Author(s)
Çalışkan, Mesut, Chen, Yifan, Dai, Liang, Anil Kumar, Neha, Stomberg, Isak, Xue, XiaoAbstract
Astrometry, the precise measurement of star motions, offers an alternative avenue to investigate low-frequency gravitational waves through the spatial deflection of photons, complementing pulsar timing arrays reliant on timing residuals. Upcoming data from Gaia, Theia, and Roman can not only cross-check pulsar timing array findings but also explore the uncharted frequency range bridging pulsar timing arrays and LISA. We present an analytical framework to evaluate the feasibility of detecting a gravitational wave background, considering measurement noise and the intrinsic variability of the stochastic background. Furthermore, we highlight astrometry's crucial role in uncovering key properties of the gravitational wave background, such as spectral index and chirality, employing information-matrix analysis. Finally, we simulate the emergence of quadrupolar correlations, commonly referred to as the generalized Hellings-Downs curves.
Figures
SNR$^{XX'}_k$ plotted against $\xi_k \equiv {I_k}/{(4\pi S^{(n)}_{X,k}/N_{X})}$ for $I_k$ estimators, encompassing PTA-only correlation $zz$ (blue), astrometry-only correlation $EE$ or $BB$ (orange), and PTA-astrometry cross-correlation $zE$ (green). Two options for the highest $\ell$-mode constructed, $\ell_{\rm max} = 10$ (solid lines) and $50$ (dashed lines), are considered. In the case of $zE$ correlation, we assume $S^{(n)}_{z,k}/N_{z} = S^{(n)}_{E,k}/N_{E}$.
The SNR distribution as a function of the power-law SGWB model parameters, the reference strain $\log_{10}A$ and spectral index $\alpha$ as defined in Eq.\,(\ref{Eq:hc_def}), for the four considered observations. The left two correspond to PTAs, while the right two represent astrometric observations. The white regions indicate $\text{SNR}<1$, where the information matrix is not applicable. Yellow stars mark the fiducial parameters from Eq.\,(\ref{Eq:Phi_to_PSD1}), with SNR values of $4.0$, $1.5$, $34.1$, and $43.9$ for NANOGrav, Gaia, SKA, and Theia, respectively. The current exclusion region, defined as $\text{SNR}>10$ for NANOGrav, is highlighted by yellow dashed lines.
The resolution of the two power-law SGWB model parameters, $\sigma(\log_{10}A)$ and $\sigma(\alpha)$, as a function of $\log_{10}A$ and $\alpha$, for the four considered observations. The yellow stars correspond to the fiducial parameters observed by NANOGrav, and the yellow dashed lines are excluded in its $\text{SNR}>10$ region. The resolutions at the fiducial value, from top to bottom, are $\sigma(\log_{10}A) = 0.25$, $1.3$, $0.012$, and $0.0056$, and $\sigma(\alpha) = 0.24$, $1.3$, $0.017$, and $0.0080$.
Posteriors of the reference strain amplitude $\log_{10}A$ and the fraction of circular polarization $v\equiv V_k/I_k$, for astrometric observations (left) and PTA-astrometry synergistic analyses (right). The red stars correspond to the true parameters, including the fiducial value for $\log_{10}A$ and the assumed $v=0.1$. The marginalized distribution of each parameter is presented next to the posterior distribution. The dark and light blue regions represent the $1\sigma$ and $2\sigma$ regions, respectively. The $1\sigma$ uncertainties for $v$ are $\sigma(v) = 0.57$, $0.39$, $0.022$, and $0.022$ for Gaia, NANOGrav$+$Gaia, Theia, and SKA$+$Theia, respectively.
Examples of realizations on the celestial sphere for $V/I = -1$ (top), $0$ (middle), and $1$ (bottom), featuring a total of $432$ patches. Each patch contains information on the real part of the redshift $\delta z$ represented on a circle, spanning from red ($>0$) to blue ($<0$). The real (black arrow) and imaginary (white arrow) components, with lengths proportional to their magnitudes, are also displayed. The measurement noise is not included in these examples. In cases with $V/I = \pm 1$, the real and imaginary arrows are always perpendicular, while in the unpolarized case, they are uncorrelated.
Reconstructions of rotationally invariant power spectra in the spherical harmonic space for $\ell$ ranging from $2$ to $6$. Each reconstruction is derived from a random realization of a map of $108$ patches of $\{\delta z_a\}$ and $\{\delta\hbv{x}_a\}$ using Eqs.\,(\ref{eq:zEBr}) and (\ref{Eq:def_cxx}), in the absence of measurement noise. Total intensity $I$ estimators are depicted in orange, while circular polarization $V$ estimators are shown in blue, assuming $V/I=0.3$. Each spectrum is normalized by its theoretical average value. Violins represent the variance of reconstructions from $10^4$ realizations, and the red dots denote the average values of realizations. Both are consistent with the variance calculation in the denominator of Eq.\,(\ref{eq:snr}).
Distribution of sky-averaged two-point functions from $100$ simulations presented in gray violins for various PTA and astrometric observation channels, displayed for the first frequency bin (left) and weight-averaged across all frequency bins (right). The red lines illustrate the generalized Hellings-Downs curves defined in Eqs.\,(\ref{eq:HD}) and (\ref{Eq:correlations}). The variance from the simulations encompasses both SGWB variance and measurement noises. The central values of the violins, shown in blue, align with the red lines.
Sky-averaged two-point functions from a single simulation for various PTA and astrometric observation channels. Each gray line represents a realization in a specific frequency bin, with opacity inversely proportional to the variance associated with that frequency bin. The black dashed lines depict the weighted averages of all frequency bins, aligning with the generalized Hellings-Downs curves (red) defined in Eqs.\,(\ref{eq:HD}) and (\ref{Eq:correlations}) for observations involving SKA or Theia.
References
- [1] NANOGrav collaboration, Z. Arzoumanian et al., The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background, Astrophys. J. Lett. 905 (2020) L34, [2009.04496].
- [2] B. Goncharov et al., On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 917 (2021) L19, [2107.12112].
- [3] EPTA collaboration, S. Chen et al., Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: inferences in the stochastic gravitational-wave background search, Mon. Not. Roy. Astron. Soc. 508 (2021) 4970–4993, [2110.13184].
- [4] J. Antoniadis et al., The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background, Mon. Not. Roy. Astron. Soc. 510 (2022) 4873–4887, [2201.03980].
- [5] NANOGrav collaboration, G. Agazie et al., The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951 (2023) L8, [2306.16213].
- [6] EPTA collaboration, J. Antoniadis et al., The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals, Astron. Astrophys. 678 (2023) A50, [2306.16214].
- [7] D. J. Reardon et al., Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951 (2023) L6, [2306.16215].
- [8] H. Xu et al., Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I, Res. Astron. Astrophys. 23 (2023) 075024, [2306.16216].
- [9] R. w. Hellings and G. s. Downs, UPPER LIMITS ON THE ISOTROPIC GRAVITATIONAL RADIATION BACKGROUND FROM PULSAR TIMING ANALYSIS, Astrophys. J. Lett. 265 (1983) L39–L42.
- [10] NANOGrav collaboration, G. Agazie et al., The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background, Astrophys. J. Lett. 952 (2023) L37, [2306.16220].
- [11] EPTA collaboration, J. Antoniadis et al., The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe, 2306.16227.
- [12] V. B. Braginsky, N. S. Kardashev, I. D. Novikov and A. G. Polnarev, Propagation of electromagnetic radiation in a random field of gravitational waves and space radio interferometry, Nuovo Cim. B 105 (1990) 1141–1158.
- [13] T. Pyne, C. R. Gwinn, M. Birkinshaw, T. M. Eubanks and D. N. Matsakis, Gravitational radiation and very long baseline interferometry, Astrophys. J. 465 (1996) 566–577, [astro-ph/9507030].
- [14] N. Kaiser and A. H. Jaffe, Bending of light by gravity waves, Astrophys. J. 484 (1997) 545–554, [astro-ph/9609043].
- [15] S. M. Kopeikin, G. Schaefer, C. R. Gwinn and T. M. Eubanks, Astrometric and timing effects of gravitational waves from localized sources, Phys. Rev. D 59 (1999) 084023, [gr-qc/9811003].
- [16] L. G. Book and E. E. Flanagan, Astrometric Effects of a Stochastic Gravitational Wave Background, Phys. Rev. D 83 (2011) 024024, [1009.4192].
- [17] C. J. Moore, D. P. Mihaylov, A. Lasenby and G. Gilmore, Astrometric Search Method for Individually Resolvable Gravitational Wave Sources with Gaia, Phys. Rev. Lett. 119 (2017) 261102, [1707.06239].
- [18] S. A. Klioner, Gaia-like astrometry and gravitational waves, Class. Quant. Grav. 35 (2018) 045005, [1710.11474].
- [19] D. P. Mihaylov, C. J. Moore, J. R. Gair, A. Lasenby and G. Gilmore, Astrometric Effects of Gravitational Wave Backgrounds with non-Einsteinian Polarizations, Phys. Rev. D 97 (2018) 124058, [1804.00660].
- [20] L. O’Beirne and N. J. Cornish, Constraining the Polarization Content of Gravitational Waves with Astrometry, Phys. Rev. D 98 (2018) 024020, [1804.03146].
- [21] W. Qin, K. K. Boddy, M. Kamionkowski and L. Dai, Pulsar-timing arrays, astrometry, and gravitational waves, Phys. Rev. D 99 (2019) 063002, [1810.02369].
- [22] D. Bini and A. Geralico, Gravitational wave effects on astrometric observables, Phys. Rev. D 98 (2018) 124036, [1901.00676].
- [23] J. Darling, A. E. Truebenbach and J. Paine, Astrometric Limits on the Stochastic Gravitational Wave Background, Astrophys. J. 861 (2018) 113, [1804.06986].
- [24] D. P. Mihaylov, C. J. Moore, J. Gair, A. Lasenby and G. Gilmore, Astrometric effects of gravitational wave backgrounds with nonluminal propagation speeds, Phys. Rev. D 101 (2020) 024038, [1911.10356].
- [25] W. Qin, K. K. Boddy and M. Kamionkowski, Subluminal stochastic gravitational waves in pulsar-timing arrays and astrometry, Phys. Rev. D 103 (2021) 024045, [2007.11009].
- [26] J. Garcia-Bellido, H. Murayama and G. White, Exploring the early Universe with Gaia and Theia, JCAP 12 (2021) 023, [2104.04778].
- [27] S. Aoyama, D. Yamauchi, M. Shiraishi and M. Ouchi, Gaia 400,894 QSO constraint on the energy density of low-frequency gravitational waves, 2105.04039.
- [28] Y. Wang, K. Pardo, T.-C. Chang and O. Doré, Constraining the stochastic gravitational wave background with photometric surveys, Phys. Rev. D 106 (2022) 084006, [2205.07962].
- [29] S. Jaraba, J. Garcı́a-Bellido, S. Kuroyanagi, S. Ferraiuolo and M. Braglia, Stochastic gravitational wave background constraints from Gaia DR3 astrometry, 2304.06350.
- [30] Q. Liang, M.-X. Lin, M. Trodden and S. S. C. Wong, Probing Parity Violation in the Stochastic Gravitational Wave Background with Astrometry, 2309.16666.
- [31] Gaia Collaboration, T. Prusti, J. H. J. de Bruijne, A. G. A. Brown, A. Vallenari, C. Babusiaux et al., The Gaia mission, Astron. Astrophys. 595 (Nov., 2016) A1, [1609.04153].
- [32] Theia collaboration, C. Boehm et al., Theia: Faint objects in motion or the new astrometry frontier, 1707.01348.
- [33] LISA collaboration, P. Amaro-Seoane et al., Laser Interferometer Space Antenna, 1702.00786.
- [34] Y. Wang, K. Pardo, T.-C. Chang and O. Doré, Gravitational Wave Detection with Photometric Surveys, Phys. Rev. D 103 (2021) 084007, [2010.02218].
- [35] Z. Haiman et al., Massive Black Hole Binaries as LISA Precursors in the Roman High Latitude Time Domain Survey, 2306.14990.
- [36] K. Pardo, T.-C. Chang, O. Doré and Y. Wang, Gravitational Wave Detection with Relative Astrometry using Roman’s Galactic Bulge Time Domain Survey, 2306.14968.
- [37] S. Golat and C. R. Contaldi, All-sky analysis of astrochronometric signals induced by gravitational waves, Phys. Rev. D 105 (2022) 063502, [2201.03903].
- [38] G. Sato-Polito and M. Kamionkowski, Pulsar-timing measurement of the circular polarization of the stochastic gravitational-wave background, Phys. Rev. D 106 (2022) 023004, [2111.05867].
- [39] J. Gair, J. D. Romano, S. Taylor and C. M. F. Mingarelli, Mapping gravitational-wave backgrounds using methods from CMB analysis: Application to pulsar timing arrays, Phys. Rev. D 90 (2014) 082001, [1406.4664].
- [40] E. Roebber and G. Holder, Harmonic space analysis of pulsar timing array redshift maps, Astrophys. J. 835 (2017) 21, [1609.06758].
- [41] J. Nay, K. K. Boddy, T. L. Smith and C. M. F. Mingarelli, Harmonic Analysis for Pulsar Timing Arrays, 2306.06168.
- [42] E. Roebber, Ephemeris errors and the gravitational wave signal: Harmonic mode coupling in pulsar timing array searches, Astrophys. J. 876 (2019) 55, [1901.05468].
- [43] L. Dai, M. Kamionkowski and D. Jeong, Total Angular Momentum Waves for Scalar, Vector, and Tensor Fields, Phys. Rev. D 86 (2012) 125013, [1209.0761].
- [44] M. Kamionkowski, L. Dai and D. Jeong, Tensor-induced B modes with no temperature fluctuations, Phys. Rev. D 89 (2014) 107302, [1404.3730].
- [45] R. A. Fisher and E. J. Russell, On the mathematical foundations of theoretical statistics, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 222 (1922) 309–368.
- [46] M. Vallisneri, Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects, Phys. Rev. D 77 (2008) 042001, [gr-qc/0703086].
- [47] C. Cutler and M. Vallisneri, LISA detections of massive black hole inspirals: Parameter extraction errors due to inaccurate template waveforms, Phys. Rev. D 76 (2007) 104018, [0707.2982].
- [48] L. ISSERLIS, ON CERTAIN PROBABLE ERRORS AND CORRELATION COEFFICIENTS OF MULTIPLE FREQUENCY DISTRIBUTIONS WITH SKEW REGRESSION, Biometrika 11 (05, 1916) 185–190.
- [49] J. D. Romano, J. S. Hazboun, X. Siemens and A. M. Archibald, Common-spectrum process versus cross-correlation for gravitational-wave searches using pulsar timing arrays, Phys. Rev. D 103 (2021) 063027, [2012.03804].
- [50] Y. Ali-Haı̈moud, T. L. Smith and C. M. F. Mingarelli, Fisher formalism for anisotropic gravitational-wave background searches with pulsar timing arrays, Phys. Rev. D 102 (2020) 122005, [2006.14570].
- [51] B. Allen, The Stochastic gravity wave background: Sources and detection, in Les Houches School of Physics: Astrophysical Sources of Gravitational Radiation, pp. 373–417, 4, 1996. gr-qc/9604033.
- [52] EPTA collaboration, L. Lentati et al., European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background, Mon. Not. Roy. Astron. Soc. 453 (2015) 2576–2598, [1504.03692].
- [53] P. J. Armitage and P. Natarajan, Accretion during the merger of supermassive black holes, Astrophys. J. Lett. 567 (2002) L9–L12, [astro-ph/0201318].
- [54] A. Sesana, F. Haardt, P. Madau and M. Volonteri, Low - frequency gravitational radiation from coalescing massive black hole binaries in hierarchical cosmologies, Astrophys. J. 611 (2004) 623–632, [astro-ph/0401543].
- [55] D. Merritt and M. Milosavljevic, Massive black hole binary evolution, Living Rev. Rel. 8 (2005) 8, [astro-ph/0410364].
- [56] M. Enoki and M. Nagashima, The Effect of Orbital Eccentricity on Gravitational Wave Background Radiation from Cosmological Binaries, Prog. Theor. Phys. 117 (2007) 241, [astro-ph/0609377].
- [57] P. Ajith et al., A Template bank for gravitational waveforms from coalescing binary black holes. I. Non-spinning binaries, Phys. Rev. D 77 (2008) 104017, [0710.2335].
- [58] A. Lue, L.-M. Wang and M. Kamionkowski, Cosmological signature of new parity violating interactions, Phys. Rev. Lett. 83 (1999) 1506–1509, [astro-ph/9812088].
- [59] J. Garcia-Bellido, M. Peloso and C. Unal, Gravitational waves at interferometer scales and primordial black holes in axion inflation, JCAP 12 (2016) 031, [1610.03763].
- [60] I. Obata, Chiral primordial blue tensor spectra from the axion-gauge couplings, JCAP 06 (2017) 050, [1612.08817].
- [61] C. S. Machado, W. Ratzinger, P. Schwaller and B. A. Stefanek, Audible Axions, JHEP 01 (2019) 053, [1811.01950].
- [62] J. Qiao, Z. Li, T. Zhu, R. Ji, G. Li and W. Zhao, Testing parity symmetry of gravity with gravitational waves, Front. Astron. Space Sci. 9 (2023) 1109086, [2211.16825].
- [63] C. Conneely, A. H. Jaffe and C. M. F. Mingarelli, On the Amplitude and Stokes Parameters of a Stochastic Gravitational-Wave Background, Mon. Not. Roy. Astron. Soc. 487 (2019) 562–579, [1808.05920].
- [64] S. C. Hotinli, M. Kamionkowski and A. H. Jaffe, The search for anisotropy in the gravitational-wave background with pulsar-timing arrays, Open J. Astrophys. 2 (2019) 8, [1904.05348].
- [65] J. Ellis, M. Fairbairn, G. Hütsi, M. Raidal, J. Urrutia, V. Vaskonen et al., Prospects for future binary black hole gravitational wave studies in light of PTA measurements, Astron. Astrophys. 676 (2023) A38, [2301.13854].
- [66] R. Kato and J. Soda, Probing circular polarization in stochastic gravitational wave background with pulsar timing arrays, Phys. Rev. D 93 (2016) 062003, [1512.09139].
- [67] E. Belgacem and M. Kamionkowski, Chirality of the gravitational-wave background and pulsar-timing arrays, Phys. Rev. D 102 (2020) 023004, [2004.05480].
- [68] G. Tasinato, Kinematic anisotropies and pulsar timing arrays, Phys. Rev. D 108 (2023) 103521, [2309.00403].
- [69] N. Anil Kumar and M. Kamionkowski, All the Pretty Overlap Reduction Functions, 2311.14159.
- [70] J. Ellis, M. Fairbairn, G. Hütsi, J. Raidal, J. Urrutia, V. Vaskonen et al., Gravitational Waves from SMBH Binaries in Light of the NANOGrav 15-Year Data, 2306.17021.
- [71] NANOGrav collaboration, G. Agazie et al., The NANOGrav 15 yr Data Set: Detector Characterization and Noise Budget, Astrophys. J. Lett. 951 (2023) L10, [2306.16218].
- [72] C. J. Moore, S. R. Taylor and J. R. Gair, Estimating the sensitivity of pulsar timing arrays, Class. Quant. Grav. 32 (2015) 055004, [1406.5199].
- [73] C. J. Moore, R. H. Cole and C. P. L. Berry, Gravitational-wave sensitivity curves, Class. Quant. Grav. 32 (2015) 015014, [1408.0740].
- [74] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke et al., HEALPix - A Framework for high resolution discretization, and fast analysis of data distributed on the sphere, Astrophys. J. 622 (2005) 759–771, [astro-ph/0409513].
- [75] B. Allen, Variance of the Hellings-Downs correlation, Phys. Rev. D 107 (2023) 043018, [2205.05637].
- [76] B. Allen and J. D. Romano, Hellings and Downs correlation of an arbitrary set of pulsars, Phys. Rev. D 108 (2023) 043026, [2208.07230].
- [77] R. C. Bernardo and K.-W. Ng, Pulsar and cosmic variances of pulsar timing-array correlation measurements of the stochastic gravitational wave background, JCAP 11 (2022) 046, [2209.14834].
- [78] R. C. Bernardo and K.-W. Ng, Hunting the stochastic gravitational wave background in pulsar timing array cross correlations through theoretical uncertainty, JCAP 08 (2023) 028, [2304.07040].
- [79] R. C. Bernardo and K.-W. Ng, Testing gravity with cosmic variance-limited pulsar timing array correlations, 2306.13593.
- [80] J. D. Romano and B. Allen, Answers to frequently asked questions about the pulsar timing array Hellings and Downs correlation curve, 2308.05847.
- [81] R. C. Bernardo and K.-W. Ng, Beyond the Hellings-Downs curve: Non-Einsteinian gravitational waves in pulsar timing array correlations, 2310.07537.
- [82] K.-W. Ng and G.-C. Liu, Correlation functions of CMB anisotropy and polarization, Int. J. Mod. Phys. D 8 (1999) 61–83, [astro-ph/9710012].
- [83] Q. Liang, M.-X. Lin and M. Trodden, A test of gravity with Pulsar Timing Arrays, JCAP 11 (2023) 042, [2304.02640].