}$ in eq \eqref{defttsf} computed with the same curvature spectrum of the left figure.

\footnotesize {\bf Left:} plot of the gravitational wave energy density induced by a scalar spectrum derived from eq \eqref{defph}, with $\Pi_0=10^3$, under the conditions discussed in the main text. {\bf Right:} plot of the non-linear parameter $f_{\rm NL}^{TTS}$ in eq \eqref{defttsf} computed with the same curvature spectrum of the left figure.


References
  • [1] S. Hawking, “Gravitationally collapsed objects of very low mass,” Mon. Not. Roy. Astron. Soc. 152 (1971) 75.
  • [2] B. J. Carr and S. W. Hawking, “Black holes in the early Universe,” Mon. Not. Roy. Astron. Soc. 168 (1974) 399–415.
  • [3] P. Ivanov, P. Naselsky, and I. Novikov, “Inflation and primordial black holes as dark matter,” Phys. Rev. D 50 (1994) 7173–7178.
  • [4] J. Garcia-Bellido, A. D. Linde, and D. Wands, “Density perturbations and black hole formation in hybrid inflation,” Phys. Rev. D 54 (1996) 6040–6058, arXiv:astro-ph/9605094.
  • [5] M. Y. Khlopov, “Primordial Black Holes,” Res. Astron. Astrophys. 10 (2010) 495–528, arXiv:0801.0116 [astro-ph].
  • [6] J. Garcı́a-Bellido, “Massive Primordial Black Holes as Dark Matter and their detection with Gravitational Waves,” J. Phys. Conf. Ser. 840 no. 1, (2017) 012032, arXiv:1702.08275 [astro-ph.CO].
  • [7] M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama, “Primordial black holes—perspectives in gravitational wave astronomy,” Class. Quant. Grav. 35 no. 6, (2018) 063001, arXiv:1801.05235 [astro-ph.CO].
  • [8] B. Carr and F. Kuhnel, “Primordial Black Holes as Dark Matter: Recent Developments,” Ann. Rev. Nucl. Part. Sci. 70 (2020) 355–394, arXiv:2006.02838 [astro-ph.CO].
  • [9] A. M. Green and B. J. Kavanagh, “Primordial Black Holes as a dark matter candidate,” J. Phys. G 48 no. 4, (2021) 043001, arXiv:2007.10722 [astro-ph.CO].
  • [10] A. Escrivà, F. Kuhnel, and Y. Tada, “Primordial Black Holes,” arXiv:2211.05767 [astro-ph.CO].
  • [11] O. Özsoy and G. Tasinato, “Inflation and Primordial Black Holes,” arXiv:2301.03600 [astro-ph.CO].
  • [12] D. Baumann, “Inflation,” in Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the Large and the Small, pp. 523–686. 2011. arXiv:0907.5424 [hep-th].
  • [13] A. A. Starobinsky, “Spectrum of adiabatic perturbations in the universe when there are singularities in the inflation potential,” JETP Lett. 55 (1992) 489–494.
  • [14] D. Wands, “Duality invariance of cosmological perturbation spectra,” Phys. Rev. D 60 (1999) 023507, arXiv:gr-qc/9809062.
  • [15] S. M. Leach, M. Sasaki, D. Wands, and A. R. Liddle, “Enhancement of superhorizon scale inflationary curvature perturbations,” Phys. Rev. D 64 (2001) 023512, arXiv:astro-ph/0101406.
  • [16] O. Özsoy and G. Tasinato, “On the slope of the curvature power spectrum in non-attractor inflation,” JCAP 04 (2020) 048, arXiv:1912.01061 [astro-ph.CO].
  • [17] P. Carrilho, K. A. Malik, and D. J. Mulryne, “Dissecting the growth of the power spectrum for primordial black holes,” Phys. Rev. D 100 no. 10, (2019) 103529, arXiv:1907.05237 [astro-ph.CO].
  • [18] G. Tasinato, “An analytic approach to non-slow-roll inflation,” Phys. Rev. D 103 no. 2, (2021) 023535, arXiv:2012.02518 [hep-th].
  • [19] G. Franciolini and A. Urbano, “Primordial black hole dark matter from inflation: The reverse engineering approach,” Phys. Rev. D 106 no. 12, (2022) 123519, arXiv:2207.10056 [astro-ph.CO].
  • [20] A. Karam, N. Koivunen, E. Tomberg, V. Vaskonen, and H. Veermäe, “Anatomy of single-field inflationary models for primordial black holes,” JCAP 03 (2023) 013, arXiv:2205.13540 [astro-ph.CO].
  • [21] G. Domènech, G. Vargas, and T. Vargas, “An exact model for enhancing/suppressing primordial fluctuations,” arXiv:2309.05750 [astro-ph.CO].
  • [22] G. Tasinato, “Large —η— approach to single field inflation,” Phys. Rev. D 108 no. 4, (2023) 043526, arXiv:2305.11568 [hep-th].
  • [23] G. ’t Hooft, “A Planar Diagram Theory for Strong Interactions,” Nucl. Phys. B 72 (1974) 461.
  • [24] S. Coleman, Aspects of Symmetry: Selected Erice Lectures. Cambridge University Press, Cambridge, U.K., 1985.
  • [25] J. Garcia-Bellido, M. Peloso, and C. Unal, “Gravitational waves at interferometer scales and primordial black holes in axion inflation,” JCAP 12 (2016) 031, arXiv:1610.03763 [astro-ph.CO].
  • [26] J. Garcia-Bellido, M. Peloso, and C. Unal, “Gravitational Wave signatures of inflationary models from Primordial Black Hole Dark Matter,” JCAP 09 (2017) 013, arXiv:1707.02441 [astro-ph.CO].
  • [27] J. M. Ezquiaga, J. Garcı́a-Bellido, and V. Vennin, “The exponential tail of inflationary fluctuations: consequences for primordial black holes,” JCAP 03 (2020) 029, arXiv:1912.05399 [astro-ph.CO].
  • [28] S. Pi and M. Sasaki, “Primordial black hole formation in nonminimal curvaton scenarios,” Phys. Rev. D 108 no. 10, (2023) L101301, arXiv:2112.12680 [astro-ph.CO].
  • [29] Y.-F. Cai, X.-H. Ma, M. Sasaki, D.-G. Wang, and Z. Zhou, “One small step for an inflaton, one giant leap for inflation: A novel non-Gaussian tail and primordial black holes,” Phys. Lett. B 834 (2022) 137461, arXiv:2112.13836 [astro-ph.CO].
  • [30] S. Pi and M. Sasaki, “Logarithmic Duality of the Curvature Perturbation,” Phys. Rev. Lett. 131 no. 1, (2023) 011002, arXiv:2211.13932 [astro-ph.CO].
  • [31] R. Saito, J. Yokoyama, and R. Nagata, “Single-field inflation, anomalous enhancement of superhorizon fluctuations, and non-Gaussianity in primordial black hole formation,” JCAP 06 (2008) 024, arXiv:0804.3470 [astro-ph].
  • [32] C. T. Byrnes, E. J. Copeland, and A. M. Green, “Primordial black holes as a tool for constraining non-Gaussianity,” Phys. Rev. D 86 (2012) 043512, arXiv:1206.4188 [astro-ph.CO].
  • [33] S. Young and C. T. Byrnes, “Primordial black holes in non-Gaussian regimes,” JCAP 08 (2013) 052, arXiv:1307.4995 [astro-ph.CO].
  • [34] E. V. Bugaev and P. A. Klimai, “Primordial black hole constraints for curvaton models with predicted large non-Gaussianity,” Int. J. Mod. Phys. D 22 (2013) 1350034, arXiv:1303.3146 [astro-ph.CO].
  • [35] S. Young and C. T. Byrnes, “Signatures of non-gaussianity in the isocurvature modes of primordial black hole dark matter,” JCAP 04 (2015) 034, arXiv:1503.01505 [astro-ph.CO].
  • [36] G. Franciolini, A. Kehagias, S. Matarrese, and A. Riotto, “Primordial Black Holes from Inflation and non-Gaussianity,” JCAP 03 (2018) 016, arXiv:1801.09415 [astro-ph.CO].
  • [37] S. Passaglia, W. Hu, and H. Motohashi, “Primordial black holes and local non-Gaussianity in canonical inflation,” Phys. Rev. D 99 no. 4, (2019) 043536, arXiv:1812.08243 [astro-ph.CO].
  • [38] V. Atal and C. Germani, “The role of non-gaussianities in Primordial Black Hole formation,” Phys. Dark Univ. 24 (2019) 100275, arXiv:1811.07857 [astro-ph.CO].
  • [39] M. Biagetti, G. Franciolini, A. Kehagias, and A. Riotto, “Primordial Black Holes from Inflation and Quantum Diffusion,” JCAP 07 (2018) 032, arXiv:1804.07124 [astro-ph.CO].
  • [40] V. Atal, J. Garriga, and A. Marcos-Caballero, “Primordial black hole formation with non-Gaussian curvature perturbations,” JCAP 09 (2019) 073, arXiv:1905.13202 [astro-ph.CO].
  • [41] A. Kehagias, I. Musco, and A. Riotto, “Non-Gaussian Formation of Primordial Black Holes: Effects on the Threshold,” JCAP 12 (2019) 029, arXiv:1906.07135 [astro-ph.CO].
  • [42] V. De Luca, G. Franciolini, A. Kehagias, M. Peloso, A. Riotto, and C. Ünal, “The Ineludible non-Gaussianity of the Primordial Black Hole Abundance,” JCAP 07 (2019) 048, arXiv:1904.00970 [astro-ph.CO].
  • [43] S. Young, I. Musco, and C. T. Byrnes, “Primordial black hole formation and abundance: contribution from the non-linear relation between the density and curvature perturbation,” JCAP 11 (2019) 012, arXiv:1904.00984 [astro-ph.CO].
  • [44] C. Germani and R. K. Sheth, “Nonlinear statistics of primordial black holes from Gaussian curvature perturbations,” Phys. Rev. D 101 no. 6, (2020) 063520, arXiv:1912.07072 [astro-ph.CO].
  • [45] M. Kawasaki and H. Nakatsuka, “Effect of nonlinearity between density and curvature perturbations on the primordial black hole formation,” Phys. Rev. D 99 no. 12, (2019) 123501, arXiv:1903.02994 [astro-ph.CO].
  • [46] C.-M. Yoo, J.-O. Gong, and S. Yokoyama, “Abundance of primordial black holes with local non-Gaussianity in peak theory,” JCAP 09 (2019) 033, arXiv:1906.06790 [astro-ph.CO].
  • [47] D. G. Figueroa, S. Raatikainen, S. Rasanen, and E. Tomberg, “Non-Gaussian Tail of the Curvature Perturbation in Stochastic Ultraslow-Roll Inflation: Implications for Primordial Black Hole Production,” Phys. Rev. Lett. 127 no. 10, (2021) 101302, arXiv:2012.06551 [astro-ph.CO].
  • [48] M. Taoso and A. Urbano, “Non-gaussianities for primordial black hole formation,” JCAP 08 (2021) 016, arXiv:2102.03610 [astro-ph.CO].
  • [49] S. Hooshangi, M. H. Namjoo, and M. Noorbala, “Rare events are nonperturbative: Primordial black holes from heavy-tailed distributions,” Phys. Lett. B 834 (2022) 137400, arXiv:2112.04520 [astro-ph.CO].
  • [50] S. Young, “Peaks and primordial black holes: the effect of non-Gaussianity,” JCAP 05 no. 05, (2022) 037, arXiv:2201.13345 [astro-ph.CO].
  • [51] G. Ferrante, G. Franciolini, A. Iovino, Junior., and A. Urbano, “Primordial non-Gaussianity up to all orders: Theoretical aspects and implications for primordial black hole models,” Phys. Rev. D 107 no. 4, (2023) 043520, arXiv:2211.01728 [astro-ph.CO].
  • [52] A. D. Gow, H. Assadullahi, J. H. P. Jackson, K. Koyama, V. Vennin, and D. Wands, “Non-perturbative non-Gaussianity and primordial black holes,” EPL 142 no. 4, (2023) 49001, arXiv:2211.08348 [astro-ph.CO].
  • [53] E. Tomberg, “Stochastic constant-roll inflation and primordial black holes,” arXiv:2304.10903 [astro-ph.CO].
  • [54] J.-P. Li, S. Wang, Z.-C. Zhao, and K. Kohri, “Complete Analysis of Scalar-Induced Gravitational Waves and Primordial Non-Gaussianities fNL and gNL,” arXiv:2309.07792 [astro-ph.CO].
  • [55] G. Franciolini, A. Iovino, Junior., V. Vaskonen, and H. Veermae, “Recent Gravitational Wave Observation by Pulsar Timing Arrays and Primordial Black Holes: The Importance of Non-Gaussianities,” Phys. Rev. Lett. 131 no. 20, (2023) 201401, arXiv:2306.17149 [astro-ph.CO].
  • [56] S. Matarrese, O. Pantano, and D. Saez, “A General relativistic approach to the nonlinear evolution of collisionless matter,” Phys. Rev. D 47 (1993) 1311–1323.
  • [57] S. Matarrese, O. Pantano, and D. Saez, “General relativistic dynamics of irrotational dust: Cosmological implications,” Phys. Rev. Lett. 72 (1994) 320–323, arXiv:astro-ph/9310036.
  • [58] K. N. Ananda, C. Clarkson, and D. Wands, “The Cosmological gravitational wave background from primordial density perturbations,” Phys. Rev. D 75 (2007) 123518, arXiv:gr-qc/0612013.
  • [59] D. Baumann, P. J. Steinhardt, K. Takahashi, and K. Ichiki, “Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations,” Phys. Rev. D 76 (2007) 084019, arXiv:hep-th/0703290.
  • [60] R. Saito and J. Yokoyama, “Gravitational wave background as a probe of the primordial black hole abundance,” Phys. Rev. Lett. 102 (2009) 161101, arXiv:0812.4339 [astro-ph]. [Erratum: Phys.Rev.Lett. 107, 069901 (2011)].
  • [60] R. Saito and J. Yokoyama, “Gravitational wave background as a probe of the primordial black hole abundance,” Phys. Rev. Lett. 102 (2009) 161101, arXiv:0812.4339 [astro-ph]. [Erratum: Phys.Rev.Lett. 107, 069901 (2011)].
  • [61] R. Saito and J. Yokoyama, “Gravitational-Wave Constraints on the Abundance of Primordial Black Holes,” Prog. Theor. Phys. 123 (2010) 867–886, arXiv:0912.5317 [astro-ph.CO]. [Erratum: Prog.Theor.Phys. 126, 351–352 (2011)].
  • [61] R. Saito and J. Yokoyama, “Gravitational-Wave Constraints on the Abundance of Primordial Black Holes,” Prog. Theor. Phys. 123 (2010) 867–886, arXiv:0912.5317 [astro-ph.CO]. [Erratum: Prog.Theor.Phys. 126, 351–352 (2011)].
  • [62] J. R. Espinosa, D. Racco, and A. Riotto, “A Cosmological Signature of the SM Higgs Instability: Gravitational Waves,” JCAP 09 (2018) 012, arXiv:1804.07732 [hep-ph].
  • [63] G. Domènech, “Induced gravitational waves in a general cosmological background,” Int. J. Mod. Phys. D 29 no. 03, (2020) 2050028, arXiv:1912.05583 [gr-qc].
  • [64] G. Domènech, “Scalar Induced Gravitational Waves Review,” Universe 7 no. 11, (2021) 398, arXiv:2109.01398 [gr-qc].
  • [65] R.-g. Cai, S. Pi, and M. Sasaki, “Gravitational Waves Induced by non-Gaussian Scalar Perturbations,” Phys. Rev. Lett. 122 no. 20, (2019) 201101, arXiv:1810.11000 [astro-ph.CO].
  • [66] C. Unal, “Imprints of Primordial Non-Gaussianity on Gravitational Wave Spectrum,” Phys. Rev. D 99 no. 4, (2019) 041301, arXiv:1811.09151 [astro-ph.CO].
  • [67] C. Yuan and Q.-G. Huang, “Gravitational waves induced by the local-type non-Gaussian curvature perturbations,” Phys. Lett. B 821 (2021) 136606, arXiv:2007.10686 [astro-ph.CO].
  • [68] V. Atal and G. Domènech, “Probing non-Gaussianities with the high frequency tail of induced gravitational waves,” JCAP 06 (2021) 001, arXiv:2103.01056 [astro-ph.CO]. [Erratum: JCAP 10, E01 (2023)].
  • [68] V. Atal and G. Domènech, “Probing non-Gaussianities with the high frequency tail of induced gravitational waves,” JCAP 06 (2021) 001, arXiv:2103.01056 [astro-ph.CO]. [Erratum: JCAP 10, E01 (2023)].
  • [69] P. Adshead, K. D. Lozanov, and Z. J. Weiner, “Non-Gaussianity and the induced gravitational wave background,” JCAP 10 (2021) 080, arXiv:2105.01659 [astro-ph.CO].
  • [70] Z. Chang, Y.-T. Kuang, X. Zhang, and J.-Z. Zhou, “Primordial black holes and third order scalar induced gravitational waves*,” Chin. Phys. C 47 no. 5, (2023) 055104, arXiv:2209.12404 [astro-ph.CO].
  • [71] S. Garcia-Saenz, L. Pinol, S. Renaux-Petel, and D. Werth, “No-go theorem for scalar-trispectrum-induced gravitational waves,” JCAP 03 (2023) 057, arXiv:2207.14267 [astro-ph.CO].
  • [72] J.-P. Li, S. Wang, Z.-C. Zhao, and K. Kohri, “Primordial non-Gaussianity f NL and anisotropies in scalar-induced gravitational waves,” JCAP 10 (2023) 056, arXiv:2305.19950 [astro-ph.CO].
  • [73] P. Adshead, N. Afshordi, E. Dimastrogiovanni, M. Fasiello, E. A. Lim, and G. Tasinato, “Multimessenger cosmology: Correlating cosmic microwave background and stochastic gravitational wave background measurements,” Phys. Rev. D 103 no. 2, (2021) 023532, arXiv:2004.06619 [astro-ph.CO].
  • [74] S. Maity, H. V. Ragavendra, S. K. Sethi, and L. Sriramkumar, “Loop contributions to the scalar power spectrum due to quartic order action in ultra slow roll inflation,” arXiv:2307.13636 [astro-ph.CO].
  • [75] J. Kristiano and J. Yokoyama, “Ruling Out Primordial Black Hole Formation From Single-Field Inflation,” arXiv:2211.03395 [hep-th].
  • [76] J. Kristiano and J. Yokoyama, “Response to criticism on ”Ruling Out Primordial Black Hole Formation From Single-Field Inflation”: A note on bispectrum and one-loop correction in single-field inflation with primordial black hole formation,” arXiv:2303.00341 [hep-th].
  • [76] J. Kristiano and J. Yokoyama, “Response to criticism on ”Ruling Out Primordial Black Hole Formation From Single-Field Inflation”: A note on bispectrum and one-loop correction in single-field inflation with primordial black hole formation,” arXiv:2303.00341 [hep-th].
  • [77] A. Riotto, “The Primordial Black Hole Formation from Single-Field Inflation is Not Ruled Out,” arXiv:2301.00599 [astro-ph.CO].
  • [78] S. Choudhury, M. R. Gangopadhyay, and M. Sami, “No-go for the formation of heavy mass Primordial Black Holes in Single Field Inflation,” arXiv:2301.10000 [astro-ph.CO].
  • [79] S. Choudhury, S. Panda, and M. Sami, “No-go for PBH formation in EFT of single field inflation,” arXiv:2302.05655 [astro-ph.CO].
  • [80] A. Riotto, “The Primordial Black Hole Formation from Single-Field Inflation is Still Not Ruled Out,” arXiv:2303.01727 [astro-ph.CO].
  • [81] S. Choudhury, S. Panda, and M. Sami, “Quantum loop effects on the power spectrum and constraints on primordial black holes,” arXiv:2303.06066 [astro-ph.CO].
  • [82] H. Firouzjahi, “One-loop Corrections in Power Spectrum in Single Field Inflation,” arXiv:2303.12025 [astro-ph.CO].
  • [83] H. Motohashi and Y. Tada, “Squeezed bispectrum and one-loop corrections in transient constant-roll inflation,” arXiv:2303.16035 [astro-ph.CO].
  • [84] S. Choudhury, S. Panda, and M. Sami, “Galileon inflation evades the no-go for PBH formation in the single-field framework,” arXiv:2304.04065 [astro-ph.CO].
  • [85] H. Firouzjahi and A. Riotto, “Primordial Black Holes and Loops in Single-Field Inflation,” arXiv:2304.07801 [astro-ph.CO].
  • [86] H. Firouzjahi, “Loop Corrections in Gravitational Wave Spectrum in Single Field Inflation,” arXiv:2305.01527 [astro-ph.CO].
  • [87] G. Franciolini, A. Iovino, Junior., M. Taoso, and A. Urbano, “One loop to rule them all: Perturbativity in the presence of ultra slow-roll dynamics,” arXiv:2305.03491 [astro-ph.CO].
  • [88] J. Fumagalli, S. Bhattacharya, M. Peloso, S. Renaux-Petel, and L. T. Witkowski, “One-loop infrared rescattering by enhanced scalar fluctuations during inflation,” arXiv:2307.08358 [astro-ph.CO].
  • [89] Y. Tada, T. Terada, and J. Tokuda, “Cancellation of quantum corrections on the soft curvature perturbations,” arXiv:2308.04732 [hep-th].
  • [90] H. Firouzjahi, “Revisiting Loop Corrections in Single Field USR Inflation,” arXiv:2311.04080 [astro-ph.CO].
  • [91] W. H. Kinney, “Horizon crossing and inflation with large eta,” Phys. Rev. D 72 (2005) 023515, arXiv:gr-qc/0503017.
  • [92] J. Martin, H. Motohashi, and T. Suyama, “Ultra Slow-Roll Inflation and the non-Gaussianity Consistency Relation,” Phys. Rev. D 87 no. 2, (2013) 023514, arXiv:1211.0083 [astro-ph.CO].
  • [93] K. Dimopoulos, “Ultra slow-roll inflation demystified,” Phys. Lett. B 775 (2017) 262–265, arXiv:1707.05644 [hep-ph].
  • [94] H. Motohashi, A. A. Starobinsky, and J. Yokoyama, “Inflation with a constant rate of roll,” JCAP 09 (2015) 018, arXiv:1411.5021 [astro-ph.CO].
  • [95] S. Inoue and J. Yokoyama, “Curvature perturbation at the local extremum of the inflaton’s potential,” Phys. Lett. B 524 (2002) 15–20, arXiv:hep-ph/0104083.
  • [96] K. Tzirakis and W. H. Kinney, “Inflation over the hill,” Phys. Rev. D 75 (2007) 123510, arXiv:astro-ph/0701432.
  • [97] K. Inomata, E. McDonough, and W. Hu, “Amplification of primordial perturbations from the rise or fall of the inflaton,” JCAP 02 no. 02, (2022) 031, arXiv:2110.14641 [astro-ph.CO].
  • [98] C. T. Byrnes, P. S. Cole, and S. P. Patil, “Steepest growth of the power spectrum and primordial black holes,” JCAP 06 (2019) 028, arXiv:1811.11158 [astro-ph.CO].
  • [99] J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single field inflationary models,” JHEP 05 (2003) 013, arXiv:astro-ph/0210603.
  • [100] M. H. Namjoo, H. Firouzjahi, and M. Sasaki, “Violation of non-Gaussianity consistency relation in a single field inflationary model,” EPL 101 no. 3, (2013) 39001, arXiv:1210.3692 [astro-ph.CO].
  • [101] X. Chen, H. Firouzjahi, M. H. Namjoo, and M. Sasaki, “A Single Field Inflation Model with Large Local Non-Gaussianity,” EPL 102 no. 5, (2013) 59001, arXiv:1301.5699 [hep-th].
  • [102] X. Chen, “Running non-Gaussianities in DBI inflation,” Phys. Rev. D 72 (2005) 123518, arXiv:astro-ph/0507053.
  • [103] C. T. Byrnes, S. Nurmi, G. Tasinato, and D. Wands, “Scale dependence of local fNL,” JCAP 02 (2010) 034, arXiv:0911.2780 [astro-ph.CO].
  • [104] C. T. Byrnes, M. Gerstenlauer, S. Nurmi, G. Tasinato, and D. Wands, “Scale-dependent non-Gaussianity probes inflationary physics,” JCAP 10 (2010) 004, arXiv:1007.4277 [astro-ph.CO].
  • [105] P. Creminelli, A. Perko, L. Senatore, M. Simonović, and G. Trevisan, “The Physical Squeezed Limit: Consistency Relations at Order q2 ,” JCAP 11 (2013) 015, arXiv:1307.0503 [astro-ph.CO].
  • [106] O. Özsoy and G. Tasinato, “CMB µT cross correlations as a probe of primordial black hole scenarios,” Phys. Rev. D 104 no. 4, (2021) 043526, arXiv:2104.12792 [astro-ph.CO].
  • [107] O. Özsoy and G. Tasinato, “Consistency conditions and primordial black holes in single field inflation,” Phys. Rev. D 105 no. 2, (2022) 023524, arXiv:2111.02432 [astro-ph.CO].
  • [108] D. Babich, P. Creminelli, and M. Zaldarriaga, “The Shape of non-Gaussianities,” JCAP 08 (2004) 009, arXiv:astro-ph/0405356.
  • [109] A. Malhotra, E. Dimastrogiovanni, G. Domènech, M. Fasiello, and G. Tasinato, “New universal property of cosmological gravitational wave anisotropies,” Phys. Rev. D 107 no. 10, (2023) 103502, arXiv:2212.10316 [gr-qc].
  • [110] E. Dimastrogiovanni, M. Fasiello, A. Malhotra, and G. Tasinato, “Enhancing gravitational wave anisotropies with peaked scalar sources,” JCAP 01 (2023) 018, arXiv:2205.05644 [astro-ph.CO].
  • [111] LISA Cosmology Working Group Collaboration, P. Auclair et al., “Cosmology with the Laser Interferometer Space Antenna,” Living Rev. Rel. 26 no. 1, (2023) 5, arXiv:2204.05434 [astro-ph.CO].
  • [112] E. Dimastrogiovanni, M. Fasiello, and L. Pinol, “Primordial stochastic gravitational wave background anisotropies: in-in formalization and applications,” JCAP 09 (2022) 031, arXiv:2203.17192 [astro-ph.CO].
  • [113] E. Dimastrogiovanni, M. Fasiello, A. Malhotra, P. D. Meerburg, and G. Orlando, “Testing the early universe with anisotropies of the gravitational wave background,” JCAP 02 no. 02, (2022) 040, arXiv:2109.03077 [astro-ph.CO].
  • [114] M. Braglia and S. Kuroyanagi, “Probing prerecombination physics by the cross-correlation of stochastic gravitational waves and CMB anisotropies,” Phys. Rev. D 104 no. 12, (2021) 123547, arXiv:2106.03786 [astro-ph.CO].
  • [115] A. Ricciardone, L. V. Dall’Armi, N. Bartolo, D. Bertacca, M. Liguori, and S. Matarrese, “Cross-Correlating Astrophysical and Cosmological Gravitational Wave Backgrounds with the Cosmic Microwave Background,” Phys. Rev. Lett. 127 no. 27, (2021) 271301, arXiv:2106.02591 [astro-ph.CO].
  • [116] A. Malhotra, E. Dimastrogiovanni, M. Fasiello, and M. Shiraishi, “Cross-correlations as a Diagnostic Tool for Primordial Gravitational Waves,” JCAP 03 (2021) 088, arXiv:2012.03498 [astro-ph.CO].
  • [117] G. Orlando, “Probing parity-odd bispectra with anisotropies of GW V modes,” JCAP 12 (2022) 019, arXiv:2206.14173 [astro-ph.CO].
  • [118] K. Kohri and T. Terada, “Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations,” Phys. Rev. D 97 no. 12, (2018) 123532, arXiv:1804.08577 [gr-qc].
  • [119] J. R. Fergusson and E. P. S. Shellard, “The shape of primordial non-Gaussianity and the CMB bispectrum,” Phys. Rev. D 80 (2009) 043510, arXiv:0812.3413 [astro-ph].