Gravitational Wave-Induced Freeze-In of Fermionic Dark Matter

Author(s)

Maleknejad, Azadeh, Kopp, Joachim

Abstract

The minimal coupling of massless fermions to gravity does not allow for their gravitational production solely based on the expansion of the Universe. We argue that this changes in presence of realistic and potentially detectable stochastic gravitational wave backgrounds. We compute the resulting energy density of Weyl fermions at 1-loop using in--in formalism. If the initially massless fermions eventually acquire mass, this mechanism can explain the dark matter abundance in the Universe. Remarkably, it may be more efficient than conventional gravitational production of superheavy fermions.

Figures

The graviton--fermion cubic and quartic vertices.

The graviton--fermion cubic and quartic vertices.


GW-induced freeze-in of dark matter for a GW background with a broken power-law spectrum. Colored lines show the phase transition temperature $T_*$ and DM mass $M$ required to explain the observed DM density. We have assumed a spectral index $m=3$ below the peak frequency, $q_\text{peak}$, while above the peak we have used $n=1$ (green, e.g.\ from bubble collisions in a first-order phase transition), $n=5/3$ (blue, e.g.\ from turbulence), and $n=4$ (orange, e.g.\ from sound waves) as benchmark values. Below the lines, GW-induced freeze-in can still contribute a fraction of the DM. The bottom edges of the shaded bands indicate where that fraction is 1\%. For comparison, we show in yellow the parameter region in which conventional cosmological production of supermassive fermions by the expansion of the Universe (``CGPP'') \cite{Kolb:2017jvz, Ema:2019yrd, Kolb:2023ydq} or graviton-mediated annihilation (``GMA'') \cite{Bernal:2018qlk, Clery:2021bwz} yield the correct relic density. Inside the gray area, fermions are massive already at the time $T_*$ of GW production, so our mechanism is not applicable. \emph{Gravitational-wave induced freeze-in can successfully explain the observed DM relic abundance in large swaths of parameter space, favoring $T_*$ well above the electroweak scale.}

GW-induced freeze-in of dark matter for a GW background with a broken power-law spectrum. Colored lines show the phase transition temperature $T_*$ and DM mass $M$ required to explain the observed DM density. We have assumed a spectral index $m=3$ below the peak frequency, $q_\text{peak}$, while above the peak we have used $n=1$ (green, e.g.\ from bubble collisions in a first-order phase transition), $n=5/3$ (blue, e.g.\ from turbulence), and $n=4$ (orange, e.g.\ from sound waves) as benchmark values. Below the lines, GW-induced freeze-in can still contribute a fraction of the DM. The bottom edges of the shaded bands indicate where that fraction is 1\%. For comparison, we show in yellow the parameter region in which conventional cosmological production of supermassive fermions by the expansion of the Universe (``CGPP'') \cite{Kolb:2017jvz, Ema:2019yrd, Kolb:2023ydq} or graviton-mediated annihilation (``GMA'') \cite{Bernal:2018qlk, Clery:2021bwz} yield the correct relic density. Inside the gray area, fermions are massive already at the time $T_*$ of GW production, so our mechanism is not applicable. \emph{Gravitational-wave induced freeze-in can successfully explain the observed DM relic abundance in large swaths of parameter space, favoring $T_*$ well above the electroweak scale.}


References
  • [1] L. H. Ford, Gravitational Particle Creation and Inflation, Phys. Rev. D 35, 2955 (1987).
  • [2] D. J. H. Chung, E. W. Kolb, and A. Riotto, Superheavy dark matter, Phys. Rev. D 59, 023501 (1998), arXiv:hepph/9802238.
  • [3] L. Parker and D. Toms, Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2009).
  • [4] E. W. Kolb and A. J. Long, Cosmological gravitational particle production and its implications for cosmological relics, (2023), arXiv:2312.09042 [astro-ph.CO].
  • [5] E. W. Kolb and A. J. Long, Superheavy dark matter through Higgs portal operators, Phys. Rev. D 96, 103540 (2017), arXiv:1708.04293 [astro-ph.CO].
  • [6] Y. Ema, K. Nakayama, and Y. Tang, Production of purely gravitational dark matter: the case of fermion and vector boson, JHEP 07, 060, arXiv:1903.10973 [hep-ph].
  • [7] N. Bernal, M. Dutra, Y. Mambrini, K. Olive, M. Peloso, and M. Pierre, Spin-2 Portal Dark Matter, Phys. Rev. D 97, 115020 (2018), arXiv:1803.01866 [hep-ph].
  • [8] S. Clery, Y. Mambrini, K. A. Olive, and S. Verner, Gravitational portals in the early Universe, Phys. Rev. D 105, 075005 (2022), arXiv:2112.15214 [hep-ph].
  • [9] M. D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge University Press, 2014).
  • [10] P. B. Greene and L. Kofman, Preheating of fermions, Phys. Lett. B 448, 6 (1999), arXiv:hep-ph/9807339.
  • [11] P. Adshead, L. Pearce, M. Peloso, M. A. Roberts, and L. Sorbo, Phenomenology of fermion production during axion inflation, JCAP 06, 020, arXiv:1803.04501 [astroph.CO].
  • [12] A. Maleknejad, Dark Fermions and Spontaneous CP violation in SU(2)-axion Inflation, JHEP 07, 154, arXiv:1909.11545 [hep-th].
  • [13] A. Maleknejad, SU(2)R and its axion in cosmology: A common origin for inflation, cold sterile neutrinos, and baryogenesis, Phys. Rev. D 104, 083518 (2021), arXiv:2012.11516 [hep-ph].
  • [14] A. Maleknejad, Chiral anomaly in SU(2)R-axion inflation and the new prediction for particle cosmology, JHEP 21, 113, arXiv:2103.14611 [hep-ph].
  • [15] S. H.-S. Alexander, M. E. Peskin, and M. M. SheikhJabbari, Leptogenesis from gravity waves in models of inflation, Phys. Rev. Lett. 96, 081301 (2006), arXiv:hepth/0403069.
  • [16] A. Maleknejad, Gravitational leptogenesis in axion inflation with SU(2) gauge field, JCAP 12, 027, arXiv:1604.06520 [hep-ph].
  • [17] A. Maleknejad, Chiral Gravity Waves and Leptogenesis in Inflationary Models with non-Abelian Gauge Fields, Phys. Rev. D 90, 023542 (2014), arXiv:1401.7628 [hepth].
  • [18] P. Adshead and E. I. Sfakianakis, Leptogenesis from lefthanded neutrino production during axion inflation, Phys. Rev. Lett. 116, 091301 (2016), arXiv:1508.00881 [hepph].
  • [19] R. R. Caldwell and C. Devulder, Axion Gauge Field Inflation and Gravitational Leptogenesis: A Lower Bound on B Modes from the Matter-Antimatter Asymmetry of the Universe, Phys. Rev. D 97, 023532 (2018), arXiv:1706.03765 [astro-ph.CO].
  • [20] L. Sorbo, Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton, JCAP 06, 003, arXiv:1101.1525 [astro-ph.CO].
  • [21] A. Maleknejad, Axion Inflation with an SU(2) Gauge Field: Detectable Chiral Gravity Waves, JHEP 07, 104, arXiv:1604.03327 [hep-ph].
  • [22] E. Komatsu, New physics from the polarized light of the cosmic microwave background, Nature Rev. Phys. 4, 452 (2022), arXiv:2202.13919 [astro-ph.CO].
  • [23] E. Witten, Cosmic Separation of Phases, Phys. Rev. D 30, 272 (1984).
  • [24] P. Schwaller, Gravitational Waves from a Dark Phase Transition, Phys. Rev. Lett. 115, 181101 (2015), arXiv:1504.07263 [hep-ph].
  • [25] C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04, 001, arXiv:1512.06239 [astro-ph.CO].
  • [26] A. Roper Pol, A. Neronov, C. Caprini, T. Boyer, and D. Semikoz, LISA and γ-ray telescopes as multimessenger probes of a first-order cosmological phase transition, (2023), arXiv:2307.10744 [astro-ph.CO].
  • [27] A. Brandenburg, Y. He, T. Kahniashvili, M. Rheinhardt, and J. Schober, Relic gravitational waves from the chiral magnetic effect, Astrophys. J. 911, 110 (2021), arXiv:2101.08178 [astro-ph.CO].
  • [28] A. Roper Pol, S. Mandal, A. Brandenburg, and T. Kahniashvili, Polarization of gravitational waves from helical MHD turbulent sources, JCAP 04 (04), 019, arXiv:2107.05356 [gr-qc].
  • [29] P. Adshead, J. T. Giblin, M. Pieroni, and Z. J. Weiner, Constraining Axion Inflation with Gravitational Waves across 29 Decades in Frequency, Phys. Rev. Lett. 124, 171301 (2020), arXiv:1909.12843 [astro-ph.CO].
  • [30] D. G. Figueroa, A. Florio, N. Loayza, and M. Pieroni, Spectroscopy of particle couplings with gravitational waves, Phys. Rev. D 106, 063522 (2022), arXiv:2202.05805 [astro-ph.CO].
  • [31] M. B. Hindmarsh and T. W. B. Kibble, Cosmic strings, Rept. Prog. Phys. 58, 477 (1995), arXiv:hep-ph/9411342.
  • [32] P. Auclair et al., Probing the gravitational wave background from cosmic strings with LISA, JCAP 04, 034, arXiv:1909.00819 [astro-ph.CO].
  • [33] C. Caprini, R. Durrer, and G. Servant, The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition, JCAP 12, 024, arXiv:0909.0622 [astro-ph.CO].
  • [34] C. Caprini and D. G. Figueroa, Cosmological Backgrounds of Gravitational Waves, Class. Quant. Grav. 35, 163001 (2018), arXiv:1801.04268 [astro-ph.CO].
  • [35] A. Maleknejad and J. Kopp, Weyl Fermion Creation by Cosmological Gravitational Wave Background at 1-Loop, (2024), to appear soon.
  • [36] J. M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05, 013, arXiv:astro-ph/0210603.
  • [37] L. Alvarez-Gaume and E. Witten, Gravitational Anomalies, Nucl. Phys. B 234, 269 (1984).
  • [38] R. Durrer, Gravitational waves from cosmological phase transitions, J. Phys. Conf. Ser. 222, 012021 (2010), arXiv:1002.1389 [astro-ph.CO].
  • [39] A. Roper Pol, C. Caprini, A. Neronov, and D. Semikoz, Gravitational wave signal from primordial magnetic fields in the Pulsar Timing Array frequency band, Phys. Rev. D 105, 123502 (2022), arXiv:2201.05630 [astro-ph.CO].
  • [40] M. Breitbach, J. Kopp, E. Madge, T. Opferkuch, and P. Schwaller, Dark, Cold, and Noisy: Constraining Secluded Hidden Sectors with Gravitational Waves, JCAP 07, 007, arXiv:1811.11175 [hep-ph].
  • [41] M. Breitbach, Gravitational Waves from Cosmological Phase Transitions, Master’s thesis, Mainz U. (2018), arXiv:2204.09661 [astro-ph.CO].
  • [42] M. O. Scully and M. S. Zubairy, Quantum Optics (1997).
  • [43] C. Caprini, R. Durrer, T. Konstandin, and G. Servant, General Properties of the Gravitational Wave Spectrum from Phase Transitions, Phys. Rev. D 79, 083519 (2009), arXiv:0901.1661 [astro-ph.CO].
  • [44] M. Maggiore, Gravitational Waves. Vol. 2: Astrophysics and Cosmology (Oxford University Press, 2018).
  • [45] M. Maggiore et al., Science Case for the Einstein Telescope, JCAP 03, 050, arXiv:1912.02622 [astro-ph.CO].
  • [46] M. Evans et al., A Horizon Study for Cosmic Explorer: Science, Observatories, and Community, (2021), arXiv:2109.09882 [astro-ph.IM].
  • [47] N. Aggarwal et al., Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies, Living Rev. Rel. 24, 4 (2021), arXiv:2011.12414 [gr-qc].
  • [48] M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments (Oxford University Press, 2007).
  • [49] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory (2017) arXiv:1703.05448 [hepth].
  • [50] A. Roper Pol, A. Maleknejad, and J. Kopp, Simulating Fermion Production by Gravitational Waves Background, (2024), in preparation.
  • [51] H. Bagherian and A. Maleknejad, Weyl Fermions and Gravitational Waves in Inflation, (2024), in preparation.