Detecting the Neutrino Gravitational Wave Memory from Core-Collapse Supernovae using the Moon

Author(s)

Gill, Kiranjyot

Abstract

Following the milestone of detecting gravitational waves (GWs) from merging compact binaries, the next significant watershed moment in GW astronomy lies in detecting GWs from core-collapse supernovae (CCSNe). In this Letter, I describe the possibility of detecting the GW linear memory -- a phenomenon resulting from a combination of aspherical matter ejection and anisotropic neutrino emission during stellar collapse using GW detectors on the Moon. This would grant unprecedented access to the sub-Hz/Hz GW frequency range, which is inaccessible to current and future terrestrial GW detectors. I demonstrate that three-dimensional CCSNe model matter and neutrino GW waveforms may be detectable by both seismometer and interferometeric lunar GW detectors, with the latter design proposal extending 10 kpc to megaparsec detection distances.

Figures

The gravitational wave spectra, $2\sqrt{f}|\tilde h(f)|$, associated with extended GW models injected at 10 kpc projected against terrestrial and lunar detector noise curves, $\sqrt{S_n}$. The Figure is split according to the respective matter and neutrino GW strains for the V23 models. Notably, there exists a substantial disparity of several orders of magnitude between the strains sourced by these mechanisms, with the neutrino-driven GW strain surpassing the matter-driven counterpart in signal strength. Additionally, the bounce seen in the higher frequencies in the matter GW strain is primarily due to the modal oscillations generated by the PNS.

The gravitational wave spectra, $2\sqrt{f}|\tilde h(f)|$, associated with extended GW models injected at 10 kpc projected against terrestrial and lunar detector noise curves, $\sqrt{S_n}$. The Figure is split according to the respective matter and neutrino GW strains for the V23 models. Notably, there exists a substantial disparity of several orders of magnitude between the strains sourced by these mechanisms, with the neutrino-driven GW strain surpassing the matter-driven counterpart in signal strength. Additionally, the bounce seen in the higher frequencies in the matter GW strain is primarily due to the modal oscillations generated by the PNS.


References
  • Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, PhRvL, 116, 061102, doi: 10.1103/PhysRevLett.116.061102
  • Abbott, B. P., et al. 2016, Phys. Rev. D, 94, 102001, doi: 10.1103/PhysRevD.94.102001
  • Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017, PhRvL, 119, 161101, doi: 10.1103/PhysRevLett.119.161101
  • —. 2020, PhRvD, 101, 084002, doi: 10.1103/PhysRevD.101.084002
  • Ajith, P., Amaro Seoane, P., Arca Sedda, M., et al. 2024, arXiv e-prints, arXiv:2404.09181, doi: 10.48550/arXiv.2404.09181
  • Amaro-Seoane, P., Audley, H., Babak, S., et al. 2017, arXiv e-prints, arXiv:1702.00786, doi: 10.48550/arXiv.1702.00786
  • Andresen, H., Glas, R., & Janka, H. T. 2021, MNRAS, 503, 3552, doi: 10.1093/mnras/stab675
  • Andresen, H., Müller, B., Müller, E., & Janka, H.-T. 2017, MNRAS, 468, 2032, doi: 10.1093/mnras/stx618
  • Andresen, H., Müller, E., Janka, H. T., et al. 2019, Monthly
  • Notices of the Royal Astronomical Society, 486, 2238, doi: 10.1093/mnras/stz990
  • Andresen, H., Müller, B., Müller, E., & Janka, H.-T. 2017, Monthly Notices of the Royal Astronomical Society, 468, 2032, doi: 10.1093/mnras/stx618
  • Andresen, H., Müller, E., Janka, H.-T., et al. 2019, Monthly Notices of the Royal Astronomical Society, 486, 2238, doi: 10.1093/mnras/stz990
  • Arca Sedda, M., Berry, C. P. L., Jani, K., et al. 2020, Classical and Quantum Gravity, 37, 215011, doi: 10.1088/1361-6382/abb5c1
  • Basilevsky, A., & Li, Y. 2024, Planetary and Space Science, 241, 105839, doi: https://doi.org/10.1016/j.pss.2024.105839
  • Burrows, A., & Hayes, J. 1996, PhRvL, 76, 352, doi: 10.1103/PhysRevLett.76.352
  • Burrows, A., Hayes, J., & Fryxell, B. A. 1995, ApJ, 450, 830, doi: 10.1086/176188
  • Burrows, A., & Vartanyan, D. 2021, Nature, 589, 29, doi: 10.1038/s41586-020-03059-w
  • Colpi, M., Danzmann, K., Hewitson, M., et al. 2024, arXiv e-prints, arXiv:2402.07571, doi: 10.48550/arXiv.2402.07571
  • Cozzumbo, A., Mestichelli, B., Mirabile, M., et al. 2023, arXiv e-prints, arXiv:2309.15160, doi: 10.48550/arXiv.2309.15160
  • Epstein, R. 1978, ApJ, 223, 1037, doi: 10.1086/156337
  • Gossan, S. E., Sutton, P., Stuver, A., et al. 2016, PhRvD, 93, 042002, doi: 10.1103/PhysRevD.93.042002
  • Harms, J. 2022, Phys. Rev. Lett., 129, 071102, doi: 10.1103/PhysRevLett.129.071102
  • Harms, J., Ambrosino, F., Angelini, L., et al. 2021, The
  • Astrophysical Journal, 910, 1, doi: 10.3847/1538-4357/abe5a7
  • Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ, 626, 350, doi: 10.1086/429868
  • Jani, K., & Loeb, A. 2021, Journal of Cosmology and
  • Astroparticle Physics, 2021, 044, doi: 10.1088/1475-7516/2021/06/044
  • Janka, H.-T., Melson, T., & Summa, A. 2016, ArXiv e-prints. https://arxiv.org/abs/1602.05576
  • Kotake, K., Iwakami, W., Ohnishi, N., & Yamada, S. 2009a, ApJL, 697, L133, doi: 10.1088/0004-637X/697/2/L133
  • —. 2009b, ApJ, 704, 951, doi: 10.1088/0004-637X/704/2/951
  • Kotake, K., Iwakami-Nakano, W., & Ohnishi, N. 2011, ApJ, 736, 124, doi: 10.1088/0004-637X/736/2/124
  • Kotake, K., Ohnishi, N., & Yamada, S. 2007, ApJ, 655, 406, doi: 10.1086/509320
  • Kotake, K., Sawai, H., Yamada, S., & Sato, K. 2004, The
  • Astrophysical Journal, 608, 391, doi: 10.1086/392530
  • Kuroda, T., Kotake, K., Hayama, K., & Takiwaki, T. 2017, The Astrophysical Journal, 851, 62, doi: 10.3847/1538-4357/aa988d
  • Kuroda, T., Kotake, K., & Takiwaki, T. 2016, The
  • Astrophysical Journal, 829, L14, doi: 10.3847/2041-8205/829/1/l14
  • LIGO Scientific Collaboration, Aasi, J., Abbott, B. P., et al. 2015, Classical and Quantum Gravity, 32, 074001, doi: 10.1088/0264-9381/32/7/074001
  • LILA, C. 2023, Vanderbilt University. https://www.vanderbilt.edu/lunarlabs/lila/
  • Maggiore, M., Van Den Broeck, C., Bartolo, N., et al. 2020, JCAP, 2020, 050, doi: 10.1088/1475-7516/2020/03/050
  • Mezzacappa, A. 2023, IAU Symposium, 362, 215, doi: 10.1017/S1743921322001831
  • Mezzacappa, A., Marronetti, P., Landfield, R. E., et al.
  • 2020, PhRvD, 102, 023027, doi: 10.1103/PhysRevD.102.023027
  • —. 2023, PhRvD, 107, 043008, doi: 10.1103/PhysRevD.107.043008
  • Morozova, V., Radice, D., Burrows, A., & Vartanyan, D.
  • 2018, The Astrophysical Journal, 861, 10, doi: 10.3847/1538-4357/aac5f1
  • Motizuki, Y., Madokoro, H., & Shimizu, T. 2004, in EAS
  • Publications Series, Vol. 11, EAS Publications Series, ed.
  • A. Jorissen, S. Goriely, M. Rayet, L. Siess, & H. Boffin, 163–171, doi: 10.1051/eas:2004011
  • Mueller, E., & Janka, H. T. 1997, A&A, 317, 140
  • Müller, E., Janka, H. T., & Wongwathanarat, A. 2012, A&A, 537, A63, doi: 10.1051/0004-6361/201117611
  • Powell, J., & Müller, B. 2019, MNRAS, 487, 1178, doi: 10.1093/mnras/stz1304
  • —. 2020, MNRAS, 494, 4665, doi: 10.1093/mnras/staa1048
  • Radice, D., Morozova, V., Burrows, A., Vartanyan, D., & Nagakura, H. 2019, The Astrophysical Journal, 876, L9, doi: 10.3847/2041-8213/ab191a
  • Radice, D., Morozova, V., Burrows, A., Vartanyan, D., & Nagakura, H. 2019, ApJL, 876, L9, doi: 10.3847/2041-8213/ab191a
  • Reitze, D., Adhikari, R. X., Ballmer, S., et al. 2019, in
  • Bulletin of the American Astronomical Society, Vol. 51, 35. https://arxiv.org/abs/1907.04833
  • Richardson, C. J., Andresen, H., Mezzacappa, A., et al.
  • 2024, arXiv e-prints, arXiv:2404.02131, doi: 10.48550/arXiv.2404.02131
  • Richardson, C. J., Zanolin, M., Andresen, H., et al. 2022, PhRvD, 105, 103008, doi: 10.1103/PhysRevD.105.103008
  • Sathyaprakash, B., Abernathy, M., Acernese, F., et al.
  • 2012, Classical and Quantum Gravity, 29, 124013, doi: 10.1088/0264-9381/29/12/124013
  • Soares-Santos, M., Holz, D. E., Annis, J., et al. 2017, ApJL, 848, L16, doi: 10.3847/2041-8213/aa9059
  • Szczepańczyk, M. J., Antelis, J. M., Benjamin, M., et al.
  • 2021, PhRvD, 104, 102002, doi: 10.1103/PhysRevD.104.102002
  • Takiwaki, T., & Kotake, K. 2018, MNRAS, 475, L91, doi: 10.1093/mnrasl/sly008
  • Vartanyan, D., & Burrows, A. 2020, ApJ, 901, 108, doi: 10.3847/1538-4357/abafac
  • Vartanyan, D., Burrows, A., & Radice, D. 2019, MNRAS, 489, 2227, doi: 10.1093/mnras/stz2307
  • Vartanyan, D., Burrows, A., Wang, T., Coleman, M. S. B., & White, C. J. 2023, PhRvD, 107, 103015, doi: 10.1103/PhysRevD.107.103015
  • Vartanyan, D., Coleman, M. S. B., & Burrows, A. 2022, MNRAS, 510, 4689, doi: 10.1093/mnras/stab3702