Multi-messenger Approach to Ultra-light Scalars

Author(s)

Banerjee, Indra Kumar, Bonthu, Soumya, Dey, Ujjal Kumar

Abstract

We propose a novel method to study the ultra-light scalars, where compact rotating objects undergo the phenomenon of superradiance to create gravitational waves and neutrino flux signals. The neutrino flux results from the 'right' coupling between the ultra-light scalars and the neutrinos. We study the intertwining of gravitational waves and neutrino flux signals produced from a single source and elaborate if and when the signals can be detected in existing and upcoming experiments in a direct manner. We also discuss an indirect way to test it by means of cosmic neutrino background which can be detected by upcoming PTOLEMY experiment.

Figures

Diagram displaying the main scheme of this article. The blue boxes signify the inputs from the ULS properties. The direct and the indirect signals have been specified. The variable on which each signal depends have also been shown.

Diagram displaying the main scheme of this article. The blue boxes signify the inputs from the ULS properties. The direct and the indirect signals have been specified. The variable on which each signal depends have also been shown.


The GW created due to the four benchmark cases in Tab. 1. We also show the sensitivity curves of the current and future GW experiments in the relevant frequency range.

The GW created due to the four benchmark cases in Tab. 1. We also show the sensitivity curves of the current and future GW experiments in the relevant frequency range.


The neutrino flux created due to the four benchmark cases in Tab. 1. We also show the other sources of neutrinos in the flux-energy space.

The neutrino flux created due to the four benchmark cases in Tab. 1. We also show the other sources of neutrinos in the flux-energy space.


The prediction of differential energy  spectra of electron due to the capture of the CNB neutrinos on tritium in PTOLEMY. In this figure dashed, solid and dotted lines correspond to the neutrinos which were present since the decoupling, the neutrinos which are a product of the visible decay and the sum of them respectively. Also here red and blue signifies $\nu_2$ and $\nu_1$ respectively and the black dashed line corresponds to the $\beta$ decay background. Furthermore, we have considered $\Delta=40\mathrm{~meV}$, $m_{\nu_3}=50\mathrm{~meV}$, $m_{\phi}=0.001\mathrm{~meV}$, and $g_{\phi\nu}=3\times 10^{-8}$.

The prediction of differential energy spectra of electron due to the capture of the CNB neutrinos on tritium in PTOLEMY. In this figure dashed, solid and dotted lines correspond to the neutrinos which were present since the decoupling, the neutrinos which are a product of the visible decay and the sum of them respectively. Also here red and blue signifies $\nu_2$ and $\nu_1$ respectively and the black dashed line corresponds to the $\beta$ decay background. Furthermore, we have considered $\Delta=40\mathrm{~meV}$, $m_{\nu_3}=50\mathrm{~meV}$, $m_{\phi}=0.001\mathrm{~meV}$, and $g_{\phi\nu}=3\times 10^{-8}$.


References
  • [1] SAGE collaboration, Solar neutrino results from SAGE, Nucl. Phys. B Proc. Suppl. 77 (1999) 20.
  • [2] MiniBooNE, SciBooNE collaboration, Dual baseline search for muon antineutrino disappearance at 0.1eV2 < ∆m2 < 100eV2 , Phys. Rev. D 86 (2012) 052009 [1208.0322].
  • [3] SciBooNE, MiniBooNE collaboration, Dual baseline search for muon neutrino disappearance at 0.5eV2 < ∆m2 < 40eV2 , Phys. Rev. D 85 (2012) 032007 [1106.5685].
  • [4] Borexino collaboration, Final results of Borexino Phase-I on low energy solar neutrino spectroscopy, Phys. Rev. D 89 (2014) 112007 [1308.0443].
  • [5] DUNE collaboration, Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment, Eur. Phys. J. C 81 (2021) 322 [2008.12769].
  • [6] Hyper-Kamiokande collaboration, Hyper-Kamiokande Design Report, 1805.04163.
  • [7] KamLAND collaboration, 7 Be Solar Neutrino Measurement with KamLAND, Phys. Rev. C 92 (2015) 055808 [1405.6190].
  • [8] SNO collaboration, Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory, Phys. Rev. C 88 (2013) 025501 [1109.0763].
  • [9] MicroBooNE collaboration, Design and Construction of the MicroBooNE Detector, JINST 12 (2017) P02017 [1612.05824].
  • [10] T2K collaboration, The T2K Experiment, Nucl. Instrum. Meth. A 659 (2011) 106 [1106.1238].
  • [11] IceCube collaboration, Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, Science 342 (2013) 1242856 [1311.5238].
  • [12] IceCube collaboration, First observation of PeV-energy neutrinos with IceCube, Phys. Rev. Lett. 111 (2013) 021103 [1304.5356].
  • [13] ICAL collaboration, Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO), Pramana 88 (2017) 79 [1505.07380].
  • [14] RNO-G collaboration, Searching for cosmic-ray air showers with RNO-G, PoS ICRC2023 (2023) 259.
  • [15] NOvA collaboration, The NOvA Technical Design Report, .
  • [16] Kamiokande collaboration, Atmospheric Neutrino Background and Pion Nuclear Effect for Kamioka Nucleon Decay Experiment, J. Phys. Soc. Jap. 55 (1986) 3786.
  • [17] K2K collaboration, Design, construction, and operation of SciFi tracking detector for K2K experiment, Nucl. Instrum. Meth. A 453 (2000) 165 [hep-ex/0004024].
  • [18] ANTARES collaboration, A deep sea telescope for high-energy neutrinos, astro-ph/9907432.
  • [19] MINOS collaboration, The MINOS Detectors Technical Design Report, .
  • [20] K. Anderson et al., The NuMI Facility Technical Design Report, .
  • [21] CHOOZ collaboration, Initial results from the CHOOZ long baseline reactor neutrino oscillation experiment, Phys. Lett. B 420 (1998) 397 [hep-ex/9711002].
  • [22] Super-Kamiokande collaboration, Measurement of a small atmospheric muon-neutrino / electron-neutrino ratio, Phys. Lett. B 433 (1998) 9 [hep-ex/9803006].
  • [23] IceCube-Gen2 collaboration, IceCube-Gen2: the window to the extreme Universe, J. Phys. G 48 (2021) 060501 [2008.04323].
  • [24] Daya Bay collaboration, A Precision measurement of the neutrino mixing angle θ13 using reactor antineutrinos at Daya-Bay, hep-ex/0701029.
  • [25] Frejus collaboration, Determination of the atmospheric neutrino spectra with the Frejus detector, Z. Phys. C 66 (1995) 417.
  • [26] RENO collaboration, Measurement of Reactor Antineutrino Oscillation Amplitude and Frequency at RENO, Phys. Rev. Lett. 121 (2018) 201801 [1806.00248].
  • [27] E. Andres et al., The AMANDA neutrino telescope: Principle of operation and first results, Astropart. Phys. 13 (2000) 1 [astro-ph/9906203].
  • [28] I. De Bonis et al., LBNO-DEMO: Large-scale neutrino detector demonstrators for phased performance assessment in view of a long-baseline oscillation experiment, 1409.4405.
  • [29] KM3NeT collaboration, Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources, Astropart. Phys. 111 (2019) 100 [1810.08499].
  • [30] GRAND collaboration, The Giant Radio Array for Neutrino Detection (GRAND): Science and Design, Sci. China Phys. Mech. Astron. 63 (2020) 219501 [1810.09994].
  • [31] E. Waxman and J.N. Bahcall, High-energy neutrinos from cosmological gamma-ray burst fireballs, Phys. Rev. Lett. 78 (1997) 2292 [astro-ph/9701231].
  • [32] E. Waxman and J.N. Bahcall, High-energy neutrinos from astrophysical sources: An Upper bound, Phys. Rev. D 59 (1999) 023002 [hep-ph/9807282].
  • [33] Super-Kamiokande collaboration, Search for supernova relic neutrinos at SUPER-KAMIOKANDE, Phys. Rev. Lett. 90 (2003) 061101 [hep-ex/0209028].
  • [34] D.N. Schramm and G. Steigman, Relic Neutrinos and the Density of the Universe, Astrophys. J. 243 (1981) 1.
  • [35] G. Barr, T.K. Gaisser and T. Stanev, Flux of Atmospheric Neutrinos, Phys. Rev. D 39 (1989) 3532.
  • [36] G. Bellini, A. Ianni, L. Ludhova, F. Mantovani and W.F. McDonough, Geo-neutrinos, Prog. Part. Nucl. Phys. 73 (2013) 1 [1310.3732].
  • [37] A. Mirizzi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bollig et al., Supernova Neutrinos: Production, Oscillations and Detection, Riv. Nuovo Cim. 39 (2016) 1 [1508.00785].
  • [38] R. Davis, Jr., D.S. Harmer and K.C. Hoffman, Search for neutrinos from the sun, Phys. Rev. Lett. 20 (1968) 1205.
  • [39] Super-Kamiokande collaboration, Solar Neutrino Measurements in Super-Kamiokande-IV, Phys. Rev. D 94 (2016) 052010 [1606.07538].
  • [40] SNO collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008].
  • [41] K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615.
  • [42] E.G.M. Ferreira, Ultra-light dark matter, Astron. Astrophys. Rev. 29 (2021) 7 [2005.03254].
  • [43] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev. D 81 (2010) 123530 [0905.4720].
  • [44] P.J.E. Peebles and B. Ratra, The Cosmological Constant and Dark Energy, Rev. Mod. Phys. 75 (2003) 559 [astro-ph/0207347].
  • [45] E. Fischbach, G.T. Gillies, D.E. Krause, J.G. Schwan and C. Talmadge, Nonnewtonian gravity and new weak forces: An Index of measurements and theory, Metrologia 29 (1992) 213.
  • [46] S.M. Carroll, G.B. Field and R. Jackiw, Limits on a Lorentz and Parity Violating Modification of Electrodynamics, Phys. Rev. D 41 (1990) 1231.
  • [47] S.M. Carroll and G.B. Field, The Einstein equivalence principle and the polarization of radio galaxies, Phys. Rev. D 43 (1991) 3789.
  • [48] D. Harari and P. Sikivie, Effects of a Nambu-Goldstone boson on the polarization of radio galaxies and the cosmic microwave background, Phys. Lett. B 289 (1992) 67.
  • [49] G. Raffelt and L. Stodolsky, Mixing of the Photon with Low Mass Particles, Phys. Rev. D 37 (1988) 1237.
  • [50] A. Arvanitaki and S. Dubovsky, Exploring the String Axiverse with Precision Black Hole Physics, Phys. Rev. D 83 (2011) 044026 [1004.3558].
  • [51] Y. Chen, X. Xue and V. Cardoso, Black Holes as Neutrino Factories, 2308.00741.
  • [52] G.B. Gelmini and M. Roncadelli, Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number, Phys. Lett. B 99 (1981) 411.
  • [53] H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974) 438.
  • [54] J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275.
  • [55] R.N. Mohapatra and J.C. Pati, Left-Right Gauge Symmetry and an Isoconjugate Model of CP Violation, Phys. Rev. D 11 (1975) 566.
  • [56] J.D. Bekenstein, Extraction of energy and charge from a black hole, Phys. Rev. D 7 (1973) 949.
  • [57] J.D. Bekenstein and M. Schiffer, The Many faces of superradiance, Phys. Rev. D 58 (1998) 064014 [gr-qc/9803033].
  • [58] S.L. Detweiler, KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES, Phys. Rev. D 22 (1980) 2323.
  • [59] LIGO Scientific, Virgo collaboration, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [1602.03837].
  • [60] NANOGrav collaboration, The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951 (2023) L8 [2306.16213].
  • [61] NANOGrav collaboration, The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars, Astrophys. J. Lett. 951 (2023) L9 [2306.16217].
  • [62] EPTA, InPTA: collaboration, The second data release from the European Pulsar Timing Array - III. Search for gravitational wave signals, Astron. Astrophys. 678 (2023) A50 [2306.16214].
  • [63] EPTA collaboration, The second data release from the European Pulsar Timing Array - I. The dataset and timing analysis, Astron. Astrophys. 678 (2023) A48 [2306.16224].
  • [64] EPTA collaboration, The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe, 2306.16227.
  • [65] D.J. Reardon et al., Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951 (2023) L6 [2306.16215].
  • [66] A. Zic et al., The Parkes Pulsar Timing Array third data release, Publ. Astron. Soc. Austral. 40 (2023) e049 [2306.16230].
  • [67] D.J. Reardon et al., The Gravitational-wave Background Null Hypothesis: Characterizing Noise in Millisecond Pulsar Arrival Times with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951 (2023) L7 [2306.16229].
  • [68] H. Xu et al., Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I, Res. Astron. Astrophys. 23 (2023) 075024 [2306.16216].
  • [69] LISA collaboration, Laser Interferometer Space Antenna, 1702.00786.
  • [70] W.-H. Ruan, Z.-K. Guo, R.-G. Cai and Y.-Z. Zhang, Taiji program: Gravitational-wave sources, Int. J. Mod. Phys. A 35 (2020) 2050075 [1807.09495].
  • [71] S. Kawamura et al., The Japanese space gravitational wave antenna: DECIGO, Class. Quant. Grav. 28 (2011) 094011.
  • [72] S.P. et al., The Big Bang Observer: Direct detection of gravitational waves from the birth of the Universe to the Present,, NASA Mission Concept Study (2004) .
  • [73] M. Punturo et al., The Einstein Telescope: A third-generation gravitational wave observatory, Class. Quant. Grav. 27 (2010) 194002.
  • [74] D. Reitze et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO, Bull. Am. Astron. Soc. 51 (2019) 035 [1907.04833].
  • [75] A. Arvanitaki and A.A. Geraci, Detecting high-frequency gravitational waves with optically-levitated sensors, Phys. Rev. Lett. 110 (2013) 071105 [1207.5320].
  • [76] N. Aggarwal, G.P. Winstone, M. Teo, M. Baryakhtar, S.L. Larson, V. Kalogera et al., Searching for New Physics with a Levitated-Sensor-Based Gravitational-Wave Detector, Phys. Rev. Lett. 128 (2022) 111101 [2010.13157].
  • [77] M.E. Gertsenshtein, Wave resonance of light and gravitional waves,, Soviet Physics JETP 14 (1962) 84.
  • [78] J.R. et al., Next Generation Search for Axion and ALP Dark Matter with the International Axion Observatory,, 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference (2018) 8824640.
  • [79] R. Bähre et al., Any light particle search II —Technical Design Report, JINST 8 (2013) T09001 [1302.5647].
  • [80] C. Albrecht, S. Barbanotti, H. Hintz, K. Jensch, R. Klos, W. Maschmann et al., Straightening of Superconducting HERA Dipoles for the Any-Light-Particle-Search Experiment ALPS II, EPJ Tech. Instrum. 8 (2021) 5 [2004.13441].
  • [81] S. Chaudhuri, P.W. Graham, K. Irwin, J. Mardon, S. Rajendran and Y. Zhao, Radio for hidden-photon dark matter detection, Phys. Rev. D 92 (2015) 075012 [1411.7382].
  • [82] M. Silva-Feaver et al., Design Overview of DM Radio Pathfinder Experiment, IEEE Trans. Appl. Supercond. 27 (2017) 1400204 [1610.09344].
  • [83] Holometer collaboration, MHz Gravitational Wave Constraints with Decameter Michelson Interferometers, Phys. Rev. D 95 (2017) 063002 [1611.05560].
  • [84] T. Akutsu et al., Search for a stochastic background of 100-MHz gravitational waves with laser interferometers, Phys. Rev. Lett. 101 (2008) 101101 [0803.4094].
  • [85] F.-Y. Li, M.-X. Tang and D.-P. Shi, Electromagnetic response of a Gaussian beam to high frequency relic gravitational waves in quintessential inflationary models, Phys. Rev. D 67 (2003) 104008 [gr-qc/0306092].
  • [86] F.-Y. Li and N. Yang, Resonant interaction between a weak gravitational wave and a microwave beam in the double polarized states through a static magnetic field, Chin. Phys. Lett. 21 (2004) 2113 [gr-qc/0410060].
  • [87] F. Li, R.M.L. Baker, Jr. and Z. Chen, Perturbative photon flux generated by high-frequency relic gravitational waves and utilization of them for their detection, gr-qc/0604109.
  • [88] D.J. Fixsen et al., ARCADE 2 Measurement of the Extra-Galactic Sky Temperature at 3-90 GHz, Astrophys. J. 734 (2011) 5 [0901.0555].
  • [89] J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen and N. Mahesh, An absorption profile centred at 78 megahertz in the sky-averaged spectrum, Nature 555 (2018) 67 [1810.05912].
  • [90] R. Brito, V. Cardoso and P. Pani, Superradiance: New Frontiers in Black Hole Physics, Lect. Notes Phys. 906 (2015) pp.1 [1501.06570].
  • [91] H. Yoshino and H. Kodama, Bosenova collapse of axion cloud around a rotating black hole, Prog. Theor. Phys. 128 (2012) 153 [1203.5070].
  • [92] H. Yoshino and H. Kodama, Gravitational radiation from an axion cloud around a black hole: Superradiant phase, PTEP 2014 (2014) 043E02 [1312.2326].
  • [93] J.M. Berryman et al., Neutrino self-interactions: A white paper, Phys. Dark Univ. 42 (2023) 101267 [2203.01955].
  • [94] M. Kachelriess, R. Tomas and J.W.F. Valle, Supernova bounds on Majoron emitting decays of light neutrinos, Phys. Rev. D 62 (2000) 023004 [hep-ph/0001039].
  • [95] Y. Farzan, Bounds on the coupling of the Majoron to light neutrinos from supernova cooling, Phys. Rev. D 67 (2003) 073015 [hep-ph/0211375].
  • [96] F. Forastieri, M. Lattanzi and P. Natoli, Constraints on secret neutrino interactions after Planck, JCAP 07 (2015) 014 [1504.04999].
  • [97] F. Forastieri, M. Lattanzi and P. Natoli, Cosmological constraints on neutrino self-interactions with a light mediator, Phys. Rev. D 100 (2019) 103526 [1904.07810].
  • [98] J. Venzor, G. Garcia-Arroyo, A. Pérez-Lorenzana and J. De-Santiago, Massive neutrino self-interactions with a light mediator in cosmology, Phys. Rev. D 105 (2022) 123539 [2202.09310].
  • [99] K. El-Badry et al., A Sun-like star orbiting a black hole, Mon. Not. Roy. Astron. Soc. 518 (2023) 1057 [2209.06833].
  • [100] IceCube collaboration, Evidence for neutrino emission from the nearby active galaxy NGC 1068, Science 378 (2022) 538 [2211.09972].
  • [101] IceCube collaboration, Observation of high-energy neutrinos from the Galactic plane, Science 380 (2023) adc9818 [2307.04427].
  • [102] IceCube collaboration, An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts, Nature 484 (2012) 351 [1204.4219].
  • [103] R. Stein et al., A tidal disruption event coincident with a high-energy neutrino, Nature Astron. 5 (2021) 510 [2005.05340].
  • [104] S. van Velzen et al., Establishing accretion flares from massive black holes as a major source of high-energy neutrinos, 2111.09391.
  • [105] A. Acker, S. Pakvasa and J.T. Pantaleone, Decaying Dirac neutrinos, Phys. Rev. D 45 (1992) 1.
  • [106] A. Acker and S. Pakvasa, Solar neutrino decay, Phys. Lett. B 320 (1994) 320 [hep-ph/9310207].
  • [107] K. Akita, G. Lambiase and M. Yamaguchi, Unstable cosmic neutrino capture, JHEP 02 (2022) 132 [2109.02900].
  • [108] PTOLEMY collaboration, PTOLEMY: A Proposal for Thermal Relic Detection of Massive Neutrinos and Directional Detection of MeV Dark Matter, 1808.01892.
  • [109] Y. Cheipesh, V. Cheianov and A. Boyarsky, Navigating the pitfalls of relic neutrino detection, Phys. Rev. D 104 (2021) 116004 [2101.10069].
  • [110] PTOLEMY collaboration, Heisenberg’s uncertainty principle in the PTOLEMY project: A theory update, Phys. Rev. D 106 (2022) 053002 [2203.11228].