Author(s)
Ayzenberg, D., Blackburn, Lindy, Brito, R., Britzen, S., Broderick, A., Carballo-Rubio, R., Cardoso, V., Chael, A., Chatterjee, K., Chen, Y., Cunha, P.V.P., Davoudiasl, H., Denton, P.B., Doeleman, S.S., Eichhorn, A., Eubanks, M., Fang, Y., Foschi, A., Fromm, C.M., Galison, P., Ghosh, S.G., Gold, R., Gurvits, L.I., Hadar, S., Held, A., Houston, J., Hu, Y., Johnson, M.D., Kocherlakota, P., Natarajan, P., Olivares, H., Palumbo, D., Pesce, D.W., Rajendran, S., Roy, R., Saurabh, Shao, L., Tahura, S., Tamar, A., Tiede, P., Vincent, F.H., Visinelli, L., Wang, Z., Wielgus, M., Xue, X., Yakut, K., Yang, H., Younsi, Z.Abstract
The Event Horizon Telescope (EHT) Collaboration recently published the first images of the supermassive black holes in the cores of the Messier 87 and Milky Way galaxies. These observations have provided a new means to study supermassive black holes and probe physical processes occurring in the strong-field regime. We review the prospects of future observations and theoretical studies of supermassive black hole systems with the next-generation Event Horizon Telescope (ngEHT), which will greatly enhance the capabilities of the existing EHT array. These enhancements will open up several previously inaccessible avenues of investigation, thereby providing important new insights into the properties of supermassive black holes and their environments. This review describes the current state of knowledge for five key science cases, summarising the unique challenges and opportunities for fundamental physics investigations that the ngEHT will enable.
Figures
EHTC images of M87* (left) and \sgra~(right). The central solid blue circles show the largest possible diameter (in GR) of each BH's event horizon, i.e., the Schwarzschild value of $4~r_{\rm g}$, where $r_{\rm g}$ is the BH gravitational radius (see Sec.~\ref{sec:Light_ring}). The size of the event horizon in the observed image would appear slightly larger than the solid blue circles, due to gravitational lensing. Note that the event horizons fit within the central dark regions of both images (the central brightness depression). Pairs of dashed blue circles delineate the estimated diameter range of the bright ring from image domain analysis of M87* ($42~\pm~3 ~\mu$as) and \sgra~($51.8~\pm~2.3 ~\mu$as). These ranges are consistent with the prediction of the Schwarzschild BH shadow diameter ($2\sqrt{27}~r_{\rm g}$). The white circles in the lower right of both panels show the $20~\mu$as FWHM circular Gaussian beam (EHT 2017). See \cite{EventHorizonTelescope:2019dse} and \cite{EventHorizonTelescope:2022xnr} for further information. Figure reproduced from \cite{Younsi_review_in_prep}.
Vision for the ngEHT array. Current EHT sites are shown in white, candidate ngEHT Phase 1 sites are blue, and candidate ngEHT Phase~2 sites are green. In addition, yellow markers show four additional sites that are planned to come online over the next five years: the 37~m Haystack Telescope \citep[HAY;][]{Kauffmann_2023}, the 15~m Africa Millimetre Telescope \citep[AMT;][]{Backes_2016}, the Large Latin American Millimeter Array \citep[LLA;][]{Romero_2020}, and the Yonsei Radio Observatory of the Korea VLBI Network \citep[KVN-YS;][]{Asada_2017}. For additional details on the ngEHT array, see \citetalias{ngEHT_refarray}. Figure reproduced from \citetalias{ngEHT_KSG}.
Observing frequencies and imaging angular resolutions for current and next generation facilities. The EHT and ngEHT have significantly finer imaging resolution than any other telescope. The ngEHT will significantly expand the frequency coverage of the EHT and will provide access to larger angular scales. Figure reproduced from \citetalias{ngEHT_KSG}.
Left: near-critical null geodesics emanating from a flare (orange sphere) in an optically thin equatorial emission disk around a Kerr BH with $a_*=0.94$. The blue light ray has half-orbit number $n=1$, while the green ray has $n=2$. Right: image of the disk as would be seen by an infinite-resolution distant observer at an inclination of $17^\circ$. Strongly lensed light rays, which undergo multiple half-orbits, appear on the observer screen close to the ``critical curve'', displaying enhanced brightness, and compose the photon ring. Correlated images of the same spacetime event (e.g., the flare) appear at different angles and times along the ring (blue and green dots on the right image). Figure from \cite{Hadar:2020fda}.
Left: $n=0$ and $n=1$ images from a MAD GRMHD simulation viewed with parameters appropriate for M87* at 230 GHz. Right: visibility response along the $u$ and $v$ axes of the decomposed and full image. At the baseline lengths accessible to the ngEHT, the $n=0$ and $n=1$ image have comparable correlated flux density.
Polarized interferometric indication of the \sgra~photon ring. Left: a MAD GRMHD simulation of \sgra with $R_{\rm low}=1$, $R_{\rm high}=80$, and viewed at $30^\circ$, after corruption by interstellar scattering. Middle panels: divergence-free $B$-mode polarization defined relative to the image center, showing the sign flip between the direct and indirect image. Right panel: the phase of the polarimetric spiral quotient defined in \citet{Palumbo_2023} after averaging over 24 hours of the simulation movie at left, which reveals the presence of the photon ring $B$-mode reversal even without phase information constraining the image center. This detection mechanism is only possible with long-baseline 345 GHz detections which just barely reach the indirect image-dominated regime.
Geometric model fits containing two geometric ``m-rings'' with identical prior volume adapted from \citet{Tiede_2022_photon_rings}. The fits assume that the two rings, 0 and 1, have hierarchical widths. Increasing data quality and coverage eventually requires the presence of a sharp ring. Here $w_1$ specifies the mean and $1\sigma$ uncertainty on the thinner ring's thickness. Starting with the EHT 2022 array, all arrays have joint 230~GHz and 345~GHz coverage, the most crucial difference in capability of recovering sharp features.
Universal, self-similar structure in the autocorrelation function $\mathcal{C}(T,\Phi=\varphi-\varphi')$, Equation~\eqref{eq:photon ring correlator}, for polar observations of an equatorial disk surrounding a Kerr BH with $a_{*}=0.94$. The colored peaks arise from pairs of correlated photons with the same half-orbit numbers $n=n'$ (red), and different half-orbit numbers $\left|n-n'\right|=1$ (blue), $\left|n-n'\right|=2$ (green), and $\left|n-n'\right|=3$ (purple). The (identical) shapes of the correlation peaks are determined by source properties, while their locations and relative magnitudes are determined by the spacetime geometry. Here $\gamma_0$, $\delta_0$, and $\tau_0$ are photon ring critical exponents \citep{Johnson:2019ljv,Gralla:2019drh}. Figure from \cite{Hadar:2020fda}.
Left: predicted joint constraints on mass and spin from measurements of the primary and secondary images (i.e., the $n=0$ and $n=1$ photon rings) of the emission about a BH with mass $M = 6.5\times10^9~M_{\odot}$ and spin $a_{*} = 0.85$, appropriate for M87*. The two lines show the degenerate constraint when the emission is dominated by that at $2~r_{\rm g}$ (black) and $6~r_{\rm g}$ (orange). The combined $1\sigma$ regions are indicated in blue for diameter measurements of various precision, ranging from $\sigma_d/b=0.1\%$ to $0.4\%$. Right: estimates of the precision of mass (top) and spin (bottom) for different intrinsic BH spins, as a function of diameter measurement precision. The open points show the fiducial value in Equation~\ref{eq:diameter_precision}.
Time-averaged images of the direct ($n=0$) image and first lensed ($n=1$) image from MAD GRMHD simulations at various spins, rotated so that the approaching jet is oriented $288^\circ$ East of North \citep[adapted from][]{Palumbo_2022}. Ticks show the EVPA. Polarization spirals about the ring become more radial at higher spin magnitudes, reverse direction over radius in retrograde flows ($a_{*}<0$), and approximately reflect through the origin across sub-image index $n$. These images use the $R_{\rm high}$ electron heating prescription, each having $R_{\rm high}=80$, a reasonable value for both M87* and Sgr A* \citep{Mosci_2016, EventHorizonTelescope:2019pgp,Collaboration2019_V}. The simulations themselves were generated with \texttt{iharm3d} \citep{Gammie_HARM_2003} and ray traced with \texttt{ipole} \citep{IPOLE_2018}. See \citet{Wong_2022} for additional details on the ray tracing.
Fractional error in the mass of Sgr A* ($\Delta M/M$ with $\Delta M$ denoting 1-$\sigma$ error in M) vs. 1-$\sigma$ error in the dimensionless spin of Sgr A* ($\Delta a_*$) achieved from various observations. The dimensionless spin parameter is defined as $a_{*}=|\vec{S}|/M^2$~\citep{Kramer:2004hd}. Observation of the star S2 with GRAVITY places a constraint on $M$ with $\Delta M=1.3\times10^4\,M_{\odot}$~\citep{GRAVITY:2021xju}, shown by the horizontal range in blue. Implementing such bounds on mass, GW observations with LISA can achieve $\Delta a_*=0.013$~\citep{Tahura:2022ffs} (vertical range in green). The orange bar shows the precision of mass and spin measurements the future GRAVITY instrument can achieve ($\Delta M /M \simeq 0.05\%$ and $\Delta a_*=0.035$), given that S-stars are found closer to Sgr A*~\citep{Psaltis:2015uza, Zhang_2015}. Projected pulsar timing observations can obtain $\Delta a_{*}=0.024$ (horizontal range of the red line), while $\Delta M/M$ is of the order $10^{-6}$~\citep{Psaltis:2015uza}, which is much smaller than the scale of the above figure. The $\delta_d/b=0.2\%$ case in Figure~\ref{fig:photon_ring_spin_est} is reproduced here for comparison, as labeled by ``Light Ring''. Future pulsar timing and GRAVITY experiments have the potential to provide the most precise spin measurements.
Exclusion regions in the BH spin-mass diagram obtained from the superradiant instability of Kerr BHs against massive bosonic fields for the two most unstable modes. The top, middle, and bottom panels refer to scalar, vector and tensor fields, respectively. For each mass of the field (reported in units of eV), the separatrix corresponds to an instability time scale equal to the Salpeter time $\tau_{\rm Salpeter} \approx 4.5\times 10^7 {\rm\, yr\,}$, i.e., inside each colored region the instability timescale would be shorter than $\tau_{\rm Salpeter}$. For illustration we consider bosons with masses ranging from $10^{-21}\,$eV to $10^{-17}\,$eV. For the massive tensor case we only show two masses to minimize clutter in the figure. The gray lines and error bars denote the measured mass of Sgr A*~\citep{GRAVITY:2021xju} and M87*~\citep{EventHorizonTelescope:2019dse}.
Exclusion regions for the two most unstable modes as a function of the spin of Sgr A* and M87* when fixing Sgr A*'s mass to $M \simeq 4\times 10^{6}M_{\odot}$~\citep{GRAVITY:2021xju} and M87*'s mass to $M \simeq 6.5\times 10^{9}M_{\odot}$~\citep{EventHorizonTelescope:2019dse}. As in Figure~\ref{fig:BHspin}, the separatrices correspond to an instability time scale equal to the Salpeter time $\tau_{\rm Salpeter} \simeq 4.5\times 10^7 ~{\rm yr}$.
{Left panel:} the evolution of the mass of the boson cloud $M_B$ (top) and of the dimensionless BH spin parameter $a_{\scriptscriptstyle *}$ (bottom), as a function of time in years for (initial) $\alpha = 0.2$ and for different choices of the bosonic nature: scalar field (red), vector field (blue), tensor field (green), with the set of quantum numbers as given in the text. The initial mass of the boson cloud is $M_B = 10^{-1}\,M_\odot$ (solid line) and $M_B = 10^{-6}\,M_\odot$ (dashed line). We assume an initial BH mass $M = 4.3\times 10^6\,M_\odot$ and initial spin $a_{*} = 0.99$. {Right panel:} evolution of shadow contours (gray lines) during different stages of superradiance for a vector with initial $\alpha = 0.2$ and a BH viewed at different inclination angles. The background depicts the intensity map with an initial value of $a_{\scriptscriptstyle *} = 0.99$. The coordinate origin is taken to be the BH location and the axes are specified in units of the initial gravitational radius.
{Left panel:} the evolution of the mass of the boson cloud $M_B$ (top) and of the dimensionless BH spin parameter $a_{\scriptscriptstyle *}$ (bottom), as a function of time in years for (initial) $\alpha = 0.2$ and for different choices of the bosonic nature: scalar field (red), vector field (blue), tensor field (green), with the set of quantum numbers as given in the text. The initial mass of the boson cloud is $M_B = 10^{-1}\,M_\odot$ (solid line) and $M_B = 10^{-6}\,M_\odot$ (dashed line). We assume an initial BH mass $M = 4.3\times 10^6\,M_\odot$ and initial spin $a_{*} = 0.99$. {Right panel:} evolution of shadow contours (gray lines) during different stages of superradiance for a vector with initial $\alpha = 0.2$ and a BH viewed at different inclination angles. The background depicts the intensity map with an initial value of $a_{\scriptscriptstyle *} = 0.99$. The coordinate origin is taken to be the BH location and the axes are specified in units of the initial gravitational radius.
Left panel: examples of deviations from the Kerr background photon geodesics as a function of the affine parameter, $\lambda$, generated by bosonic clouds with $\alpha = 0.2$. The initial values are $\lambda_{\rm 0} = 0,\, r_{\rm 0} = 10^3\, r_{\rm g}$, $i=17^\circ$, and $a_* = 0.94$. The gray vertical line shows the time at which the unperturbed orbit $x_{(0)}^\mu$ crosses the BH equatorial plane for the first time. Right panel: prospects for constraints on the total mass of a vector cloud using photon ring autocorrelations. We show both the ground state $(S,l,m)=(-1,1,1)$ with $\alpha<0.5$ and a higher mode $(S,l,m)=(-1,2,2)$. The constraint bands range from a conservative criterium based on ngEHT's spatial resolution $\sim 10~\mu$as to an optimistic criterium based on the intrinsic azimuthal correlation length of the accretion flow $\ell_\phi \approx 4.3^\circ$. Constraints from a joint observation of motion of stars and EHT ring size measurements~\citep{Sengo:2022jif} are shown in red, and theoretical bounds on the maximum superradiant extraction for $M_B/M$~\citep{Herdeiro:2021znw} are shown in green.
Left panel: examples of deviations from the Kerr background photon geodesics as a function of the affine parameter, $\lambda$, generated by bosonic clouds with $\alpha = 0.2$. The initial values are $\lambda_{\rm 0} = 0,\, r_{\rm 0} = 10^3\, r_{\rm g}$, $i=17^\circ$, and $a_* = 0.94$. The gray vertical line shows the time at which the unperturbed orbit $x_{(0)}^\mu$ crosses the BH equatorial plane for the first time. Right panel: prospects for constraints on the total mass of a vector cloud using photon ring autocorrelations. We show both the ground state $(S,l,m)=(-1,1,1)$ with $\alpha<0.5$ and a higher mode $(S,l,m)=(-1,2,2)$. The constraint bands range from a conservative criterium based on ngEHT's spatial resolution $\sim 10~\mu$as to an optimistic criterium based on the intrinsic azimuthal correlation length of the accretion flow $\ell_\phi \approx 4.3^\circ$. Constraints from a joint observation of motion of stars and EHT ring size measurements~\citep{Sengo:2022jif} are shown in red, and theoretical bounds on the maximum superradiant extraction for $M_B/M$~\citep{Herdeiro:2021znw} are shown in green.
{Left panel:} illustration of a covariant radiative transfer simulation (\texttt{ipole}) of the polarised emission from a Kerr BH surrounded by an axion cloud. Different colors on the EVPA quivers, which range from red through to purple, represent the time variation of the EVPA in the presence of the axion-photon coupling. White quivers are the EVPAs when the axion field is absent. The intensity scale is normalized so that the brightest pixel is unity. {Right panel:} the upper limit on the axion-photon coupling \citep{Chen:2021lvo}, characterized by $c \equiv 2 \pi g_{a \gamma}\,f_a$, derived from the EHT polarimetric observations of SMBH M87$^\star$ \citep{EventHorizonTelescope:2021bee} and prospect for ngEHT \citep{Chen:2022oad}. The bounds from other astrophysical observations assuming $f_a = 10^{15}~$GeV are shown for comparison.
{Left panel:} illustration of a covariant radiative transfer simulation (\texttt{ipole}) of the polarised emission from a Kerr BH surrounded by an axion cloud. Different colors on the EVPA quivers, which range from red through to purple, represent the time variation of the EVPA in the presence of the axion-photon coupling. White quivers are the EVPAs when the axion field is absent. The intensity scale is normalized so that the brightest pixel is unity. {Right panel:} the upper limit on the axion-photon coupling \citep{Chen:2021lvo}, characterized by $c \equiv 2 \pi g_{a \gamma}\,f_a$, derived from the EHT polarimetric observations of SMBH M87$^\star$ \citep{EventHorizonTelescope:2021bee} and prospect for ngEHT \citep{Chen:2022oad}. The bounds from other astrophysical observations assuming $f_a = 10^{15}~$GeV are shown for comparison.
Images of spacetimes where specular reflection takes place, but with partial absorption ($\Gamma=0.5$) and an intrinsic brightness ($\eta=10^{-2}$) included. We take an inclination $i=0^{\circ}$, $\epsilon=10^{-3}$, without filter (top row) and a Gaussian filter with the EHT angular resolution of $20\ \mu\mbox{as}$ (bottom row). We see that these values of $\eta$ change appreciably the structure of the central depression in brightness.
Results of applying a Gaussian filter with an angular resolution of $5\ \mu\mbox{as}$ for $\epsilon=10^{-3}$, $\Gamma=0.5$, $\eta=10^{-3}$, $i=0^{\circ}$ (top row) and $i=85^{\circ}$ (bottom row). The optimistic value of angular resolution of $5\ \mu\mbox{as}$ can pick up the innermost structure of the simulated image. However, higher inclination angles make it more difficult to discern the features associated with the existence of a surface.
We compare the simulated high-resolution image (far-left panel) of a horizonless spacetime (generated by overspinning a regular BH to $a_*=1.01$) and its reconstructions using the ehtim toolkit~\citep{Chael:2018oym}, as seen by: (i) the 2017 EHT array (middle-left panel), (ii) the 2022 EHT array (middle-right panel), (iii) a multifrequency observation at 230 GHz and 345 GHz of a potential ngEHT array with ten additional telescopes (far-right panel). We also show (for the three reconstructed images) contour lines at $0.035$~Jy, $0.05$~Jy, and $0.065$~Jy (whenever they exist) to visualize the structure of the central brightness depression. See also~\citet{Eichhorn:2022fcl}.
Ray-traced images from GRMHD simulations of accretion onto a Kerr BH (left) and a boson star (right) with the mass and distance of Sgr A*. Despite the different size, these simulations show that under some circumstances, a horizonless, surfaces ECO can mimic the morphology of a BH image by a combination of GRMHD and lensing effects. Figures taken from \citet{Olivares:2018abq}.
Ray-traced images from GRMHD simulations of accretion onto a Kerr BH (left) and a boson star (right) with the mass and distance of Sgr A*. Despite the different size, these simulations show that under some circumstances, a horizonless, surfaces ECO can mimic the morphology of a BH image by a combination of GRMHD and lensing effects. Figures taken from \citet{Olivares:2018abq}.
Ray-traced images of a Schwarzshild BH (left) and a Proca star (right) surrounded by thin accretion disks terminating at the location predicted by the spacetime properties. The lower panels are blurred by a Gaussian kernel, highlighting the possible degeneracy when observing at a single frequency without resolving the thin photon ring. Figure reproduced with permission from~\cite{Herdeiro:2021lwl}.
We show the inner shadow (inner shaded region) and the first lensing band (outer shaded band) of deviations from a Kerr BH with spin $a_{*}=0.9$ viewed at near-face-on inclination of $17^{\circ}$. In each panel, we compare the Kerr case (blue-shading and the same throughout all panels) to spacetimes with varying KRZ parameters~\citep{2016PhRvD..93f4015K} (orange-shading) $\delta\omega_{00}$ and $\delta a_{00}$. The parameter $\delta\omega_{00}$ relates to deviations of the asymptotic spin parameter. The parameter $\delta a_{00}$ relates to deviations in the first parameterized post-Newtonian coefficients. See also \citep{Cardenas:2022}.
We show the inner shadow (inner shaded region) and the first lensing band (outer shaded band) of deviations from a Kerr BH with spin $a_{*}=0.9$ viewed at near-face-on inclination of $17^{\circ}$. In each panel, we compare the Kerr case (blue-shading and the same throughout all panels) to spacetimes with varying KRZ parameters~\citep{2016PhRvD..93f4015K} (orange-shading) $\delta\omega_{00}$ and $\delta a_{00}$. The parameter $\delta\omega_{00}$ relates to deviations of the asymptotic spin parameter. The parameter $\delta a_{00}$ relates to deviations in the first parameterized post-Newtonian coefficients. See also \citep{Cardenas:2022}.
Left: example GRMHD snapshot image of \m87 for a MAD accretion model onto a BH with mass $M=6.2\times10^9\,M_\odot$ and spin $a_{*}=0.9375$ \citep{2021ApJ...918....6C}. Center left: the same GRMHD snapshot image, convolved with a Butterworth filter with a cutoff frequency of $1/10\,\mu$as. Center right: reconstruction of the simulation model from synthetic data generated on EHT2017 baselines. Right: reconstruction of the simulation model from synthetic data generated from a concept ngEHT array. The top row shows images in a linear color scale and the bottom row shows the same images in gamma scale. In all images, the white curve shows the boundary of the inner shadow, while the cyan curve shows the boundary of the shadow. The BH spin vector points to the left (East).
Simulation and reconstruction brightness cross sections along the East-West axis. The yellow curve shows the 1D brightness profile of the \m87 GRMHD simulation snapshot in Figure~\ref{fig:Inner_Shadow_Reconstructions}. The dashed green curve shows the 1D brightness profile from the same simulation after convolution with a Gaussian with a FWHM of $5~\mu$as. The solid blue line shows the median brightness profile extracted from the \texttt{Comrade} ngEHT reconstructions. The band shows the 99\% posterior credible interval for the 1D brightness profile. The gray band along the bottom shows the region interior to the BH shadow, and the black band shows the inner shadow region.
Left: the ratio of the mean radius of the lensed horizon $\bar{r}_{\rm h}$ to the mean radius of the critical curve $\bar{r}_{\rm c}$. In the low-inclination case, $\bar{r}_{\rm h}/\bar{r}_{\rm c}$ shrinks from $\approx\!55$\% at zero spin to $\approx\!45$\% at maximal spin. Right: simultaneous constraints on the BH mass-to-distance ratio $M/D$ and spin $a_{*}$ enabled by measuring the mean radius of the lensed horizon (blue, $\bar{r}_{\rm h}$) and critical curve (red $\bar{r}_{\rm c}$), when the inclination is fixed to $17^\circ$, as is appropriate for \m87 \citep{Mertens2016,CraigWalker:2018vam}. Without fixing the mass, multiple values of $a_{*}$ provide the same result for the size of each feature, but combining a measurement of both features breaks this degeneracy. The shaded regions show regions corresponding to $0.1$, $0.5$, and $1\,\mu$as errors on the radius measurement. The input mass scale and spin are $M/D=3.78\,\mu$as and $a_{*}=0.94$.
Multi-ring structures for specific circular deviations of Kerr spacetime ($b_{01}=5$ in the KRZ parameterization~\citep{Konoplya:2016jvv}) at fixed spin parameter of $a_{*}=0.9\,M$ and viewed at the inclination of M87*. From left to right we show (i) the $n=1$ lensing band (for Kerr spacetime in blue-dashed and with deviation in green-continuous), cf.~\cite{Cardenas:2022}; (ii) the resulting image in this spacetime assuming a specific disk model, cf.~\cite{Eichhorn:2022fcl}; (iii) the same image but blurred with a Gaussian kernel with $\sigma_\text{blur}=5\,\mu\text{as}$; and (iv) with $\sigma_\text{blur}=10\,\mu\text{as}$. (For the translation of $r_g=M$ to the overall image scale in $\mu\text{as}$, we determine the maximum diameter of the convex hull of all image pixels with at least half of the average intensity per pixel.)
As in Figure~\ref{fig:LB_multiring_KRZ} but for a non-spinning ($a_{*}=0$) regular BH with exponential falloff in the mass function as in~\citep{Simpson:2019mud}. The deviation is chosen near-critical such that if it is further increased, the regular spacetime would transition from a BH to a horizonless object.
GRMHD simulations of SMBHBs. Top: simulation viewed in in the equatorial plane for a binary with mass ratio 1:4, colored by logarithm (base 10) of plasma rest mass density (left) and normalized bremsstrahlung emissivity ($j_{\rm brem}$, right). A spiral shock is produced by the smaller mass secondary, increasing $j_{\rm brem}$. Bottom: the structure of the jet (colored by magnetization of the plasma) for three cases with different mass ratios: (a) 1:1 with zero spin, (b) 1:4 with zero spin, and (c) 1:4 with spin $a_{*}=0.7$ for both BHs. The jets form a ``braid'' structure for the 1:1 case, while the other cases show a more disordered structure \citep{olivares_binary_inprep}.
GRMHD simulations of SMBHBs. Top: simulation viewed in in the equatorial plane for a binary with mass ratio 1:4, colored by logarithm (base 10) of plasma rest mass density (left) and normalized bremsstrahlung emissivity ($j_{\rm brem}$, right). A spiral shock is produced by the smaller mass secondary, increasing $j_{\rm brem}$. Bottom: the structure of the jet (colored by magnetization of the plasma) for three cases with different mass ratios: (a) 1:1 with zero spin, (b) 1:4 with zero spin, and (c) 1:4 with spin $a_{*}=0.7$ for both BHs. The jets form a ``braid'' structure for the 1:1 case, while the other cases show a more disordered structure \citep{olivares_binary_inprep}.
Proxy for synchrotron emissivity at 230 GHz \citep[equation (18) of][]{EventHorizonTelescope:2019pcy} for a GRMHD simulation of accretion onto a binary with mass ratio 1:4 and aligned spins with $a_{*}=0.7$, viewed in the equatorial plane ({\it left}) and meridional plane ({\it right}). It is possible to observe emission from the spiral shock, and contrary to the Bremsstrahlung case (c.f., Figure \ref{fig:SMBBH_sim}), the primary appears brighter than the secondary \citep{olivares_binary_inprep}.
References
- Abbott BP, et al. (2017a) Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys J Lett 848(2):L13. https: //doi.org/10.3847/2041-8213/aa920c. arXiv:1710.05834 [astro-ph.HE] Abbott BP, et al. (2017b) GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys Rev Lett 118(22):221101. https://doi.org/ 10.1103/PhysRevLett.118.221101, [Erratum: Phys.Rev.Lett. 121, 129901 (2018)]. arXiv:1706.01812
- Abbott BP, et al. (2017a) Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys J Lett 848(2):L13. https: //doi.org/10.3847/2041-8213/aa920c. arXiv:1710.05834 [astro-ph.HE] Abbott BP, et al. (2017b) GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys Rev Lett 118(22):221101. https://doi.org/ 10.1103/PhysRevLett.118.221101, [Erratum: Phys.Rev.Lett. 121, 129901 (2018)]. arXiv:1706.01812
- Abbott BP, et al. (2017a) Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys J Lett 848(2):L13. https: //doi.org/10.3847/2041-8213/aa920c. arXiv:1710.05834 [astro-ph.HE] Abbott BP, et al. (2017b) GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys Rev Lett 118(22):221101. https://doi.org/ 10.1103/PhysRevLett.118.221101, [Erratum: Phys.Rev.Lett. 121, 129901 (2018)]. arXiv:1706.01812
- [gr-qc] Abbott BP, et al. (2017c) GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys Rev Lett 119(16):161101. https://doi.org/10. 1103/PhysRevLett.119.161101. arXiv:1710.05832
- [gr-qc] Abbott BP, et al. (2021a) A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophys J 909(2):218. https://doi.org/10.3847/1538-4357/abdcb7. arXiv:1908.06060 [astroph.CO] Abbott LF, Sikivie P (1983) A Cosmological Bound on the Invisible Axion. Phys Lett B 120:133–136. https://doi.org/10.1016/0370-2693(83)90638-X Abbott R, et al. (2021b) Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Phys Rev Lett 126(24):241102. https://doi. org/10.1103/PhysRevLett.126.241102. arXiv:2101.12248
- [gr-qc] Abbott BP, et al. (2021a) A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophys J 909(2):218. https://doi.org/10.3847/1538-4357/abdcb7. arXiv:1908.06060 [astroph.CO] Abbott LF, Sikivie P (1983) A Cosmological Bound on the Invisible Axion. Phys Lett B 120:133–136. https://doi.org/10.1016/0370-2693(83)90638-X Abbott R, et al. (2021b) Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Phys Rev Lett 126(24):241102. https://doi. org/10.1103/PhysRevLett.126.241102. arXiv:2101.12248
- [gr-qc] Abbott BP, et al. (2021a) A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophys J 909(2):218. https://doi.org/10.3847/1538-4357/abdcb7. arXiv:1908.06060 [astroph.CO] Abbott LF, Sikivie P (1983) A Cosmological Bound on the Invisible Axion. Phys Lett B 120:133–136. https://doi.org/10.1016/0370-2693(83)90638-X Abbott R, et al. (2021b) Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Phys Rev Lett 126(24):241102. https://doi. org/10.1103/PhysRevLett.126.241102. arXiv:2101.12248
- [gr-qc] Abdikamalov AB, Abdujabbarov AA, Ayzenberg D, Malafarina D, Bambi C, Ahmedov B (2019) Black hole mimicker hiding in the shadow: Optical properties of the γ metric. Phys Rev D 100(2):024014. https://doi.org/10.1103/PhysRevD.100.024014. arXiv:1904.06207
- [gr-qc] Abdujabbarov A, Amir M, Ahmedov B, Ghosh SG (2016) Shadow of rotating regular black holes. Phys Rev D 93(10):104004. https://doi.org/10.1103/PhysRevD.93. 104004. arXiv:1604.03809
- [gr-qc] Abel SA, Goodsell MD, Jaeckel J, Khoze VV, Ringwald A (2008) Kinetic Mixing of the Photon with Hidden U(1)s in String Phenomenology. JHEP 07:124. https: //doi.org/10.1088/1126-6708/2008/07/124. arXiv:0803.1449
- [hep-ph] Abraham Z, Carrara EA (1998) The Precessing Jet in 3C 279. ApJ 496(1):172–176. https://doi.org/10.1086/305387 Abraham Z, Romero GE (1999) Beaming and precession in the inner jet of 3C 273. A&A 344:61–67 Abuter R, Accardo M, Amorim A, Anugu N, Ávila G, et al. (2017) First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer. Astronomy and Astrophysics 602:A94. https://doi.org/10.1051/0004-6361/ 201730838. arXiv:1705.02345 [astro-ph.IM] Abuter R, Amorim A, Bauböck M, Berger JP, Bonnet H, et al. (2018) Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*. Astronomy and Astrophysics 618:L10. https://doi.org/10.1051/0004-6361/201834294. arXiv:1810.12641 [astro-ph.GA] Abuter R, Alarcon P, Allouche F, Amorim A, Bailet C, et al. (2022) The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI. The Messenger 189:17–22. https://doi.org/10.18727/0722-6691/5285 Abuter R, et al. (2018) Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 615:L15. https://doi.org/10.1051/0004-6361/201833718. arXiv:1807.09409 [astro-ph.GA] 102 The ngEHT Fundamental Physics SWG Abuter R, et al. (2019) A geometric distance measurement to the galactic center black hole with 0.3% uncertainty. A&A 625:L10. https://doi.org/10.1051/0004-6361/ 201935656 Abuter R, et al. (2020) Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 636:L5. https: //doi.org/10.1051/0004-6361/202037813. arXiv:2004.07187 [astro-ph.GA] Abuter R, et al. (2022) Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits. Astron Astrophys 657:L12. https: //doi.org/10.1051/0004-6361/202142465. arXiv:2112.07478 [astro-ph.GA]
- [hep-ph] Abraham Z, Carrara EA (1998) The Precessing Jet in 3C 279. ApJ 496(1):172–176. https://doi.org/10.1086/305387 Abraham Z, Romero GE (1999) Beaming and precession in the inner jet of 3C 273. A&A 344:61–67 Abuter R, Accardo M, Amorim A, Anugu N, Ávila G, et al. (2017) First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer. Astronomy and Astrophysics 602:A94. https://doi.org/10.1051/0004-6361/ 201730838. arXiv:1705.02345 [astro-ph.IM] Abuter R, Amorim A, Bauböck M, Berger JP, Bonnet H, et al. (2018) Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*. Astronomy and Astrophysics 618:L10. https://doi.org/10.1051/0004-6361/201834294. arXiv:1810.12641 [astro-ph.GA] Abuter R, Alarcon P, Allouche F, Amorim A, Bailet C, et al. (2022) The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI. The Messenger 189:17–22. https://doi.org/10.18727/0722-6691/5285 Abuter R, et al. (2018) Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 615:L15. https://doi.org/10.1051/0004-6361/201833718. arXiv:1807.09409 [astro-ph.GA] 102 The ngEHT Fundamental Physics SWG Abuter R, et al. (2019) A geometric distance measurement to the galactic center black hole with 0.3% uncertainty. A&A 625:L10. https://doi.org/10.1051/0004-6361/ 201935656 Abuter R, et al. (2020) Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 636:L5. https: //doi.org/10.1051/0004-6361/202037813. arXiv:2004.07187 [astro-ph.GA] Abuter R, et al. (2022) Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits. Astron Astrophys 657:L12. https: //doi.org/10.1051/0004-6361/202142465. arXiv:2112.07478 [astro-ph.GA]
- [hep-ph] Abraham Z, Carrara EA (1998) The Precessing Jet in 3C 279. ApJ 496(1):172–176. https://doi.org/10.1086/305387 Abraham Z, Romero GE (1999) Beaming and precession in the inner jet of 3C 273. A&A 344:61–67 Abuter R, Accardo M, Amorim A, Anugu N, Ávila G, et al. (2017) First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer. Astronomy and Astrophysics 602:A94. https://doi.org/10.1051/0004-6361/ 201730838. arXiv:1705.02345 [astro-ph.IM] Abuter R, Amorim A, Bauböck M, Berger JP, Bonnet H, et al. (2018) Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*. Astronomy and Astrophysics 618:L10. https://doi.org/10.1051/0004-6361/201834294. arXiv:1810.12641 [astro-ph.GA] Abuter R, Alarcon P, Allouche F, Amorim A, Bailet C, et al. (2022) The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI. The Messenger 189:17–22. https://doi.org/10.18727/0722-6691/5285 Abuter R, et al. (2018) Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 615:L15. https://doi.org/10.1051/0004-6361/201833718. arXiv:1807.09409 [astro-ph.GA] 102 The ngEHT Fundamental Physics SWG Abuter R, et al. (2019) A geometric distance measurement to the galactic center black hole with 0.3% uncertainty. A&A 625:L10. https://doi.org/10.1051/0004-6361/ 201935656 Abuter R, et al. (2020) Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 636:L5. https: //doi.org/10.1051/0004-6361/202037813. arXiv:2004.07187 [astro-ph.GA] Abuter R, et al. (2022) Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits. Astron Astrophys 657:L12. https: //doi.org/10.1051/0004-6361/202142465. arXiv:2112.07478 [astro-ph.GA]
- [hep-ph] Abraham Z, Carrara EA (1998) The Precessing Jet in 3C 279. ApJ 496(1):172–176. https://doi.org/10.1086/305387 Abraham Z, Romero GE (1999) Beaming and precession in the inner jet of 3C 273. A&A 344:61–67 Abuter R, Accardo M, Amorim A, Anugu N, Ávila G, et al. (2017) First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer. Astronomy and Astrophysics 602:A94. https://doi.org/10.1051/0004-6361/ 201730838. arXiv:1705.02345 [astro-ph.IM] Abuter R, Amorim A, Bauböck M, Berger JP, Bonnet H, et al. (2018) Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*. Astronomy and Astrophysics 618:L10. https://doi.org/10.1051/0004-6361/201834294. arXiv:1810.12641 [astro-ph.GA] Abuter R, Alarcon P, Allouche F, Amorim A, Bailet C, et al. (2022) The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI. The Messenger 189:17–22. https://doi.org/10.18727/0722-6691/5285 Abuter R, et al. (2018) Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 615:L15. https://doi.org/10.1051/0004-6361/201833718. arXiv:1807.09409 [astro-ph.GA] 102 The ngEHT Fundamental Physics SWG Abuter R, et al. (2019) A geometric distance measurement to the galactic center black hole with 0.3% uncertainty. A&A 625:L10. https://doi.org/10.1051/0004-6361/ 201935656 Abuter R, et al. (2020) Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 636:L5. https: //doi.org/10.1051/0004-6361/202037813. arXiv:2004.07187 [astro-ph.GA] Abuter R, et al. (2022) Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits. Astron Astrophys 657:L12. https: //doi.org/10.1051/0004-6361/202142465. arXiv:2112.07478 [astro-ph.GA]
- [hep-ph] Abraham Z, Carrara EA (1998) The Precessing Jet in 3C 279. ApJ 496(1):172–176. https://doi.org/10.1086/305387 Abraham Z, Romero GE (1999) Beaming and precession in the inner jet of 3C 273. A&A 344:61–67 Abuter R, Accardo M, Amorim A, Anugu N, Ávila G, et al. (2017) First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer. Astronomy and Astrophysics 602:A94. https://doi.org/10.1051/0004-6361/ 201730838. arXiv:1705.02345 [astro-ph.IM] Abuter R, Amorim A, Bauböck M, Berger JP, Bonnet H, et al. (2018) Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*. Astronomy and Astrophysics 618:L10. https://doi.org/10.1051/0004-6361/201834294. arXiv:1810.12641 [astro-ph.GA] Abuter R, Alarcon P, Allouche F, Amorim A, Bailet C, et al. (2022) The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI. The Messenger 189:17–22. https://doi.org/10.18727/0722-6691/5285 Abuter R, et al. (2018) Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 615:L15. https://doi.org/10.1051/0004-6361/201833718. arXiv:1807.09409 [astro-ph.GA] 102 The ngEHT Fundamental Physics SWG Abuter R, et al. (2019) A geometric distance measurement to the galactic center black hole with 0.3% uncertainty. A&A 625:L10. https://doi.org/10.1051/0004-6361/ 201935656 Abuter R, et al. (2020) Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 636:L5. https: //doi.org/10.1051/0004-6361/202037813. arXiv:2004.07187 [astro-ph.GA] Abuter R, et al. (2022) Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits. Astron Astrophys 657:L12. https: //doi.org/10.1051/0004-6361/202142465. arXiv:2112.07478 [astro-ph.GA]
- [hep-ph] Abraham Z, Carrara EA (1998) The Precessing Jet in 3C 279. ApJ 496(1):172–176. https://doi.org/10.1086/305387 Abraham Z, Romero GE (1999) Beaming and precession in the inner jet of 3C 273. A&A 344:61–67 Abuter R, Accardo M, Amorim A, Anugu N, Ávila G, et al. (2017) First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer. Astronomy and Astrophysics 602:A94. https://doi.org/10.1051/0004-6361/ 201730838. arXiv:1705.02345 [astro-ph.IM] Abuter R, Amorim A, Bauböck M, Berger JP, Bonnet H, et al. (2018) Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*. Astronomy and Astrophysics 618:L10. https://doi.org/10.1051/0004-6361/201834294. arXiv:1810.12641 [astro-ph.GA] Abuter R, Alarcon P, Allouche F, Amorim A, Bailet C, et al. (2022) The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI. The Messenger 189:17–22. https://doi.org/10.18727/0722-6691/5285 Abuter R, et al. (2018) Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 615:L15. https://doi.org/10.1051/0004-6361/201833718. arXiv:1807.09409 [astro-ph.GA] 102 The ngEHT Fundamental Physics SWG Abuter R, et al. (2019) A geometric distance measurement to the galactic center black hole with 0.3% uncertainty. A&A 625:L10. https://doi.org/10.1051/0004-6361/ 201935656 Abuter R, et al. (2020) Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 636:L5. https: //doi.org/10.1051/0004-6361/202037813. arXiv:2004.07187 [astro-ph.GA] Abuter R, et al. (2022) Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits. Astron Astrophys 657:L12. https: //doi.org/10.1051/0004-6361/202142465. arXiv:2112.07478 [astro-ph.GA]
- [hep-ph] Abraham Z, Carrara EA (1998) The Precessing Jet in 3C 279. ApJ 496(1):172–176. https://doi.org/10.1086/305387 Abraham Z, Romero GE (1999) Beaming and precession in the inner jet of 3C 273. A&A 344:61–67 Abuter R, Accardo M, Amorim A, Anugu N, Ávila G, et al. (2017) First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer. Astronomy and Astrophysics 602:A94. https://doi.org/10.1051/0004-6361/ 201730838. arXiv:1705.02345 [astro-ph.IM] Abuter R, Amorim A, Bauböck M, Berger JP, Bonnet H, et al. (2018) Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*. Astronomy and Astrophysics 618:L10. https://doi.org/10.1051/0004-6361/201834294. arXiv:1810.12641 [astro-ph.GA] Abuter R, Alarcon P, Allouche F, Amorim A, Bailet C, et al. (2022) The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI. The Messenger 189:17–22. https://doi.org/10.18727/0722-6691/5285 Abuter R, et al. (2018) Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 615:L15. https://doi.org/10.1051/0004-6361/201833718. arXiv:1807.09409 [astro-ph.GA] 102 The ngEHT Fundamental Physics SWG Abuter R, et al. (2019) A geometric distance measurement to the galactic center black hole with 0.3% uncertainty. A&A 625:L10. https://doi.org/10.1051/0004-6361/ 201935656 Abuter R, et al. (2020) Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 636:L5. https: //doi.org/10.1051/0004-6361/202037813. arXiv:2004.07187 [astro-ph.GA] Abuter R, et al. (2022) Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits. Astron Astrophys 657:L12. https: //doi.org/10.1051/0004-6361/202142465. arXiv:2112.07478 [astro-ph.GA]
- [hep-ph] Abraham Z, Carrara EA (1998) The Precessing Jet in 3C 279. ApJ 496(1):172–176. https://doi.org/10.1086/305387 Abraham Z, Romero GE (1999) Beaming and precession in the inner jet of 3C 273. A&A 344:61–67 Abuter R, Accardo M, Amorim A, Anugu N, Ávila G, et al. (2017) First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer. Astronomy and Astrophysics 602:A94. https://doi.org/10.1051/0004-6361/ 201730838. arXiv:1705.02345 [astro-ph.IM] Abuter R, Amorim A, Bauböck M, Berger JP, Bonnet H, et al. (2018) Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*. Astronomy and Astrophysics 618:L10. https://doi.org/10.1051/0004-6361/201834294. arXiv:1810.12641 [astro-ph.GA] Abuter R, Alarcon P, Allouche F, Amorim A, Bailet C, et al. (2022) The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI. The Messenger 189:17–22. https://doi.org/10.18727/0722-6691/5285 Abuter R, et al. (2018) Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 615:L15. https://doi.org/10.1051/0004-6361/201833718. arXiv:1807.09409 [astro-ph.GA] 102 The ngEHT Fundamental Physics SWG Abuter R, et al. (2019) A geometric distance measurement to the galactic center black hole with 0.3% uncertainty. A&A 625:L10. https://doi.org/10.1051/0004-6361/ 201935656 Abuter R, et al. (2020) Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 636:L5. https: //doi.org/10.1051/0004-6361/202037813. arXiv:2004.07187 [astro-ph.GA] Abuter R, et al. (2022) Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits. Astron Astrophys 657:L12. https: //doi.org/10.1051/0004-6361/202142465. arXiv:2112.07478 [astro-ph.GA]
- [hep-ph] Abraham Z, Carrara EA (1998) The Precessing Jet in 3C 279. ApJ 496(1):172–176. https://doi.org/10.1086/305387 Abraham Z, Romero GE (1999) Beaming and precession in the inner jet of 3C 273. A&A 344:61–67 Abuter R, Accardo M, Amorim A, Anugu N, Ávila G, et al. (2017) First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer. Astronomy and Astrophysics 602:A94. https://doi.org/10.1051/0004-6361/ 201730838. arXiv:1705.02345 [astro-ph.IM] Abuter R, Amorim A, Bauböck M, Berger JP, Bonnet H, et al. (2018) Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*. Astronomy and Astrophysics 618:L10. https://doi.org/10.1051/0004-6361/201834294. arXiv:1810.12641 [astro-ph.GA] Abuter R, Alarcon P, Allouche F, Amorim A, Bailet C, et al. (2022) The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI. The Messenger 189:17–22. https://doi.org/10.18727/0722-6691/5285 Abuter R, et al. (2018) Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 615:L15. https://doi.org/10.1051/0004-6361/201833718. arXiv:1807.09409 [astro-ph.GA] 102 The ngEHT Fundamental Physics SWG Abuter R, et al. (2019) A geometric distance measurement to the galactic center black hole with 0.3% uncertainty. A&A 625:L10. https://doi.org/10.1051/0004-6361/ 201935656 Abuter R, et al. (2020) Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron Astrophys 636:L5. https: //doi.org/10.1051/0004-6361/202037813. arXiv:2004.07187 [astro-ph.GA] Abuter R, et al. (2022) Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits. Astron Astrophys 657:L12. https: //doi.org/10.1051/0004-6361/202142465. arXiv:2112.07478 [astro-ph.GA]
- [hep-ph] Akiyama K, Ikeda S, Pleau M, Fish VL, Tazaki F, Kuramochi K, Broderick AE, Dexter J, Mościbrodzka M, Gowanlock M, Honma M, Doeleman SS (2017) Superresolution Full-polarimetric Imaging for Radio Interferometry with Sparse Modeling. Astrophys. J.153(4):159. https://doi.org/10.3847/1538-3881/aa6302. arXiv:1702.00424 [astro-ph.IM] Alexander T, Hopman C (2009) Strong mass segregation around a massive black hole. Astrophys J 697:1861–1869. https://doi.org/10.1088/0004-637X/697/2/1861. arXiv:0808.3150
- [hep-ph] Akiyama K, Ikeda S, Pleau M, Fish VL, Tazaki F, Kuramochi K, Broderick AE, Dexter J, Mościbrodzka M, Gowanlock M, Honma M, Doeleman SS (2017) Superresolution Full-polarimetric Imaging for Radio Interferometry with Sparse Modeling. Astrophys. J.153(4):159. https://doi.org/10.3847/1538-3881/aa6302. arXiv:1702.00424 [astro-ph.IM] Alexander T, Hopman C (2009) Strong mass segregation around a massive black hole. Astrophys J 697:1861–1869. https://doi.org/10.1088/0004-637X/697/2/1861. arXiv:0808.3150
- [astro-ph] Allahyari A, Gorji MA, Mukohyama S (2020a) Bounds on the Horndeski GaugeGravity Coupling. JCAP 05:013. https://doi.org/10.1088/1475-7516/2020/05/013, [Erratum: JCAP 05, E02 (2021)]. arXiv:2002.11932 [astro-ph.CO] Allahyari A, Khodadi M, Vagnozzi S, Mota DF (2020b) Magnetically charged black holes from non-linear electrodynamics and the Event Horizon Telescope. JCAP 02:003. https://doi.org/10.1088/1475-7516/2020/02/003. arXiv:1912.08231
- [astro-ph] Allahyari A, Gorji MA, Mukohyama S (2020a) Bounds on the Horndeski GaugeGravity Coupling. JCAP 05:013. https://doi.org/10.1088/1475-7516/2020/05/013, [Erratum: JCAP 05, E02 (2021)]. arXiv:2002.11932 [astro-ph.CO] Allahyari A, Khodadi M, Vagnozzi S, Mota DF (2020b) Magnetically charged black holes from non-linear electrodynamics and the Event Horizon Telescope. JCAP 02:003. https://doi.org/10.1088/1475-7516/2020/02/003. arXiv:1912.08231
- [astro-ph] Allahyari A, Gorji MA, Mukohyama S (2020a) Bounds on the Horndeski GaugeGravity Coupling. JCAP 05:013. https://doi.org/10.1088/1475-7516/2020/05/013, [Erratum: JCAP 05, E02 (2021)]. arXiv:2002.11932 [astro-ph.CO] Allahyari A, Khodadi M, Vagnozzi S, Mota DF (2020b) Magnetically charged black holes from non-linear electrodynamics and the Event Horizon Telescope. JCAP 02:003. https://doi.org/10.1088/1475-7516/2020/02/003. arXiv:1912.08231
- [gr-qc] Almheiri A, Marolf D, Polchinski J, Sully J (2013) Black Holes: Complementarity or Firewalls? JHEP 02:062. https://doi.org/10.1007/JHEP02(2013)062. arXiv:1207.3123
- [hep-th] Amarilla L, Eiroa EF (2012) Shadow of a rotating braneworld black hole. Phys Rev D 85:064019. https://doi.org/10.1103/PhysRevD.85.064019. arXiv:1112.6349
- [gr-qc] Amarilla L, Eiroa EF (2013) Shadow of a Kaluza-Klein rotating dilaton black hole. Phys Rev D 87(4):044057. https://doi.org/10.1103/PhysRevD.87.044057. arXiv:1301.0532
- [gr-qc] Amarilla L, Eiroa EF, Giribet G (2010) Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity. Phys Rev D 81:124045. https:// doi.org/10.1103/PhysRevD.81.124045. arXiv:1005.0607
- [gr-qc] Amaro-Seoane P, et al (2017) Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786. arXiv:1702.00786 [astro-ph.IM] Amaro-Seoane P, Audley H, Babak S, Baker J, Barausse E, Bender P, Berti E, Binetruy P, Born M, Bortoluzzi D, Camp J, Caprini C, Cardoso V, Colpi M, Conklin J, Cornish N, Cutler C, Danzmann K, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons E, Gair J, Gesa Bote L, Giardini D, Gibert F, Grimani C, Halloin H, Heinzel G, Hertog T, Hewitson M, Holley-Bockelmann K, Hollington D, Hueller M, Inchauspe H, Jetzer P, Karnesis N, Killow C, Klein A, Klipstein B, Korsakova N, Larson SL, Livas J, Lloro I, Man N, Mance D, Martino J, Mateos I, McKenzie K, McWilliams ST, Miller C, Mueller G, Nardini G, Nelemans G, Nofrarias M, Petiteau A, Pivato P, Plagnol E, Porter E, Reiche J, Robertson D, Robertson N, Rossi E, Russano G, Schutz B, Sesana A, Shoemaker D, Slutsky J, Sopuerta CF, Sumner T, Tamanini N, Thorpe Fundamental Physics Opportunities with the ngEHT 103 I, Troebs M, Vallisneri M, Vecchio A, Vetrugno D, Vitale S, Volonteri M, Wanner G, Ward H, Wass P, Weber W, Ziemer J, Zweifel P (2017) Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786. https://doi.org/10.48550/arXiv. 1702.00786. arXiv:1702.00786 [astro-ph.IM] Ambrus M, Hájíček P (2005) Quantum superposition principle and gravitational collapse: Scattering times for spherical shells. Phys Rev D 72:064025. https://doi.org/ 10.1103/PhysRevD.72.064025. arXiv:gr-qc/0507017 Ames WL, Thorne KS (1968) The Optical Appearance of a Star that is Collapsing Through its Gravitational Radius. Astrophys. J.151:659. https://doi.org/10.1086/ 149465 Amir M, Ghosh SG (2016) Shapes of rotating nonsingular black hole shadows. Phys Rev D 94(2):024054. https://doi.org/10.1103/PhysRevD.94.024054. arXiv:1603.06382
- [gr-qc] Amaro-Seoane P, et al (2017) Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786. arXiv:1702.00786 [astro-ph.IM] Amaro-Seoane P, Audley H, Babak S, Baker J, Barausse E, Bender P, Berti E, Binetruy P, Born M, Bortoluzzi D, Camp J, Caprini C, Cardoso V, Colpi M, Conklin J, Cornish N, Cutler C, Danzmann K, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons E, Gair J, Gesa Bote L, Giardini D, Gibert F, Grimani C, Halloin H, Heinzel G, Hertog T, Hewitson M, Holley-Bockelmann K, Hollington D, Hueller M, Inchauspe H, Jetzer P, Karnesis N, Killow C, Klein A, Klipstein B, Korsakova N, Larson SL, Livas J, Lloro I, Man N, Mance D, Martino J, Mateos I, McKenzie K, McWilliams ST, Miller C, Mueller G, Nardini G, Nelemans G, Nofrarias M, Petiteau A, Pivato P, Plagnol E, Porter E, Reiche J, Robertson D, Robertson N, Rossi E, Russano G, Schutz B, Sesana A, Shoemaker D, Slutsky J, Sopuerta CF, Sumner T, Tamanini N, Thorpe Fundamental Physics Opportunities with the ngEHT 103 I, Troebs M, Vallisneri M, Vecchio A, Vetrugno D, Vitale S, Volonteri M, Wanner G, Ward H, Wass P, Weber W, Ziemer J, Zweifel P (2017) Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786. https://doi.org/10.48550/arXiv. 1702.00786. arXiv:1702.00786 [astro-ph.IM] Ambrus M, Hájíček P (2005) Quantum superposition principle and gravitational collapse: Scattering times for spherical shells. Phys Rev D 72:064025. https://doi.org/ 10.1103/PhysRevD.72.064025. arXiv:gr-qc/0507017 Ames WL, Thorne KS (1968) The Optical Appearance of a Star that is Collapsing Through its Gravitational Radius. Astrophys. J.151:659. https://doi.org/10.1086/ 149465 Amir M, Ghosh SG (2016) Shapes of rotating nonsingular black hole shadows. Phys Rev D 94(2):024054. https://doi.org/10.1103/PhysRevD.94.024054. arXiv:1603.06382
- [gr-qc] Amaro-Seoane P, et al (2017) Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786. arXiv:1702.00786 [astro-ph.IM] Amaro-Seoane P, Audley H, Babak S, Baker J, Barausse E, Bender P, Berti E, Binetruy P, Born M, Bortoluzzi D, Camp J, Caprini C, Cardoso V, Colpi M, Conklin J, Cornish N, Cutler C, Danzmann K, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons E, Gair J, Gesa Bote L, Giardini D, Gibert F, Grimani C, Halloin H, Heinzel G, Hertog T, Hewitson M, Holley-Bockelmann K, Hollington D, Hueller M, Inchauspe H, Jetzer P, Karnesis N, Killow C, Klein A, Klipstein B, Korsakova N, Larson SL, Livas J, Lloro I, Man N, Mance D, Martino J, Mateos I, McKenzie K, McWilliams ST, Miller C, Mueller G, Nardini G, Nelemans G, Nofrarias M, Petiteau A, Pivato P, Plagnol E, Porter E, Reiche J, Robertson D, Robertson N, Rossi E, Russano G, Schutz B, Sesana A, Shoemaker D, Slutsky J, Sopuerta CF, Sumner T, Tamanini N, Thorpe Fundamental Physics Opportunities with the ngEHT 103 I, Troebs M, Vallisneri M, Vecchio A, Vetrugno D, Vitale S, Volonteri M, Wanner G, Ward H, Wass P, Weber W, Ziemer J, Zweifel P (2017) Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786. https://doi.org/10.48550/arXiv. 1702.00786. arXiv:1702.00786 [astro-ph.IM] Ambrus M, Hájíček P (2005) Quantum superposition principle and gravitational collapse: Scattering times for spherical shells. Phys Rev D 72:064025. https://doi.org/ 10.1103/PhysRevD.72.064025. arXiv:gr-qc/0507017 Ames WL, Thorne KS (1968) The Optical Appearance of a Star that is Collapsing Through its Gravitational Radius. Astrophys. J.151:659. https://doi.org/10.1086/ 149465 Amir M, Ghosh SG (2016) Shapes of rotating nonsingular black hole shadows. Phys Rev D 94(2):024054. https://doi.org/10.1103/PhysRevD.94.024054. arXiv:1603.06382
- [gr-qc] Amaro-Seoane P, et al (2017) Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786. arXiv:1702.00786 [astro-ph.IM] Amaro-Seoane P, Audley H, Babak S, Baker J, Barausse E, Bender P, Berti E, Binetruy P, Born M, Bortoluzzi D, Camp J, Caprini C, Cardoso V, Colpi M, Conklin J, Cornish N, Cutler C, Danzmann K, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons E, Gair J, Gesa Bote L, Giardini D, Gibert F, Grimani C, Halloin H, Heinzel G, Hertog T, Hewitson M, Holley-Bockelmann K, Hollington D, Hueller M, Inchauspe H, Jetzer P, Karnesis N, Killow C, Klein A, Klipstein B, Korsakova N, Larson SL, Livas J, Lloro I, Man N, Mance D, Martino J, Mateos I, McKenzie K, McWilliams ST, Miller C, Mueller G, Nardini G, Nelemans G, Nofrarias M, Petiteau A, Pivato P, Plagnol E, Porter E, Reiche J, Robertson D, Robertson N, Rossi E, Russano G, Schutz B, Sesana A, Shoemaker D, Slutsky J, Sopuerta CF, Sumner T, Tamanini N, Thorpe Fundamental Physics Opportunities with the ngEHT 103 I, Troebs M, Vallisneri M, Vecchio A, Vetrugno D, Vitale S, Volonteri M, Wanner G, Ward H, Wass P, Weber W, Ziemer J, Zweifel P (2017) Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786. https://doi.org/10.48550/arXiv. 1702.00786. arXiv:1702.00786 [astro-ph.IM] Ambrus M, Hájíček P (2005) Quantum superposition principle and gravitational collapse: Scattering times for spherical shells. Phys Rev D 72:064025. https://doi.org/ 10.1103/PhysRevD.72.064025. arXiv:gr-qc/0507017 Ames WL, Thorne KS (1968) The Optical Appearance of a Star that is Collapsing Through its Gravitational Radius. Astrophys. J.151:659. https://doi.org/10.1086/ 149465 Amir M, Ghosh SG (2016) Shapes of rotating nonsingular black hole shadows. Phys Rev D 94(2):024054. https://doi.org/10.1103/PhysRevD.94.024054. arXiv:1603.06382
- [gr-qc] Amaro-Seoane P, et al (2017) Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786. arXiv:1702.00786 [astro-ph.IM] Amaro-Seoane P, Audley H, Babak S, Baker J, Barausse E, Bender P, Berti E, Binetruy P, Born M, Bortoluzzi D, Camp J, Caprini C, Cardoso V, Colpi M, Conklin J, Cornish N, Cutler C, Danzmann K, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons E, Gair J, Gesa Bote L, Giardini D, Gibert F, Grimani C, Halloin H, Heinzel G, Hertog T, Hewitson M, Holley-Bockelmann K, Hollington D, Hueller M, Inchauspe H, Jetzer P, Karnesis N, Killow C, Klein A, Klipstein B, Korsakova N, Larson SL, Livas J, Lloro I, Man N, Mance D, Martino J, Mateos I, McKenzie K, McWilliams ST, Miller C, Mueller G, Nardini G, Nelemans G, Nofrarias M, Petiteau A, Pivato P, Plagnol E, Porter E, Reiche J, Robertson D, Robertson N, Rossi E, Russano G, Schutz B, Sesana A, Shoemaker D, Slutsky J, Sopuerta CF, Sumner T, Tamanini N, Thorpe Fundamental Physics Opportunities with the ngEHT 103 I, Troebs M, Vallisneri M, Vecchio A, Vetrugno D, Vitale S, Volonteri M, Wanner G, Ward H, Wass P, Weber W, Ziemer J, Zweifel P (2017) Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786. https://doi.org/10.48550/arXiv. 1702.00786. arXiv:1702.00786 [astro-ph.IM] Ambrus M, Hájíček P (2005) Quantum superposition principle and gravitational collapse: Scattering times for spherical shells. Phys Rev D 72:064025. https://doi.org/ 10.1103/PhysRevD.72.064025. arXiv:gr-qc/0507017 Ames WL, Thorne KS (1968) The Optical Appearance of a Star that is Collapsing Through its Gravitational Radius. Astrophys. J.151:659. https://doi.org/10.1086/ 149465 Amir M, Ghosh SG (2016) Shapes of rotating nonsingular black hole shadows. Phys Rev D 94(2):024054. https://doi.org/10.1103/PhysRevD.94.024054. arXiv:1603.06382
- [gr-qc] Amaro-Seoane P, et al (2017) Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786. arXiv:1702.00786 [astro-ph.IM] Amaro-Seoane P, Audley H, Babak S, Baker J, Barausse E, Bender P, Berti E, Binetruy P, Born M, Bortoluzzi D, Camp J, Caprini C, Cardoso V, Colpi M, Conklin J, Cornish N, Cutler C, Danzmann K, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons E, Gair J, Gesa Bote L, Giardini D, Gibert F, Grimani C, Halloin H, Heinzel G, Hertog T, Hewitson M, Holley-Bockelmann K, Hollington D, Hueller M, Inchauspe H, Jetzer P, Karnesis N, Killow C, Klein A, Klipstein B, Korsakova N, Larson SL, Livas J, Lloro I, Man N, Mance D, Martino J, Mateos I, McKenzie K, McWilliams ST, Miller C, Mueller G, Nardini G, Nelemans G, Nofrarias M, Petiteau A, Pivato P, Plagnol E, Porter E, Reiche J, Robertson D, Robertson N, Rossi E, Russano G, Schutz B, Sesana A, Shoemaker D, Slutsky J, Sopuerta CF, Sumner T, Tamanini N, Thorpe Fundamental Physics Opportunities with the ngEHT 103 I, Troebs M, Vallisneri M, Vecchio A, Vetrugno D, Vitale S, Volonteri M, Wanner G, Ward H, Wass P, Weber W, Ziemer J, Zweifel P (2017) Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786. https://doi.org/10.48550/arXiv. 1702.00786. arXiv:1702.00786 [astro-ph.IM] Ambrus M, Hájíček P (2005) Quantum superposition principle and gravitational collapse: Scattering times for spherical shells. Phys Rev D 72:064025. https://doi.org/ 10.1103/PhysRevD.72.064025. arXiv:gr-qc/0507017 Ames WL, Thorne KS (1968) The Optical Appearance of a Star that is Collapsing Through its Gravitational Radius. Astrophys. J.151:659. https://doi.org/10.1086/ 149465 Amir M, Ghosh SG (2016) Shapes of rotating nonsingular black hole shadows. Phys Rev D 94(2):024054. https://doi.org/10.1103/PhysRevD.94.024054. arXiv:1603.06382
- [gr-qc] Amaro-Seoane P, et al (2017) Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786. arXiv:1702.00786 [astro-ph.IM] Amaro-Seoane P, Audley H, Babak S, Baker J, Barausse E, Bender P, Berti E, Binetruy P, Born M, Bortoluzzi D, Camp J, Caprini C, Cardoso V, Colpi M, Conklin J, Cornish N, Cutler C, Danzmann K, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons E, Gair J, Gesa Bote L, Giardini D, Gibert F, Grimani C, Halloin H, Heinzel G, Hertog T, Hewitson M, Holley-Bockelmann K, Hollington D, Hueller M, Inchauspe H, Jetzer P, Karnesis N, Killow C, Klein A, Klipstein B, Korsakova N, Larson SL, Livas J, Lloro I, Man N, Mance D, Martino J, Mateos I, McKenzie K, McWilliams ST, Miller C, Mueller G, Nardini G, Nelemans G, Nofrarias M, Petiteau A, Pivato P, Plagnol E, Porter E, Reiche J, Robertson D, Robertson N, Rossi E, Russano G, Schutz B, Sesana A, Shoemaker D, Slutsky J, Sopuerta CF, Sumner T, Tamanini N, Thorpe Fundamental Physics Opportunities with the ngEHT 103 I, Troebs M, Vallisneri M, Vecchio A, Vetrugno D, Vitale S, Volonteri M, Wanner G, Ward H, Wass P, Weber W, Ziemer J, Zweifel P (2017) Laser Interferometer Space Antenna. arXiv e-prints arXiv:1702.00786. https://doi.org/10.48550/arXiv. 1702.00786. arXiv:1702.00786 [astro-ph.IM] Ambrus M, Hájíček P (2005) Quantum superposition principle and gravitational collapse: Scattering times for spherical shells. Phys Rev D 72:064025. https://doi.org/ 10.1103/PhysRevD.72.064025. arXiv:gr-qc/0507017 Ames WL, Thorne KS (1968) The Optical Appearance of a Star that is Collapsing Through its Gravitational Radius. Astrophys. J.151:659. https://doi.org/10.1086/ 149465 Amir M, Ghosh SG (2016) Shapes of rotating nonsingular black hole shadows. Phys Rev D 94(2):024054. https://doi.org/10.1103/PhysRevD.94.024054. arXiv:1603.06382
- [gr-qc] Amir M, Singh BP, Ghosh SG (2018) Shadows of rotating five-dimensional charged EMCS black holes. Eur Phys J C 78(5):399. https://doi.org/10.1140/epjc/ s10052-018-5872-3. arXiv:1707.09521
- [gr-qc] Amir M, Jusufi K, Banerjee A, Hansraj S (2019) Shadow images of Kerr-like wormholes. Class Quant Grav 36(21):215007. https://doi.org/10.1088/1361-6382/ab42be. arXiv:1806.07782
- [gr-qc] Amorim A, et al. (2019) Scalar field effects on the orbit of S2 star. Mon Not Roy Astron Soc 489(4):4606–4621. https://doi.org/10.1093/mnras/stz2300. arXiv:1908.06681 [astro-ph.GA] Andrianov A, Chernov S, Girin I, Likhachev S, Lyakhovets A, Shchekinov Y (2022) Flares and their echoes can help distinguish photon rings from black holes with space-Earth very long baseline interferometry. Phys Rev D 105(6):063015. https: //doi.org/10.1103/PhysRevD.105.063015. arXiv:2203.00577 [astro-ph.HE] Ansoldi S (2008) Spherical black holes with regular center: A Review of existing models including a recent realization with Gaussian sources. In: Conference on Black Holes and Naked Singularities. arXiv:0802.0330
- [gr-qc] Amorim A, et al. (2019) Scalar field effects on the orbit of S2 star. Mon Not Roy Astron Soc 489(4):4606–4621. https://doi.org/10.1093/mnras/stz2300. arXiv:1908.06681 [astro-ph.GA] Andrianov A, Chernov S, Girin I, Likhachev S, Lyakhovets A, Shchekinov Y (2022) Flares and their echoes can help distinguish photon rings from black holes with space-Earth very long baseline interferometry. Phys Rev D 105(6):063015. https: //doi.org/10.1103/PhysRevD.105.063015. arXiv:2203.00577 [astro-ph.HE] Ansoldi S (2008) Spherical black holes with regular center: A Review of existing models including a recent realization with Gaussian sources. In: Conference on Black Holes and Naked Singularities. arXiv:0802.0330
- [gr-qc] Amorim A, et al. (2019) Scalar field effects on the orbit of S2 star. Mon Not Roy Astron Soc 489(4):4606–4621. https://doi.org/10.1093/mnras/stz2300. arXiv:1908.06681 [astro-ph.GA] Andrianov A, Chernov S, Girin I, Likhachev S, Lyakhovets A, Shchekinov Y (2022) Flares and their echoes can help distinguish photon rings from black holes with space-Earth very long baseline interferometry. Phys Rev D 105(6):063015. https: //doi.org/10.1103/PhysRevD.105.063015. arXiv:2203.00577 [astro-ph.HE] Ansoldi S (2008) Spherical black holes with regular center: A Review of existing models including a recent realization with Gaussian sources. In: Conference on Black Holes and Naked Singularities. arXiv:0802.0330
- [gr-qc] Antoniadis J, et al. (2022) The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background. Mon Not Roy Astron Soc 510(4):4873–4887. https://doi.org/10.1093/mnras/stab3418. arXiv:2201.03980 [astro-ph.HE] Antonini F, Toonen S, Hamers AS (2017) Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution. Astrophys. J.841(2):77. https: //doi.org/10.3847/1538-4357/aa6f5e. arXiv:1703.06614 [astro-ph.GA] Armengol FGL, Combi L, Campanelli M, Noble SC, Krolik JH, Bowen DB, Avara MJ, Mewes V, Nakano H (2021) Circumbinary Disk Accretion into Spinning Black Hole Binaries. The Astrophysical Journal 913(1):16. https://doi.org/10.3847/1538-4357/ abf0af, URL https://dx.doi.org/10.3847/1538-4357/abf0af, publisher: The American Astronomical Society Armitage PJ, Natarajan P (2002) Accretion during the Merger of Supermassive Black Holes. Astrophys. J. Lett.567(1):L9–L12. https://doi.org/10.1086/339770. arXiv:astro-ph/0201318
- [gr-qc] Antoniadis J, et al. (2022) The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background. Mon Not Roy Astron Soc 510(4):4873–4887. https://doi.org/10.1093/mnras/stab3418. arXiv:2201.03980 [astro-ph.HE] Antonini F, Toonen S, Hamers AS (2017) Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution. Astrophys. J.841(2):77. https: //doi.org/10.3847/1538-4357/aa6f5e. arXiv:1703.06614 [astro-ph.GA] Armengol FGL, Combi L, Campanelli M, Noble SC, Krolik JH, Bowen DB, Avara MJ, Mewes V, Nakano H (2021) Circumbinary Disk Accretion into Spinning Black Hole Binaries. The Astrophysical Journal 913(1):16. https://doi.org/10.3847/1538-4357/ abf0af, URL https://dx.doi.org/10.3847/1538-4357/abf0af, publisher: The American Astronomical Society Armitage PJ, Natarajan P (2002) Accretion during the Merger of Supermassive Black Holes. Astrophys. J. Lett.567(1):L9–L12. https://doi.org/10.1086/339770. arXiv:astro-ph/0201318
- [gr-qc] Antoniadis J, et al. (2022) The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background. Mon Not Roy Astron Soc 510(4):4873–4887. https://doi.org/10.1093/mnras/stab3418. arXiv:2201.03980 [astro-ph.HE] Antonini F, Toonen S, Hamers AS (2017) Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution. Astrophys. J.841(2):77. https: //doi.org/10.3847/1538-4357/aa6f5e. arXiv:1703.06614 [astro-ph.GA] Armengol FGL, Combi L, Campanelli M, Noble SC, Krolik JH, Bowen DB, Avara MJ, Mewes V, Nakano H (2021) Circumbinary Disk Accretion into Spinning Black Hole Binaries. The Astrophysical Journal 913(1):16. https://doi.org/10.3847/1538-4357/ abf0af, URL https://dx.doi.org/10.3847/1538-4357/abf0af, publisher: The American Astronomical Society Armitage PJ, Natarajan P (2002) Accretion during the Merger of Supermassive Black Holes. Astrophys. J. Lett.567(1):L9–L12. https://doi.org/10.1086/339770. arXiv:astro-ph/0201318
- [gr-qc] Antoniadis J, et al. (2022) The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background. Mon Not Roy Astron Soc 510(4):4873–4887. https://doi.org/10.1093/mnras/stab3418. arXiv:2201.03980 [astro-ph.HE] Antonini F, Toonen S, Hamers AS (2017) Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution. Astrophys. J.841(2):77. https: //doi.org/10.3847/1538-4357/aa6f5e. arXiv:1703.06614 [astro-ph.GA] Armengol FGL, Combi L, Campanelli M, Noble SC, Krolik JH, Bowen DB, Avara MJ, Mewes V, Nakano H (2021) Circumbinary Disk Accretion into Spinning Black Hole Binaries. The Astrophysical Journal 913(1):16. https://doi.org/10.3847/1538-4357/ abf0af, URL https://dx.doi.org/10.3847/1538-4357/abf0af, publisher: The American Astronomical Society Armitage PJ, Natarajan P (2002) Accretion during the Merger of Supermassive Black Holes. Astrophys. J. Lett.567(1):L9–L12. https://doi.org/10.1086/339770. arXiv:astro-ph/0201318
- [gr-qc] Antoniadis J, et al. (2022) The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background. Mon Not Roy Astron Soc 510(4):4873–4887. https://doi.org/10.1093/mnras/stab3418. arXiv:2201.03980 [astro-ph.HE] Antonini F, Toonen S, Hamers AS (2017) Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution. Astrophys. J.841(2):77. https: //doi.org/10.3847/1538-4357/aa6f5e. arXiv:1703.06614 [astro-ph.GA] Armengol FGL, Combi L, Campanelli M, Noble SC, Krolik JH, Bowen DB, Avara MJ, Mewes V, Nakano H (2021) Circumbinary Disk Accretion into Spinning Black Hole Binaries. The Astrophysical Journal 913(1):16. https://doi.org/10.3847/1538-4357/ abf0af, URL https://dx.doi.org/10.3847/1538-4357/abf0af, publisher: The American Astronomical Society Armitage PJ, Natarajan P (2002) Accretion during the Merger of Supermassive Black Holes. Astrophys. J. Lett.567(1):L9–L12. https://doi.org/10.1086/339770. arXiv:astro-ph/0201318
- [astro-ph] Armitage PJ, Natarajan P (2002) Accretion during the merger of supermassive black holes. The Astrophysical Journal 567(1):L9 Arrechea J, Barceló C, Carballo-Rubio R, Garay LJ (2021) Semiclassical constantdensity spheres in a regularized Polyakov approximation. Phys Rev D 104(8):084071. https://doi.org/10.1103/PhysRevD.104.084071. arXiv:2105.11261
- [astro-ph] Armitage PJ, Natarajan P (2002) Accretion during the merger of supermassive black holes. The Astrophysical Journal 567(1):L9 Arrechea J, Barceló C, Carballo-Rubio R, Garay LJ (2021) Semiclassical constantdensity spheres in a regularized Polyakov approximation. Phys Rev D 104(8):084071. https://doi.org/10.1103/PhysRevD.104.084071. arXiv:2105.11261
- [gr-qc] 104 The ngEHT Fundamental Physics SWG Arrechea J, Barceló C, Carballo-Rubio R, Garay LJ (2022) Semiclassical relativistic stars. Sci Rep 12(1):15958. https://doi.org/10.1038/s41598-022-19836-8. arXiv:2110.15808
- [gr-qc] Arvanitaki A, Dimopoulos S, Dubovsky S, Kaloper N, March-Russell J (2010) String Axiverse. Phys Rev D 81:123530. https://doi.org/10.1103/PhysRevD.81.123530. arXiv:0905.4720
- [hep-th] Arvanitaki A, Baryakhtar M, Dimopoulos S, Dubovsky S, Lasenby R (2017) Black Hole Mergers and the QCD Axion at Advanced LIGO. Phys Rev D 95(4):043001. https://doi.org/10.1103/PhysRevD.95.043001. arXiv:1604.03958
- [hep-ph] Arzoumanian Z, et al. (2020) The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys J Lett 905(2):L34. https:// doi.org/10.3847/2041-8213/abd401. arXiv:2009.04496 [astro-ph.HE] Asada K, Kino M, Honma M, Hirota T, Lu RS, Inoue M, Sohn BW, Shen ZQ, Ho PTP, Akiyama K, Algaba JC, An T, Bower G, Byun DY, Dodson R, Doi A, Edwards PG, Fujisawa K, Gu MF, Hada K, Hagiwara Y, Jaroenjittichai P, Jung T, Kawashima T, Koyama S, Lee SS, Matsushita S, Nagai H, Nakamura M, Niinuma K, Phillips C, Park JH, Pu HY, Ro HW, Stevens J, Trippe S, Wajima K, Zhao GY (2017) White Paper on East Asian Vision for mm/submm VLBI: Toward Black Hole Astrophysics down to Angular Resolution of 1 RS. arXiv e-prints arXiv:1705.04776. arXiv:1705.04776 [astro-ph.HE] Ashtekar A, Bojowald M (2005) Black hole evaporation: A Paradigm. Class Quant Grav 22:3349–3362. https://doi.org/10.1088/0264-9381/22/16/014. arXiv:gr-qc/0504029 Ashtekar A, Bojowald M (2006) Quantum geometry and the Schwarzschild singularity. Class Quant Grav 23:391–411. https://doi.org/10.1088/0264-9381/23/2/008. arXiv:gr-qc/0509075 Ashtekar A, Krishnan B (2004) Isolated and dynamical horizons and their applications. Living Rev Rel 7:10. https://doi.org/10.12942/lrr-2004-10. arXiv:gr-qc/0407042 Ashtekar A, Olmedo J, Singh P (2018) Quantum Transfiguration of Kruskal Black Holes. Phys Rev Lett 121(24):241301. https://doi.org/10.1103/PhysRevLett.121. 241301. arXiv:1806.00648
- [hep-ph] Arzoumanian Z, et al. (2020) The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys J Lett 905(2):L34. https:// doi.org/10.3847/2041-8213/abd401. arXiv:2009.04496 [astro-ph.HE] Asada K, Kino M, Honma M, Hirota T, Lu RS, Inoue M, Sohn BW, Shen ZQ, Ho PTP, Akiyama K, Algaba JC, An T, Bower G, Byun DY, Dodson R, Doi A, Edwards PG, Fujisawa K, Gu MF, Hada K, Hagiwara Y, Jaroenjittichai P, Jung T, Kawashima T, Koyama S, Lee SS, Matsushita S, Nagai H, Nakamura M, Niinuma K, Phillips C, Park JH, Pu HY, Ro HW, Stevens J, Trippe S, Wajima K, Zhao GY (2017) White Paper on East Asian Vision for mm/submm VLBI: Toward Black Hole Astrophysics down to Angular Resolution of 1 RS. arXiv e-prints arXiv:1705.04776. arXiv:1705.04776 [astro-ph.HE] Ashtekar A, Bojowald M (2005) Black hole evaporation: A Paradigm. Class Quant Grav 22:3349–3362. https://doi.org/10.1088/0264-9381/22/16/014. arXiv:gr-qc/0504029 Ashtekar A, Bojowald M (2006) Quantum geometry and the Schwarzschild singularity. Class Quant Grav 23:391–411. https://doi.org/10.1088/0264-9381/23/2/008. arXiv:gr-qc/0509075 Ashtekar A, Krishnan B (2004) Isolated and dynamical horizons and their applications. Living Rev Rel 7:10. https://doi.org/10.12942/lrr-2004-10. arXiv:gr-qc/0407042 Ashtekar A, Olmedo J, Singh P (2018) Quantum Transfiguration of Kruskal Black Holes. Phys Rev Lett 121(24):241301. https://doi.org/10.1103/PhysRevLett.121. 241301. arXiv:1806.00648
- [hep-ph] Arzoumanian Z, et al. (2020) The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys J Lett 905(2):L34. https:// doi.org/10.3847/2041-8213/abd401. arXiv:2009.04496 [astro-ph.HE] Asada K, Kino M, Honma M, Hirota T, Lu RS, Inoue M, Sohn BW, Shen ZQ, Ho PTP, Akiyama K, Algaba JC, An T, Bower G, Byun DY, Dodson R, Doi A, Edwards PG, Fujisawa K, Gu MF, Hada K, Hagiwara Y, Jaroenjittichai P, Jung T, Kawashima T, Koyama S, Lee SS, Matsushita S, Nagai H, Nakamura M, Niinuma K, Phillips C, Park JH, Pu HY, Ro HW, Stevens J, Trippe S, Wajima K, Zhao GY (2017) White Paper on East Asian Vision for mm/submm VLBI: Toward Black Hole Astrophysics down to Angular Resolution of 1 RS. arXiv e-prints arXiv:1705.04776. arXiv:1705.04776 [astro-ph.HE] Ashtekar A, Bojowald M (2005) Black hole evaporation: A Paradigm. Class Quant Grav 22:3349–3362. https://doi.org/10.1088/0264-9381/22/16/014. arXiv:gr-qc/0504029 Ashtekar A, Bojowald M (2006) Quantum geometry and the Schwarzschild singularity. Class Quant Grav 23:391–411. https://doi.org/10.1088/0264-9381/23/2/008. arXiv:gr-qc/0509075 Ashtekar A, Krishnan B (2004) Isolated and dynamical horizons and their applications. Living Rev Rel 7:10. https://doi.org/10.12942/lrr-2004-10. arXiv:gr-qc/0407042 Ashtekar A, Olmedo J, Singh P (2018) Quantum Transfiguration of Kruskal Black Holes. Phys Rev Lett 121(24):241301. https://doi.org/10.1103/PhysRevLett.121. 241301. arXiv:1806.00648
- [hep-ph] Arzoumanian Z, et al. (2020) The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys J Lett 905(2):L34. https:// doi.org/10.3847/2041-8213/abd401. arXiv:2009.04496 [astro-ph.HE] Asada K, Kino M, Honma M, Hirota T, Lu RS, Inoue M, Sohn BW, Shen ZQ, Ho PTP, Akiyama K, Algaba JC, An T, Bower G, Byun DY, Dodson R, Doi A, Edwards PG, Fujisawa K, Gu MF, Hada K, Hagiwara Y, Jaroenjittichai P, Jung T, Kawashima T, Koyama S, Lee SS, Matsushita S, Nagai H, Nakamura M, Niinuma K, Phillips C, Park JH, Pu HY, Ro HW, Stevens J, Trippe S, Wajima K, Zhao GY (2017) White Paper on East Asian Vision for mm/submm VLBI: Toward Black Hole Astrophysics down to Angular Resolution of 1 RS. arXiv e-prints arXiv:1705.04776. arXiv:1705.04776 [astro-ph.HE] Ashtekar A, Bojowald M (2005) Black hole evaporation: A Paradigm. Class Quant Grav 22:3349–3362. https://doi.org/10.1088/0264-9381/22/16/014. arXiv:gr-qc/0504029 Ashtekar A, Bojowald M (2006) Quantum geometry and the Schwarzschild singularity. Class Quant Grav 23:391–411. https://doi.org/10.1088/0264-9381/23/2/008. arXiv:gr-qc/0509075 Ashtekar A, Krishnan B (2004) Isolated and dynamical horizons and their applications. Living Rev Rel 7:10. https://doi.org/10.12942/lrr-2004-10. arXiv:gr-qc/0407042 Ashtekar A, Olmedo J, Singh P (2018) Quantum Transfiguration of Kruskal Black Holes. Phys Rev Lett 121(24):241301. https://doi.org/10.1103/PhysRevLett.121. 241301. arXiv:1806.00648
- [hep-ph] Arzoumanian Z, et al. (2020) The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys J Lett 905(2):L34. https:// doi.org/10.3847/2041-8213/abd401. arXiv:2009.04496 [astro-ph.HE] Asada K, Kino M, Honma M, Hirota T, Lu RS, Inoue M, Sohn BW, Shen ZQ, Ho PTP, Akiyama K, Algaba JC, An T, Bower G, Byun DY, Dodson R, Doi A, Edwards PG, Fujisawa K, Gu MF, Hada K, Hagiwara Y, Jaroenjittichai P, Jung T, Kawashima T, Koyama S, Lee SS, Matsushita S, Nagai H, Nakamura M, Niinuma K, Phillips C, Park JH, Pu HY, Ro HW, Stevens J, Trippe S, Wajima K, Zhao GY (2017) White Paper on East Asian Vision for mm/submm VLBI: Toward Black Hole Astrophysics down to Angular Resolution of 1 RS. arXiv e-prints arXiv:1705.04776. arXiv:1705.04776 [astro-ph.HE] Ashtekar A, Bojowald M (2005) Black hole evaporation: A Paradigm. Class Quant Grav 22:3349–3362. https://doi.org/10.1088/0264-9381/22/16/014. arXiv:gr-qc/0504029 Ashtekar A, Bojowald M (2006) Quantum geometry and the Schwarzschild singularity. Class Quant Grav 23:391–411. https://doi.org/10.1088/0264-9381/23/2/008. arXiv:gr-qc/0509075 Ashtekar A, Krishnan B (2004) Isolated and dynamical horizons and their applications. Living Rev Rel 7:10. https://doi.org/10.12942/lrr-2004-10. arXiv:gr-qc/0407042 Ashtekar A, Olmedo J, Singh P (2018) Quantum Transfiguration of Kruskal Black Holes. Phys Rev Lett 121(24):241301. https://doi.org/10.1103/PhysRevLett.121. 241301. arXiv:1806.00648
- [hep-ph] Arzoumanian Z, et al. (2020) The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys J Lett 905(2):L34. https:// doi.org/10.3847/2041-8213/abd401. arXiv:2009.04496 [astro-ph.HE] Asada K, Kino M, Honma M, Hirota T, Lu RS, Inoue M, Sohn BW, Shen ZQ, Ho PTP, Akiyama K, Algaba JC, An T, Bower G, Byun DY, Dodson R, Doi A, Edwards PG, Fujisawa K, Gu MF, Hada K, Hagiwara Y, Jaroenjittichai P, Jung T, Kawashima T, Koyama S, Lee SS, Matsushita S, Nagai H, Nakamura M, Niinuma K, Phillips C, Park JH, Pu HY, Ro HW, Stevens J, Trippe S, Wajima K, Zhao GY (2017) White Paper on East Asian Vision for mm/submm VLBI: Toward Black Hole Astrophysics down to Angular Resolution of 1 RS. arXiv e-prints arXiv:1705.04776. arXiv:1705.04776 [astro-ph.HE] Ashtekar A, Bojowald M (2005) Black hole evaporation: A Paradigm. Class Quant Grav 22:3349–3362. https://doi.org/10.1088/0264-9381/22/16/014. arXiv:gr-qc/0504029 Ashtekar A, Bojowald M (2006) Quantum geometry and the Schwarzschild singularity. Class Quant Grav 23:391–411. https://doi.org/10.1088/0264-9381/23/2/008. arXiv:gr-qc/0509075 Ashtekar A, Krishnan B (2004) Isolated and dynamical horizons and their applications. Living Rev Rel 7:10. https://doi.org/10.12942/lrr-2004-10. arXiv:gr-qc/0407042 Ashtekar A, Olmedo J, Singh P (2018) Quantum Transfiguration of Kruskal Black Holes. Phys Rev Lett 121(24):241301. https://doi.org/10.1103/PhysRevLett.121. 241301. arXiv:1806.00648
- [hep-ph] Arzoumanian Z, et al. (2020) The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys J Lett 905(2):L34. https:// doi.org/10.3847/2041-8213/abd401. arXiv:2009.04496 [astro-ph.HE] Asada K, Kino M, Honma M, Hirota T, Lu RS, Inoue M, Sohn BW, Shen ZQ, Ho PTP, Akiyama K, Algaba JC, An T, Bower G, Byun DY, Dodson R, Doi A, Edwards PG, Fujisawa K, Gu MF, Hada K, Hagiwara Y, Jaroenjittichai P, Jung T, Kawashima T, Koyama S, Lee SS, Matsushita S, Nagai H, Nakamura M, Niinuma K, Phillips C, Park JH, Pu HY, Ro HW, Stevens J, Trippe S, Wajima K, Zhao GY (2017) White Paper on East Asian Vision for mm/submm VLBI: Toward Black Hole Astrophysics down to Angular Resolution of 1 RS. arXiv e-prints arXiv:1705.04776. arXiv:1705.04776 [astro-ph.HE] Ashtekar A, Bojowald M (2005) Black hole evaporation: A Paradigm. Class Quant Grav 22:3349–3362. https://doi.org/10.1088/0264-9381/22/16/014. arXiv:gr-qc/0504029 Ashtekar A, Bojowald M (2006) Quantum geometry and the Schwarzschild singularity. Class Quant Grav 23:391–411. https://doi.org/10.1088/0264-9381/23/2/008. arXiv:gr-qc/0509075 Ashtekar A, Krishnan B (2004) Isolated and dynamical horizons and their applications. Living Rev Rel 7:10. https://doi.org/10.12942/lrr-2004-10. arXiv:gr-qc/0407042 Ashtekar A, Olmedo J, Singh P (2018) Quantum Transfiguration of Kruskal Black Holes. Phys Rev Lett 121(24):241301. https://doi.org/10.1103/PhysRevLett.121. 241301. arXiv:1806.00648
- [gr-qc] Astronomical Society of the Pacific Conference Series (2018) Science with a Next Generation Very Large Array. Astronomical Society of the Pacific Conference Series, vol 517 Ayon-Beato E, Garcia A (1998) Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys Rev Lett 80:5056–5059. https://doi.org/10.1103/ PhysRevLett.80.5056. arXiv:gr-qc/9911046 Ayzenberg D (2022) Testing Gravity with Black Hole Shadow Subrings. arXiv e-prints arXiv:2202.02355
- [gr-qc] Astronomical Society of the Pacific Conference Series (2018) Science with a Next Generation Very Large Array. Astronomical Society of the Pacific Conference Series, vol 517 Ayon-Beato E, Garcia A (1998) Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys Rev Lett 80:5056–5059. https://doi.org/10.1103/ PhysRevLett.80.5056. arXiv:gr-qc/9911046 Ayzenberg D (2022) Testing Gravity with Black Hole Shadow Subrings. arXiv e-prints arXiv:2202.02355
- [gr-qc] Ayzenberg D, Yunes N (2018) Black Hole Shadow as a Test of General Relativity: Quadratic Gravity. Class Quant Grav 35(23):235002. https://doi.org/10.1088/ 1361-6382/aae87b. arXiv:1807.08422
- [gr-qc] Azreg-Aïnou M (2014) Generating rotating regular black hole solutions without complexification. Phys Rev D 90(6):064041. https://doi.org/10.1103/PhysRevD.90. 064041. arXiv:1405.2569
- [gr-qc] Babak S, et al. (2010) The Mock LISA Data Challenges: From Challenge 3 to Challenge 4. Class Quant Grav 27:084009. https://doi.org/10.1088/0264-9381/27/8/084009. arXiv:0912.0548
- [gr-qc] Bacchini F, Mayerson DR, Ripperda B, Davelaar J, Olivares H, Hertog T, Vercnocke B (2021) Fuzzball Shadows: Emergent Horizons from Microstructure. Fundamental Physics Opportunities with the ngEHT 105 Phys Rev Lett 127(17):171601. https://doi.org/10.1103/PhysRevLett.127.171601. arXiv:2103.12075
- [hep-th] Backes M, Müller C, Conway JE, Deane R, Evans R, Falcke H, Fraga-Encinas R, Goddi C, Klein Wolt M, Krichbaum TP, MacLeod G, Ribeiro VARM, Roelofs F, Shen ZQ, van Langevelde HJ (2016) The Africa Millimetre Telescope. In: The 4th Annual Conference on High Energy Astrophysics in Southern Africa (HEASA 2016). p 29. https://doi.org/10.22323/1.275.0029 Bah I, Bena I, Heidmann P, Li Y, Mayerson DR (2021) Gravitational footprints of black holes and their microstate geometries. JHEP 10:138. https://doi.org/10.1007/ JHEP10(2021)138. arXiv:2104.10686
- [hep-th] Baker JG, Boggs WD, Centrella J, Kelly BJ, McWilliams ST, Miller MC, van Meter JR (2007) Modeling Kicks from the Merger of Nonprecessing Black Hole Binaries. The Astrophysical Journal 668:1140–1144. https://doi.org/10.1086/ 521330, URL https://ui.adsabs.harvard.edu/abs/2007ApJ...668.1140B, aDS Bibcode: 2007ApJ...668.1140B Balasubramanian V, de Boer J, El-Showk S, Messamah I (2008) Black Holes as Effective Geometries. Class Quant Grav 25:214004. https://doi.org/10.1088/0264-9381/25/ 21/214004. arXiv:0811.0263
- [hep-th] Baker JG, Boggs WD, Centrella J, Kelly BJ, McWilliams ST, Miller MC, van Meter JR (2007) Modeling Kicks from the Merger of Nonprecessing Black Hole Binaries. The Astrophysical Journal 668:1140–1144. https://doi.org/10.1086/ 521330, URL https://ui.adsabs.harvard.edu/abs/2007ApJ...668.1140B, aDS Bibcode: 2007ApJ...668.1140B Balasubramanian V, de Boer J, El-Showk S, Messamah I (2008) Black Holes as Effective Geometries. Class Quant Grav 25:214004. https://doi.org/10.1088/0264-9381/25/ 21/214004. arXiv:0811.0263
- [hep-th] Balbus SA, Hawley JF (1991) A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution. Astrophys J 376:214. https://doi. org/10.1086/170270, URL http://adsabs.harvard.edu/doi/10.1086/170270 Ball D, Sironi L, Özel F (2019) The Mechanism of Electron Injection and Acceleration in Transrelativistic Reconnection. Astrophys. J.884(1):57. https://doi.org/10.3847/ 1538-4357/ab3f2e. arXiv:1908.05866 [astro-ph.HE] Bambi C (2013) Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for mm/sub-mm very long baseline interferometry facilities. Phys Rev D 87:107501. https://doi.org/10.1103/PhysRevD. 87.107501. arXiv:1304.5691
- [hep-th] Balbus SA, Hawley JF (1991) A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution. Astrophys J 376:214. https://doi. org/10.1086/170270, URL http://adsabs.harvard.edu/doi/10.1086/170270 Ball D, Sironi L, Özel F (2019) The Mechanism of Electron Injection and Acceleration in Transrelativistic Reconnection. Astrophys. J.884(1):57. https://doi.org/10.3847/ 1538-4357/ab3f2e. arXiv:1908.05866 [astro-ph.HE] Bambi C (2013) Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for mm/sub-mm very long baseline interferometry facilities. Phys Rev D 87:107501. https://doi.org/10.1103/PhysRevD. 87.107501. arXiv:1304.5691
- [hep-th] Balbus SA, Hawley JF (1991) A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution. Astrophys J 376:214. https://doi. org/10.1086/170270, URL http://adsabs.harvard.edu/doi/10.1086/170270 Ball D, Sironi L, Özel F (2019) The Mechanism of Electron Injection and Acceleration in Transrelativistic Reconnection. Astrophys. J.884(1):57. https://doi.org/10.3847/ 1538-4357/ab3f2e. arXiv:1908.05866 [astro-ph.HE] Bambi C (2013) Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for mm/sub-mm very long baseline interferometry facilities. Phys Rev D 87:107501. https://doi.org/10.1103/PhysRevD. 87.107501. arXiv:1304.5691
- [hep-th] Balbus SA, Hawley JF (1991) A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution. Astrophys J 376:214. https://doi. org/10.1086/170270, URL http://adsabs.harvard.edu/doi/10.1086/170270 Ball D, Sironi L, Özel F (2019) The Mechanism of Electron Injection and Acceleration in Transrelativistic Reconnection. Astrophys. J.884(1):57. https://doi.org/10.3847/ 1538-4357/ab3f2e. arXiv:1908.05866 [astro-ph.HE] Bambi C (2013) Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for mm/sub-mm very long baseline interferometry facilities. Phys Rev D 87:107501. https://doi.org/10.1103/PhysRevD. 87.107501. arXiv:1304.5691
- [gr-qc] Bambi C (2014) Constraining possible variations of the fine structure constant in strong gravitational fields with the Kα iron line. JCAP 03:034. https://doi.org/10.1088/ 1475-7516/2014/03/034. arXiv:1308.2470
- [gr-qc] Bambi C, Modesto L (2013) Rotating regular black holes. Phys Lett B 721:329–334. https://doi.org/10.1016/j.physletb.2013.03.025. arXiv:1302.6075
- [gr-qc] Banerjee I, Chakraborty S, SenGupta S (2020) Silhouette of M87*: A New Window to Peek into the World of Hidden Dimensions. Phys Rev D 101(4):041301. https: //doi.org/10.1103/PhysRevD.101.041301. arXiv:1909.09385
- [gr-qc] Bansal K, Taylor GB, Peck AB, Zavala RT, Romani RW (2017) Constraining the Orbit of the Supermassive Black Hole Binary 0402+379. Astrophys J 843(1):14. https://doi.org/10.3847/1538-4357/aa74e1. arXiv:1705.08556 [astro-ph.GA] Bar N, Blas D, Blum K, Sibiryakov S (2018) Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation. Phys Rev D 98(8):083027. https://doi.org/10.1103/PhysRevD.98.083027. arXiv:1805.00122 [astro-ph.CO] Bar N, Blum K, Lacroix T, Panci P (2019) Looking for ultralight dark matter near supermassive black holes. JCAP 07:045. https://doi.org/10.1088/1475-7516/2019/ 07/045. arXiv:1905.11745 [astro-ph.CO] Barack L, Cutler C (2004) Lisa capture sources: Approximate waveforms, signalto-noise ratios, and parameter estimation accuracy. Phys Rev D 69:082005. https://doi.org/10.1103/PhysRevD.69.082005, URL https://link.aps.org/doi/10. 1103/PhysRevD.69.082005 106 The ngEHT Fundamental Physics SWG Barausse E, Sotiriou TP (2008) Perturbed Kerr Black Holes can probe deviations from General Relativity. Phys Rev Lett 101:099001. https://doi.org/10.1103/ PhysRevLett.101.099001. arXiv:0803.3433
- [gr-qc] Bansal K, Taylor GB, Peck AB, Zavala RT, Romani RW (2017) Constraining the Orbit of the Supermassive Black Hole Binary 0402+379. Astrophys J 843(1):14. https://doi.org/10.3847/1538-4357/aa74e1. arXiv:1705.08556 [astro-ph.GA] Bar N, Blas D, Blum K, Sibiryakov S (2018) Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation. Phys Rev D 98(8):083027. https://doi.org/10.1103/PhysRevD.98.083027. arXiv:1805.00122 [astro-ph.CO] Bar N, Blum K, Lacroix T, Panci P (2019) Looking for ultralight dark matter near supermassive black holes. JCAP 07:045. https://doi.org/10.1088/1475-7516/2019/ 07/045. arXiv:1905.11745 [astro-ph.CO] Barack L, Cutler C (2004) Lisa capture sources: Approximate waveforms, signalto-noise ratios, and parameter estimation accuracy. Phys Rev D 69:082005. https://doi.org/10.1103/PhysRevD.69.082005, URL https://link.aps.org/doi/10. 1103/PhysRevD.69.082005 106 The ngEHT Fundamental Physics SWG Barausse E, Sotiriou TP (2008) Perturbed Kerr Black Holes can probe deviations from General Relativity. Phys Rev Lett 101:099001. https://doi.org/10.1103/ PhysRevLett.101.099001. arXiv:0803.3433
- [gr-qc] Bansal K, Taylor GB, Peck AB, Zavala RT, Romani RW (2017) Constraining the Orbit of the Supermassive Black Hole Binary 0402+379. Astrophys J 843(1):14. https://doi.org/10.3847/1538-4357/aa74e1. arXiv:1705.08556 [astro-ph.GA] Bar N, Blas D, Blum K, Sibiryakov S (2018) Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation. Phys Rev D 98(8):083027. https://doi.org/10.1103/PhysRevD.98.083027. arXiv:1805.00122 [astro-ph.CO] Bar N, Blum K, Lacroix T, Panci P (2019) Looking for ultralight dark matter near supermassive black holes. JCAP 07:045. https://doi.org/10.1088/1475-7516/2019/ 07/045. arXiv:1905.11745 [astro-ph.CO] Barack L, Cutler C (2004) Lisa capture sources: Approximate waveforms, signalto-noise ratios, and parameter estimation accuracy. Phys Rev D 69:082005. https://doi.org/10.1103/PhysRevD.69.082005, URL https://link.aps.org/doi/10. 1103/PhysRevD.69.082005 106 The ngEHT Fundamental Physics SWG Barausse E, Sotiriou TP (2008) Perturbed Kerr Black Holes can probe deviations from General Relativity. Phys Rev Lett 101:099001. https://doi.org/10.1103/ PhysRevLett.101.099001. arXiv:0803.3433
- [gr-qc] Bansal K, Taylor GB, Peck AB, Zavala RT, Romani RW (2017) Constraining the Orbit of the Supermassive Black Hole Binary 0402+379. Astrophys J 843(1):14. https://doi.org/10.3847/1538-4357/aa74e1. arXiv:1705.08556 [astro-ph.GA] Bar N, Blas D, Blum K, Sibiryakov S (2018) Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation. Phys Rev D 98(8):083027. https://doi.org/10.1103/PhysRevD.98.083027. arXiv:1805.00122 [astro-ph.CO] Bar N, Blum K, Lacroix T, Panci P (2019) Looking for ultralight dark matter near supermassive black holes. JCAP 07:045. https://doi.org/10.1088/1475-7516/2019/ 07/045. arXiv:1905.11745 [astro-ph.CO] Barack L, Cutler C (2004) Lisa capture sources: Approximate waveforms, signalto-noise ratios, and parameter estimation accuracy. Phys Rev D 69:082005. https://doi.org/10.1103/PhysRevD.69.082005, URL https://link.aps.org/doi/10. 1103/PhysRevD.69.082005 106 The ngEHT Fundamental Physics SWG Barausse E, Sotiriou TP (2008) Perturbed Kerr Black Holes can probe deviations from General Relativity. Phys Rev Lett 101:099001. https://doi.org/10.1103/ PhysRevLett.101.099001. arXiv:0803.3433
- [gr-qc] Bansal K, Taylor GB, Peck AB, Zavala RT, Romani RW (2017) Constraining the Orbit of the Supermassive Black Hole Binary 0402+379. Astrophys J 843(1):14. https://doi.org/10.3847/1538-4357/aa74e1. arXiv:1705.08556 [astro-ph.GA] Bar N, Blas D, Blum K, Sibiryakov S (2018) Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation. Phys Rev D 98(8):083027. https://doi.org/10.1103/PhysRevD.98.083027. arXiv:1805.00122 [astro-ph.CO] Bar N, Blum K, Lacroix T, Panci P (2019) Looking for ultralight dark matter near supermassive black holes. JCAP 07:045. https://doi.org/10.1088/1475-7516/2019/ 07/045. arXiv:1905.11745 [astro-ph.CO] Barack L, Cutler C (2004) Lisa capture sources: Approximate waveforms, signalto-noise ratios, and parameter estimation accuracy. Phys Rev D 69:082005. https://doi.org/10.1103/PhysRevD.69.082005, URL https://link.aps.org/doi/10. 1103/PhysRevD.69.082005 106 The ngEHT Fundamental Physics SWG Barausse E, Sotiriou TP (2008) Perturbed Kerr Black Holes can probe deviations from General Relativity. Phys Rev Lett 101:099001. https://doi.org/10.1103/ PhysRevLett.101.099001. arXiv:0803.3433
- [gr-qc] Barausse E, Jacobson T, Sotiriou TP (2011) Black holes in Einstein-aether and Horava-Lifshitz gravity. Phys Rev D 83:124043. https://doi.org/10.1103/PhysRevD. 83.124043. arXiv:1104.2889
- [gr-qc] Barcelo C, Liberati S, Sonego S, Visser M (2008) Fate of gravitational collapse in semiclassical gravity. Phys Rev D 77:044032. https://doi.org/10.1103/PhysRevD. 77.044032. arXiv:0712.1130
- [gr-qc] Barceló C, Liberati S, Sonego S, Visser M (2009) Black Stars, Not Holes. Sci Am 301(4):38–45. https://doi.org/10.1038/scientificamerican1009-38 Barceló C, Carballo-Rubio R, Garay LJ (2014) Mutiny at the white-hole district. Int J Mod Phys D 23(12):1442022. https://doi.org/10.1142/S021827181442022X. arXiv:1407.1391
- [gr-qc] Barceló C, Liberati S, Sonego S, Visser M (2009) Black Stars, Not Holes. Sci Am 301(4):38–45. https://doi.org/10.1038/scientificamerican1009-38 Barceló C, Carballo-Rubio R, Garay LJ (2014) Mutiny at the white-hole district. Int J Mod Phys D 23(12):1442022. https://doi.org/10.1142/S021827181442022X. arXiv:1407.1391
- [gr-qc] Barceló C, Carballo-Rubio R, Garay LJ, Jannes G (2015) The lifetime problem of evaporating black holes: mutiny or resignation. Class Quant Grav 32(3):035012. https://doi.org/10.1088/0264-9381/32/3/035012. arXiv:1409.1501
- [gr-qc] Barceló C, Carballo-Rubio R, Garay LJ (2016) Where does the physics of extreme gravitational collapse reside? Universe 2(2):7. https://doi.org/10.3390/universe2020007. arXiv:1510.04957
- [gr-qc] Barceló C, Boyanov V, Carballo-Rubio R, Garay LJ (2022) Classical mass inflation versus semiclassical inner horizon inflation. Phys Rev D 106(12):124006. https:// doi.org/10.1103/PhysRevD.106.124006. arXiv:2203.13539
- [gr-qc] Bardeen JM (1973) Timelike and null geodesics in the Kerr metric. In: Les Houches Summer School of Theoretical Physics: Black Holes. pp 215–240 Bardeen JM, Press WH, Teukolsky SA (1972) Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation. Astrophys. J.178:347–370. https://doi.org/10.1086/151796 Baryakhtar M, Lasenby R, Teo M (2017) Black Hole Superradiance Signatures of Ultralight Vectors. Phys Rev D 96(3):035019. https://doi.org/10.1103/PhysRevD.96. 035019. arXiv:1704.05081
- [gr-qc] Bardeen JM (1973) Timelike and null geodesics in the Kerr metric. In: Les Houches Summer School of Theoretical Physics: Black Holes. pp 215–240 Bardeen JM, Press WH, Teukolsky SA (1972) Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation. Astrophys. J.178:347–370. https://doi.org/10.1086/151796 Baryakhtar M, Lasenby R, Teo M (2017) Black Hole Superradiance Signatures of Ultralight Vectors. Phys Rev D 96(3):035019. https://doi.org/10.1103/PhysRevD.96. 035019. arXiv:1704.05081
- [hep-ph] Baryakhtar M, Galanis M, Lasenby R, Simon O (2021) Black hole superradiance of self-interacting scalar fields. Phys Rev D 103(9):095019. https://doi.org/10.1103/ PhysRevD.103.095019. arXiv:2011.11646
- [hep-ph] Bauer AM, Cárdenas-Avendaño A, Gammie CF, Yunes N (2022a) Spherical Accretion in Alternative Theories of Gravity. Astrophys J 925(2):119. https://doi.org/10.3847/ 1538-4357/ac3a03. arXiv:2111.02178
- [gr-qc] Bauer AM, Cárdenas-Avendaño A, Gammie CF, Yunes N (2022b) Spherical Accretion in Alternative Theories of Gravity. The Astrophysical Journal 925(2):119. https: //doi.org/10.3847/1538-4357/ac3a03, URL https://dx.doi.org/10.3847/1538-4357/ ac3a03, publisher: The American Astronomical Society Baumann D, Chia HS, Stout J, ter Haar L (2019) The Spectra of Gravitational Atoms. JCAP 12:006. https://doi.org/10.1088/1475-7516/2019/12/006. arXiv:1908.10370
- [gr-qc] Bauer AM, Cárdenas-Avendaño A, Gammie CF, Yunes N (2022b) Spherical Accretion in Alternative Theories of Gravity. The Astrophysical Journal 925(2):119. https: //doi.org/10.3847/1538-4357/ac3a03, URL https://dx.doi.org/10.3847/1538-4357/ ac3a03, publisher: The American Astronomical Society Baumann D, Chia HS, Stout J, ter Haar L (2019) The Spectra of Gravitational Atoms. JCAP 12:006. https://doi.org/10.1088/1475-7516/2019/12/006. arXiv:1908.10370
- [gr-qc] Bauer AM, Cárdenas-Avendaño A, Gammie CF, Yunes N (2022b) Spherical Accretion in Alternative Theories of Gravity. The Astrophysical Journal 925(2):119. https: //doi.org/10.3847/1538-4357/ac3a03, URL https://dx.doi.org/10.3847/1538-4357/ ac3a03, publisher: The American Astronomical Society Baumann D, Chia HS, Stout J, ter Haar L (2019) The Spectra of Gravitational Atoms. JCAP 12:006. https://doi.org/10.1088/1475-7516/2019/12/006. arXiv:1908.10370
- [gr-qc] Begelman MC, Blandford RD, Rees MJ (1980a) Massive black hole binaries in active galactic nuclei. Nature287(5780):307–309. https://doi.org/10.1038/287307a0 Begelman MC, Blandford RD, Rees MJ (1980b) Massive black hole binaries in active galactic nuclei. Nature287(5780):307–309. https://doi.org/10.1038/287307a0 Fundamental Physics Opportunities with the ngEHT 107 Bekenstein JD (1972) Nonexistence of baryon number for static black holes. Phys Rev D 5:1239–1246. https://doi.org/10.1103/PhysRevD.5.1239 Ben Achour J, Liu H (2019) Hairy Schwarzschild-(A)dS black hole solutions in degenerate higher order scalar-tensor theories beyond shift symmetry. Phys Rev D 99(6):064042. https://doi.org/10.1103/PhysRevD.99.064042. arXiv:1811.05369
- [gr-qc] Begelman MC, Blandford RD, Rees MJ (1980a) Massive black hole binaries in active galactic nuclei. Nature287(5780):307–309. https://doi.org/10.1038/287307a0 Begelman MC, Blandford RD, Rees MJ (1980b) Massive black hole binaries in active galactic nuclei. Nature287(5780):307–309. https://doi.org/10.1038/287307a0 Fundamental Physics Opportunities with the ngEHT 107 Bekenstein JD (1972) Nonexistence of baryon number for static black holes. Phys Rev D 5:1239–1246. https://doi.org/10.1103/PhysRevD.5.1239 Ben Achour J, Liu H (2019) Hairy Schwarzschild-(A)dS black hole solutions in degenerate higher order scalar-tensor theories beyond shift symmetry. Phys Rev D 99(6):064042. https://doi.org/10.1103/PhysRevD.99.064042. arXiv:1811.05369
- [gr-qc] Begelman MC, Blandford RD, Rees MJ (1980a) Massive black hole binaries in active galactic nuclei. Nature287(5780):307–309. https://doi.org/10.1038/287307a0 Begelman MC, Blandford RD, Rees MJ (1980b) Massive black hole binaries in active galactic nuclei. Nature287(5780):307–309. https://doi.org/10.1038/287307a0 Fundamental Physics Opportunities with the ngEHT 107 Bekenstein JD (1972) Nonexistence of baryon number for static black holes. Phys Rev D 5:1239–1246. https://doi.org/10.1103/PhysRevD.5.1239 Ben Achour J, Liu H (2019) Hairy Schwarzschild-(A)dS black hole solutions in degenerate higher order scalar-tensor theories beyond shift symmetry. Phys Rev D 99(6):064042. https://doi.org/10.1103/PhysRevD.99.064042. arXiv:1811.05369
- [gr-qc] Begelman MC, Blandford RD, Rees MJ (1980a) Massive black hole binaries in active galactic nuclei. Nature287(5780):307–309. https://doi.org/10.1038/287307a0 Begelman MC, Blandford RD, Rees MJ (1980b) Massive black hole binaries in active galactic nuclei. Nature287(5780):307–309. https://doi.org/10.1038/287307a0 Fundamental Physics Opportunities with the ngEHT 107 Bekenstein JD (1972) Nonexistence of baryon number for static black holes. Phys Rev D 5:1239–1246. https://doi.org/10.1103/PhysRevD.5.1239 Ben Achour J, Liu H (2019) Hairy Schwarzschild-(A)dS black hole solutions in degenerate higher order scalar-tensor theories beyond shift symmetry. Phys Rev D 99(6):064042. https://doi.org/10.1103/PhysRevD.99.064042. arXiv:1811.05369
- [grqc] Ben Achour J, Liu H, Motohashi H, Mukohyama S, Noui K (2020) On rotating black holes in DHOST theories. JCAP 11:001. https://doi.org/10.1088/1475-7516/2020/ 11/001. arXiv:2006.07245
- [gr-qc] Benenti S, Francaviglia M (1979) Remarks on certain separability structures and their applications to general relativity. General Relativity and Gravitation 10(1):79–92. https://doi.org/10.1007/BF00757025 Berti E, Buonanno A, Will CM (2005) Estimating spinning binary parameters and testing alternative theories of gravity with lisa. Phys Rev D 71:084025. https://doi.org/ 10.1103/PhysRevD.71.084025, URL https://link.aps.org/doi/10.1103/PhysRevD. 71.084025 Berti E, et al. (2015) Testing General Relativity with Present and Future Astrophysical Observations. Class Quant Grav 32:243001. https://doi.org/10.1088/0264-9381/32/ 24/243001. arXiv:1501.07274
- [gr-qc] Benenti S, Francaviglia M (1979) Remarks on certain separability structures and their applications to general relativity. General Relativity and Gravitation 10(1):79–92. https://doi.org/10.1007/BF00757025 Berti E, Buonanno A, Will CM (2005) Estimating spinning binary parameters and testing alternative theories of gravity with lisa. Phys Rev D 71:084025. https://doi.org/ 10.1103/PhysRevD.71.084025, URL https://link.aps.org/doi/10.1103/PhysRevD. 71.084025 Berti E, et al. (2015) Testing General Relativity with Present and Future Astrophysical Observations. Class Quant Grav 32:243001. https://doi.org/10.1088/0264-9381/32/ 24/243001. arXiv:1501.07274
- [gr-qc] Benenti S, Francaviglia M (1979) Remarks on certain separability structures and their applications to general relativity. General Relativity and Gravitation 10(1):79–92. https://doi.org/10.1007/BF00757025 Berti E, Buonanno A, Will CM (2005) Estimating spinning binary parameters and testing alternative theories of gravity with lisa. Phys Rev D 71:084025. https://doi.org/ 10.1103/PhysRevD.71.084025, URL https://link.aps.org/doi/10.1103/PhysRevD. 71.084025 Berti E, et al. (2015) Testing General Relativity with Present and Future Astrophysical Observations. Class Quant Grav 32:243001. https://doi.org/10.1088/0264-9381/32/ 24/243001. arXiv:1501.07274
- [gr-qc] Benenti S, Francaviglia M (1979) Remarks on certain separability structures and their applications to general relativity. General Relativity and Gravitation 10(1):79–92. https://doi.org/10.1007/BF00757025 Berti E, Buonanno A, Will CM (2005) Estimating spinning binary parameters and testing alternative theories of gravity with lisa. Phys Rev D 71:084025. https://doi.org/ 10.1103/PhysRevD.71.084025, URL https://link.aps.org/doi/10.1103/PhysRevD. 71.084025 Berti E, et al. (2015) Testing General Relativity with Present and Future Astrophysical Observations. Class Quant Grav 32:243001. https://doi.org/10.1088/0264-9381/32/ 24/243001. arXiv:1501.07274
- [gr-qc] Bertolami O, Paramos J, Harko T, Lobo FSN (2008) Non-minimal curvature-matter couplings in modified gravity. arXiv e-prints arXiv:0811.2876
- [gr-qc] Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: A fresh approach to numerical computing. SIAM Review 59(1):65–98. https://doi.org/10.1137/141000671, URL https://epubs.siam.org/doi/10.1137/141000671 Bhatta G (2019) Blazar Mrk 501 shows rhythmic oscillations in its γ-ray emission. Mon. Not. R. Astron. Soc.487(3):3990–3997. https://doi.org/10.1093/mnras/ stz1482. arXiv:1808.06067 [astro-ph.HE] Binney J, Tremaine S (2011) Galactic dynamics, vol 20. Princeton university press Bisnovatyi-Kogan GS, Ruzmaikin AA (1974) The Accretion of Matter by a Collapsing Star in the Presence of a Magnetic Field. Astrophysics and Space Science 28(1):45– 59. https://doi.org/10.1007/BF00642237 Biswas T, Mazumdar A, Siegel W (2006) Bouncing universes in string-inspired gravity. JCAP 03:009. https://doi.org/10.1088/1475-7516/2006/03/009. arXiv:hepth/0508194 Biswas T, Gerwick E, Koivisto T, Mazumdar A (2012) Towards singularity and ghost free theories of gravity. Phys Rev Lett 108:031101. https://doi.org/10.1103/ PhysRevLett.108.031101. arXiv:1110.5249
- [gr-qc] Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: A fresh approach to numerical computing. SIAM Review 59(1):65–98. https://doi.org/10.1137/141000671, URL https://epubs.siam.org/doi/10.1137/141000671 Bhatta G (2019) Blazar Mrk 501 shows rhythmic oscillations in its γ-ray emission. Mon. Not. R. Astron. Soc.487(3):3990–3997. https://doi.org/10.1093/mnras/ stz1482. arXiv:1808.06067 [astro-ph.HE] Binney J, Tremaine S (2011) Galactic dynamics, vol 20. Princeton university press Bisnovatyi-Kogan GS, Ruzmaikin AA (1974) The Accretion of Matter by a Collapsing Star in the Presence of a Magnetic Field. Astrophysics and Space Science 28(1):45– 59. https://doi.org/10.1007/BF00642237 Biswas T, Mazumdar A, Siegel W (2006) Bouncing universes in string-inspired gravity. JCAP 03:009. https://doi.org/10.1088/1475-7516/2006/03/009. arXiv:hepth/0508194 Biswas T, Gerwick E, Koivisto T, Mazumdar A (2012) Towards singularity and ghost free theories of gravity. Phys Rev Lett 108:031101. https://doi.org/10.1103/ PhysRevLett.108.031101. arXiv:1110.5249
- [gr-qc] Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: A fresh approach to numerical computing. SIAM Review 59(1):65–98. https://doi.org/10.1137/141000671, URL https://epubs.siam.org/doi/10.1137/141000671 Bhatta G (2019) Blazar Mrk 501 shows rhythmic oscillations in its γ-ray emission. Mon. Not. R. Astron. Soc.487(3):3990–3997. https://doi.org/10.1093/mnras/ stz1482. arXiv:1808.06067 [astro-ph.HE] Binney J, Tremaine S (2011) Galactic dynamics, vol 20. Princeton university press Bisnovatyi-Kogan GS, Ruzmaikin AA (1974) The Accretion of Matter by a Collapsing Star in the Presence of a Magnetic Field. Astrophysics and Space Science 28(1):45– 59. https://doi.org/10.1007/BF00642237 Biswas T, Mazumdar A, Siegel W (2006) Bouncing universes in string-inspired gravity. JCAP 03:009. https://doi.org/10.1088/1475-7516/2006/03/009. arXiv:hepth/0508194 Biswas T, Gerwick E, Koivisto T, Mazumdar A (2012) Towards singularity and ghost free theories of gravity. Phys Rev Lett 108:031101. https://doi.org/10.1103/ PhysRevLett.108.031101. arXiv:1110.5249
- [gr-qc] Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: A fresh approach to numerical computing. SIAM Review 59(1):65–98. https://doi.org/10.1137/141000671, URL https://epubs.siam.org/doi/10.1137/141000671 Bhatta G (2019) Blazar Mrk 501 shows rhythmic oscillations in its γ-ray emission. Mon. Not. R. Astron. Soc.487(3):3990–3997. https://doi.org/10.1093/mnras/ stz1482. arXiv:1808.06067 [astro-ph.HE] Binney J, Tremaine S (2011) Galactic dynamics, vol 20. Princeton university press Bisnovatyi-Kogan GS, Ruzmaikin AA (1974) The Accretion of Matter by a Collapsing Star in the Presence of a Magnetic Field. Astrophysics and Space Science 28(1):45– 59. https://doi.org/10.1007/BF00642237 Biswas T, Mazumdar A, Siegel W (2006) Bouncing universes in string-inspired gravity. JCAP 03:009. https://doi.org/10.1088/1475-7516/2006/03/009. arXiv:hepth/0508194 Biswas T, Gerwick E, Koivisto T, Mazumdar A (2012) Towards singularity and ghost free theories of gravity. Phys Rev Lett 108:031101. https://doi.org/10.1103/ PhysRevLett.108.031101. arXiv:1110.5249
- [gr-qc] Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: A fresh approach to numerical computing. SIAM Review 59(1):65–98. https://doi.org/10.1137/141000671, URL https://epubs.siam.org/doi/10.1137/141000671 Bhatta G (2019) Blazar Mrk 501 shows rhythmic oscillations in its γ-ray emission. Mon. Not. R. Astron. Soc.487(3):3990–3997. https://doi.org/10.1093/mnras/ stz1482. arXiv:1808.06067 [astro-ph.HE] Binney J, Tremaine S (2011) Galactic dynamics, vol 20. Princeton university press Bisnovatyi-Kogan GS, Ruzmaikin AA (1974) The Accretion of Matter by a Collapsing Star in the Presence of a Magnetic Field. Astrophysics and Space Science 28(1):45– 59. https://doi.org/10.1007/BF00642237 Biswas T, Mazumdar A, Siegel W (2006) Bouncing universes in string-inspired gravity. JCAP 03:009. https://doi.org/10.1088/1475-7516/2006/03/009. arXiv:hepth/0508194 Biswas T, Gerwick E, Koivisto T, Mazumdar A (2012) Towards singularity and ghost free theories of gravity. Phys Rev Lett 108:031101. https://doi.org/10.1103/ PhysRevLett.108.031101. arXiv:1110.5249
- [gr-qc] Bezanson J, Edelman A, Karpinski S, Shah VB (2017) Julia: A fresh approach to numerical computing. SIAM Review 59(1):65–98. https://doi.org/10.1137/141000671, URL https://epubs.siam.org/doi/10.1137/141000671 Bhatta G (2019) Blazar Mrk 501 shows rhythmic oscillations in its γ-ray emission. Mon. Not. R. Astron. Soc.487(3):3990–3997. https://doi.org/10.1093/mnras/ stz1482. arXiv:1808.06067 [astro-ph.HE] Binney J, Tremaine S (2011) Galactic dynamics, vol 20. Princeton university press Bisnovatyi-Kogan GS, Ruzmaikin AA (1974) The Accretion of Matter by a Collapsing Star in the Presence of a Magnetic Field. Astrophysics and Space Science 28(1):45– 59. https://doi.org/10.1007/BF00642237 Biswas T, Mazumdar A, Siegel W (2006) Bouncing universes in string-inspired gravity. JCAP 03:009. https://doi.org/10.1088/1475-7516/2006/03/009. arXiv:hepth/0508194 Biswas T, Gerwick E, Koivisto T, Mazumdar A (2012) Towards singularity and ghost free theories of gravity. Phys Rev Lett 108:031101. https://doi.org/10.1103/ PhysRevLett.108.031101. arXiv:1110.5249
- [gr-qc] Blandford R, Globus N (2022a) Ergomagnetosphere, ejection disc, magnetopause in M87 – I. Global flow of mass, angular momentum, energy, and current. Mon Not R Astron Soc 514(4):5141–5158. https://doi.org/10.1093/MNRAS/STAC1682, URL https://academic.oup.com/mnras/article/514/4/5141/6609931. arXiv:2204.11995 Blandford R, Globus N (2022b) Jets, Disks and Winds from Spinning Black Holes: Nature or Nurture? Galaxies 2022, Vol 10, Page 89 10(4):89. https://doi.org/10.3390/ GALAXIES10040089, URL https://www.mdpi.com/2075-4434/10/4/89/htmhttps: //www.mdpi.com/2075-4434/10/4/89. arXiv:2207.05839 Blandford R, Znajek R (1977) Electromagnetic extractions of energy from Kerr black holes. MonNotRoyAstronSoc 179:433–456 Bodendorfer N, Mele FM, Münch J (2019) Effective Quantum Extended Spacetime of Polymer Schwarzschild Black Hole. Class Quant Grav 36(19):195015. https://doi. 108 The ngEHT Fundamental Physics SWG org/10.1088/1361-6382/ab3f16. arXiv:1902.04542
- [gr-qc] Blandford R, Globus N (2022a) Ergomagnetosphere, ejection disc, magnetopause in M87 – I. Global flow of mass, angular momentum, energy, and current. Mon Not R Astron Soc 514(4):5141–5158. https://doi.org/10.1093/MNRAS/STAC1682, URL https://academic.oup.com/mnras/article/514/4/5141/6609931. arXiv:2204.11995 Blandford R, Globus N (2022b) Jets, Disks and Winds from Spinning Black Holes: Nature or Nurture? Galaxies 2022, Vol 10, Page 89 10(4):89. https://doi.org/10.3390/ GALAXIES10040089, URL https://www.mdpi.com/2075-4434/10/4/89/htmhttps: //www.mdpi.com/2075-4434/10/4/89. arXiv:2207.05839 Blandford R, Znajek R (1977) Electromagnetic extractions of energy from Kerr black holes. MonNotRoyAstronSoc 179:433–456 Bodendorfer N, Mele FM, Münch J (2019) Effective Quantum Extended Spacetime of Polymer Schwarzschild Black Hole. Class Quant Grav 36(19):195015. https://doi. 108 The ngEHT Fundamental Physics SWG org/10.1088/1361-6382/ab3f16. arXiv:1902.04542
- [gr-qc] Blandford R, Globus N (2022a) Ergomagnetosphere, ejection disc, magnetopause in M87 – I. Global flow of mass, angular momentum, energy, and current. Mon Not R Astron Soc 514(4):5141–5158. https://doi.org/10.1093/MNRAS/STAC1682, URL https://academic.oup.com/mnras/article/514/4/5141/6609931. arXiv:2204.11995 Blandford R, Globus N (2022b) Jets, Disks and Winds from Spinning Black Holes: Nature or Nurture? Galaxies 2022, Vol 10, Page 89 10(4):89. https://doi.org/10.3390/ GALAXIES10040089, URL https://www.mdpi.com/2075-4434/10/4/89/htmhttps: //www.mdpi.com/2075-4434/10/4/89. arXiv:2207.05839 Blandford R, Znajek R (1977) Electromagnetic extractions of energy from Kerr black holes. MonNotRoyAstronSoc 179:433–456 Bodendorfer N, Mele FM, Münch J (2019) Effective Quantum Extended Spacetime of Polymer Schwarzschild Black Hole. Class Quant Grav 36(19):195015. https://doi. 108 The ngEHT Fundamental Physics SWG org/10.1088/1361-6382/ab3f16. arXiv:1902.04542
- [gr-qc] Blandford R, Globus N (2022a) Ergomagnetosphere, ejection disc, magnetopause in M87 – I. Global flow of mass, angular momentum, energy, and current. Mon Not R Astron Soc 514(4):5141–5158. https://doi.org/10.1093/MNRAS/STAC1682, URL https://academic.oup.com/mnras/article/514/4/5141/6609931. arXiv:2204.11995 Blandford R, Globus N (2022b) Jets, Disks and Winds from Spinning Black Holes: Nature or Nurture? Galaxies 2022, Vol 10, Page 89 10(4):89. https://doi.org/10.3390/ GALAXIES10040089, URL https://www.mdpi.com/2075-4434/10/4/89/htmhttps: //www.mdpi.com/2075-4434/10/4/89. arXiv:2207.05839 Blandford R, Znajek R (1977) Electromagnetic extractions of energy from Kerr black holes. MonNotRoyAstronSoc 179:433–456 Bodendorfer N, Mele FM, Münch J (2019) Effective Quantum Extended Spacetime of Polymer Schwarzschild Black Hole. Class Quant Grav 36(19):195015. https://doi. 108 The ngEHT Fundamental Physics SWG org/10.1088/1361-6382/ab3f16. arXiv:1902.04542
- [gr-qc] Bodendorfer N, Mele FM, Münch J (2021a) (b,v)-type variables for black to white hole transitions in effective loop quantum gravity. Phys Lett B 819:136390. https: //doi.org/10.1016/j.physletb.2021.136390. arXiv:1911.12646
- [gr-qc] Bodendorfer N, Mele FM, Münch J (2021b) Mass and Horizon Dirac Observables in Effective Models of Quantum Black-to-White Hole Transition. Class Quant Grav 38(9):095002. https://doi.org/10.1088/1361-6382/abe05d. arXiv:1912.00774
- [gr-qc] Bojowald M (2007) Singularities and Quantum Gravity. AIP Conf Proc 910(1):294– 333. https://doi.org/10.1063/1.2752483. arXiv:gr-qc/0702144 Bonanno A, Reuter M (2000) Renormalization group improved black hole space-times. Phys Rev D 62:043008. https://doi.org/10.1103/PhysRevD.62.043008. arXiv:hepth/0002196 Bonanno A, Eichhorn A, Gies H, Pawlowski JM, Percacci R, Reuter M, Saueressig F, Vacca GP (2020) Critical reflections on asymptotically safe gravity. Front in Phys 8:269. https://doi.org/10.3389/fphy.2020.00269. arXiv:2004.06810
- [gr-qc] Bojowald M (2007) Singularities and Quantum Gravity. AIP Conf Proc 910(1):294– 333. https://doi.org/10.1063/1.2752483. arXiv:gr-qc/0702144 Bonanno A, Reuter M (2000) Renormalization group improved black hole space-times. Phys Rev D 62:043008. https://doi.org/10.1103/PhysRevD.62.043008. arXiv:hepth/0002196 Bonanno A, Eichhorn A, Gies H, Pawlowski JM, Percacci R, Reuter M, Saueressig F, Vacca GP (2020) Critical reflections on asymptotically safe gravity. Front in Phys 8:269. https://doi.org/10.3389/fphy.2020.00269. arXiv:2004.06810
- [gr-qc] Bojowald M (2007) Singularities and Quantum Gravity. AIP Conf Proc 910(1):294– 333. https://doi.org/10.1063/1.2752483. arXiv:gr-qc/0702144 Bonanno A, Reuter M (2000) Renormalization group improved black hole space-times. Phys Rev D 62:043008. https://doi.org/10.1103/PhysRevD.62.043008. arXiv:hepth/0002196 Bonanno A, Eichhorn A, Gies H, Pawlowski JM, Percacci R, Reuter M, Saueressig F, Vacca GP (2020) Critical reflections on asymptotically safe gravity. Front in Phys 8:269. https://doi.org/10.3389/fphy.2020.00269. arXiv:2004.06810
- [gr-qc] Boskovic M, Brito R, Cardoso V, Ikeda T, Witek H (2019) Axionic instabilities and new black hole solutions. Phys Rev D 99(3):035006. https://doi.org/10.1103/PhysRevD. 99.035006. arXiv:1811.04945
- [gr-qc] Bouhmadi-López M, Chen CY, Chew XY, Ong YC, Yeom Dh (2021) Traversable wormhole in Einstein 3-form theory with self-interacting potential. JCAP 10:059. https://doi.org/10.1088/1475-7516/2021/10/059. arXiv:2108.07302
- [gr-qc] Bošković M, Duque F, Ferreira MC, Miguel FS, Cardoso V (2018) Motion in timeperiodic backgrounds with applications to ultralight dark matter haloes at galactic centers. Phys Rev D 98:024037. https://doi.org/10.1103/PhysRevD.98.024037. arXiv:1806.07331
- [gr-qc] Bower GC, et al. (2018) Galactic Center Pulsars with the ngVLA. ASP Conf Ser 517:793. arXiv:1810.06623 [astro-ph.HE] Bower GC, et al. (2019) Fundamental Physics with Galactic Center Pulsars. Bulletin of the American Astronomical Society 51(3):438 Boyce H, Haggard D, Witzel G, Willner SP, Neilsen J, Hora JL, Markoff S, Ponti G, Baganoff F, Becklin EE, Fazio GG, Lowrance P, Morris MR, Smith HA (2019) Simultaneous X-Ray and Infrared Observations of Sagittarius A*’s Variability. Astrophys. J.871(2):161. https://doi.org/10.3847/1538-4357/aaf71f. arXiv:1812.05764 [astro-ph.HE] Boyer RH, Lindquist RW (1967) Maximal Analytic Extension of the Kerr Metric. Journal of Mathematical Physics 8(2):265–281. https://doi.org/10.1063/1.1705193 Brahma S, Chen CY, Yeom Dh (2021) Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes. Phys Rev Lett 126(18):181301. https://doi.org/10.1103/PhysRevLett.126.181301. arXiv:2012.08785
- [gr-qc] Bower GC, et al. (2018) Galactic Center Pulsars with the ngVLA. ASP Conf Ser 517:793. arXiv:1810.06623 [astro-ph.HE] Bower GC, et al. (2019) Fundamental Physics with Galactic Center Pulsars. Bulletin of the American Astronomical Society 51(3):438 Boyce H, Haggard D, Witzel G, Willner SP, Neilsen J, Hora JL, Markoff S, Ponti G, Baganoff F, Becklin EE, Fazio GG, Lowrance P, Morris MR, Smith HA (2019) Simultaneous X-Ray and Infrared Observations of Sagittarius A*’s Variability. Astrophys. J.871(2):161. https://doi.org/10.3847/1538-4357/aaf71f. arXiv:1812.05764 [astro-ph.HE] Boyer RH, Lindquist RW (1967) Maximal Analytic Extension of the Kerr Metric. Journal of Mathematical Physics 8(2):265–281. https://doi.org/10.1063/1.1705193 Brahma S, Chen CY, Yeom Dh (2021) Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes. Phys Rev Lett 126(18):181301. https://doi.org/10.1103/PhysRevLett.126.181301. arXiv:2012.08785
- [gr-qc] Bower GC, et al. (2018) Galactic Center Pulsars with the ngVLA. ASP Conf Ser 517:793. arXiv:1810.06623 [astro-ph.HE] Bower GC, et al. (2019) Fundamental Physics with Galactic Center Pulsars. Bulletin of the American Astronomical Society 51(3):438 Boyce H, Haggard D, Witzel G, Willner SP, Neilsen J, Hora JL, Markoff S, Ponti G, Baganoff F, Becklin EE, Fazio GG, Lowrance P, Morris MR, Smith HA (2019) Simultaneous X-Ray and Infrared Observations of Sagittarius A*’s Variability. Astrophys. J.871(2):161. https://doi.org/10.3847/1538-4357/aaf71f. arXiv:1812.05764 [astro-ph.HE] Boyer RH, Lindquist RW (1967) Maximal Analytic Extension of the Kerr Metric. Journal of Mathematical Physics 8(2):265–281. https://doi.org/10.1063/1.1705193 Brahma S, Chen CY, Yeom Dh (2021) Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes. Phys Rev Lett 126(18):181301. https://doi.org/10.1103/PhysRevLett.126.181301. arXiv:2012.08785
- [gr-qc] Bower GC, et al. (2018) Galactic Center Pulsars with the ngVLA. ASP Conf Ser 517:793. arXiv:1810.06623 [astro-ph.HE] Bower GC, et al. (2019) Fundamental Physics with Galactic Center Pulsars. Bulletin of the American Astronomical Society 51(3):438 Boyce H, Haggard D, Witzel G, Willner SP, Neilsen J, Hora JL, Markoff S, Ponti G, Baganoff F, Becklin EE, Fazio GG, Lowrance P, Morris MR, Smith HA (2019) Simultaneous X-Ray and Infrared Observations of Sagittarius A*’s Variability. Astrophys. J.871(2):161. https://doi.org/10.3847/1538-4357/aaf71f. arXiv:1812.05764 [astro-ph.HE] Boyer RH, Lindquist RW (1967) Maximal Analytic Extension of the Kerr Metric. Journal of Mathematical Physics 8(2):265–281. https://doi.org/10.1063/1.1705193 Brahma S, Chen CY, Yeom Dh (2021) Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes. Phys Rev Lett 126(18):181301. https://doi.org/10.1103/PhysRevLett.126.181301. arXiv:2012.08785
- [gr-qc] Bower GC, et al. (2018) Galactic Center Pulsars with the ngVLA. ASP Conf Ser 517:793. arXiv:1810.06623 [astro-ph.HE] Bower GC, et al. (2019) Fundamental Physics with Galactic Center Pulsars. Bulletin of the American Astronomical Society 51(3):438 Boyce H, Haggard D, Witzel G, Willner SP, Neilsen J, Hora JL, Markoff S, Ponti G, Baganoff F, Becklin EE, Fazio GG, Lowrance P, Morris MR, Smith HA (2019) Simultaneous X-Ray and Infrared Observations of Sagittarius A*’s Variability. Astrophys. J.871(2):161. https://doi.org/10.3847/1538-4357/aaf71f. arXiv:1812.05764 [astro-ph.HE] Boyer RH, Lindquist RW (1967) Maximal Analytic Extension of the Kerr Metric. Journal of Mathematical Physics 8(2):265–281. https://doi.org/10.1063/1.1705193 Brahma S, Chen CY, Yeom Dh (2021) Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes. Phys Rev Lett 126(18):181301. https://doi.org/10.1103/PhysRevLett.126.181301. arXiv:2012.08785
- [gr-qc] Breiding P, Burke-Spolaor S, Eracleous M, Bogdanović T, Lazio TJW, Runnoe J, Sigurdsson S (2021) The Search for Binary Supermassive Black Holes among Quasars with Offset Broad Lines Using the Very Long Baseline Array. The Astrophysical Journal 914(1):37. https://doi.org/10.3847/1538-4357/abfa9a. arXiv:2103.14176 [astroph.GA] Brill DR, Chrzanowski PL, Martin Pereira C, Fackerell ED, Ipser JR (1972) Solution of the scalar wave equation in a kerr background by separation of variables. Phys Rev D 5:1913–1915. https://doi.org/10.1103/PhysRevD.5.1913 Fundamental Physics Opportunities with the ngEHT 109 Brink J, Geyer M, Hinderer T (2015) Astrophysics of resonant orbits in the Kerr metric. Phys. Rev. D91(8):083001. https://doi.org/10.1103/PhysRevD.91.083001. arXiv:1501.07728
- [gr-qc] Breiding P, Burke-Spolaor S, Eracleous M, Bogdanović T, Lazio TJW, Runnoe J, Sigurdsson S (2021) The Search for Binary Supermassive Black Holes among Quasars with Offset Broad Lines Using the Very Long Baseline Array. The Astrophysical Journal 914(1):37. https://doi.org/10.3847/1538-4357/abfa9a. arXiv:2103.14176 [astroph.GA] Brill DR, Chrzanowski PL, Martin Pereira C, Fackerell ED, Ipser JR (1972) Solution of the scalar wave equation in a kerr background by separation of variables. Phys Rev D 5:1913–1915. https://doi.org/10.1103/PhysRevD.5.1913 Fundamental Physics Opportunities with the ngEHT 109 Brink J, Geyer M, Hinderer T (2015) Astrophysics of resonant orbits in the Kerr metric. Phys. Rev. D91(8):083001. https://doi.org/10.1103/PhysRevD.91.083001. arXiv:1501.07728
- [gr-qc] Breiding P, Burke-Spolaor S, Eracleous M, Bogdanović T, Lazio TJW, Runnoe J, Sigurdsson S (2021) The Search for Binary Supermassive Black Holes among Quasars with Offset Broad Lines Using the Very Long Baseline Array. The Astrophysical Journal 914(1):37. https://doi.org/10.3847/1538-4357/abfa9a. arXiv:2103.14176 [astroph.GA] Brill DR, Chrzanowski PL, Martin Pereira C, Fackerell ED, Ipser JR (1972) Solution of the scalar wave equation in a kerr background by separation of variables. Phys Rev D 5:1913–1915. https://doi.org/10.1103/PhysRevD.5.1913 Fundamental Physics Opportunities with the ngEHT 109 Brink J, Geyer M, Hinderer T (2015) Astrophysics of resonant orbits in the Kerr metric. Phys. Rev. D91(8):083001. https://doi.org/10.1103/PhysRevD.91.083001. arXiv:1501.07728
- [gr-qc] Brito R, Cardoso V, Pani P (2013) Massive spin-2 fields on black hole spacetimes: Instability of the Schwarzschild and Kerr solutions and bounds on the graviton mass. Phys Rev D 88(2):023514. https://doi.org/10.1103/PhysRevD.88.023514. arXiv:1304.6725
- [gr-qc] Brito R, Cardoso V, Pani P (2015a) Black holes as particle detectors: evolution of superradiant instabilities. Class Quant Grav 32(13):134001. https://doi.org/10.1088/ 0264-9381/32/13/134001. arXiv:1411.0686
- [gr-qc] Brito R, Cardoso V, Pani P (2015b) Superradiance: New Frontiers in Black Hole Physics. Lect Notes Phys 906:pp.1–237. https://doi.org/10.1007/978-3-319-19000-6. arXiv:1501.06570
- [gr-qc] Brito R, Ghosh S, Barausse E, Berti E, Cardoso V, Dvorkin I, Klein A, Pani P (2017) Gravitational wave searches for ultralight bosons with LIGO and LISA. Phys Rev D 96(6):064050. https://doi.org/10.1103/PhysRevD.96.064050. arXiv:1706.06311
- [grqc] Brito R, Grillo S, Pani P (2020) Black Hole Superradiant Instability from Ultralight Spin-2 Fields. Phys Rev Lett 124(21):211101. https://doi.org/10.1103/PhysRevLett. 124.211101. arXiv:2002.04055
- [gr-qc] Britzen S, Witzel A, Gong BP, Zhang JW, Gopal-Krishna, Goyal A, Aller MF, Aller HD, Zensus JA (2010) Understanding BL Lacertae objects. Structural and kinematic mode changes in the BL Lac object PKS 0735+178. aap 515:A105. https://doi.org/ 10.1051/0004-6361/200913685. arXiv:1002.3531 [astro-ph.CO] Britzen S, Qian SJ, Steffen W, Kun E, Karouzos M, Gergely L, Schmidt J, Aller M, Aller H, Krause M, Fendt C, Böttcher M, Witzel A, Eckart A, Moser L (2017) A swirling jet in the quasar 1308+326. aap 602:A29. https://doi.org/10.1051/ 0004-6361/201629999 Britzen S, Fendt C, Witzel G, Qian SJ, Pashchenko IN, Kurtanidze O, Zajacek M, Martinez G, Karas V, Aller M, Aller H, Eckart A, Nilsson K, Arévalo P, Cuadra J, Subroweit M, Witzel A (2018) OJ287: deciphering the ‘Rosetta stone of blazars. Mon. Not. R. Astron. Soc.478(3):3199–3219. https://doi.org/10.1093/mnras/sty1026 Britzen S, Fendt C, Böttcher M, Zajaček M, Jaron F, Pashchenko IN, Araudo A, Karas V, Kurtanidze O (2019a) A cosmic collider: Was the IceCube neutrino generated in a precessing jet-jet interaction in TXS 0506+056? aap 630:A103. https://doi.org/10. 1051/0004-6361/201935422 Britzen S, Fendt C, Zajaček M, Jaron F, Pashchenko I, Aller MF, Aller HD (2019b) 3C 84: Observational Evidence for Precession and a Possible Relation to TeV Emission. Galaxies 7(3):72. https://doi.org/10.3390/galaxies7030072 Britzen S, Zajaček M, Popović LČ, Fendt C, Tramacere A, Pashchenko IN, Jaron F, Pánis R, Petrov L, Aller MF, Aller HD (2021) A ring accelerator? Unusual jet dynamics in the IceCube candidate PKS 1502+106. mnras 503(3):3145–3178. https: //doi.org/10.1093/mnras/stab589. arXiv:2103.00292 [astro-ph.HE] Britzen S, Zajaček M, Gopal-Krishna, Fendt C, Kun E, Jaron F, Sillanpää A,
- [gr-qc] Britzen S, Witzel A, Gong BP, Zhang JW, Gopal-Krishna, Goyal A, Aller MF, Aller HD, Zensus JA (2010) Understanding BL Lacertae objects. Structural and kinematic mode changes in the BL Lac object PKS 0735+178. aap 515:A105. https://doi.org/ 10.1051/0004-6361/200913685. arXiv:1002.3531 [astro-ph.CO] Britzen S, Qian SJ, Steffen W, Kun E, Karouzos M, Gergely L, Schmidt J, Aller M, Aller H, Krause M, Fendt C, Böttcher M, Witzel A, Eckart A, Moser L (2017) A swirling jet in the quasar 1308+326. aap 602:A29. https://doi.org/10.1051/ 0004-6361/201629999 Britzen S, Fendt C, Witzel G, Qian SJ, Pashchenko IN, Kurtanidze O, Zajacek M, Martinez G, Karas V, Aller M, Aller H, Eckart A, Nilsson K, Arévalo P, Cuadra J, Subroweit M, Witzel A (2018) OJ287: deciphering the ‘Rosetta stone of blazars. Mon. Not. R. Astron. Soc.478(3):3199–3219. https://doi.org/10.1093/mnras/sty1026 Britzen S, Fendt C, Böttcher M, Zajaček M, Jaron F, Pashchenko IN, Araudo A, Karas V, Kurtanidze O (2019a) A cosmic collider: Was the IceCube neutrino generated in a precessing jet-jet interaction in TXS 0506+056? aap 630:A103. https://doi.org/10. 1051/0004-6361/201935422 Britzen S, Fendt C, Zajaček M, Jaron F, Pashchenko I, Aller MF, Aller HD (2019b) 3C 84: Observational Evidence for Precession and a Possible Relation to TeV Emission. Galaxies 7(3):72. https://doi.org/10.3390/galaxies7030072 Britzen S, Zajaček M, Popović LČ, Fendt C, Tramacere A, Pashchenko IN, Jaron F, Pánis R, Petrov L, Aller MF, Aller HD (2021) A ring accelerator? Unusual jet dynamics in the IceCube candidate PKS 1502+106. mnras 503(3):3145–3178. https: //doi.org/10.1093/mnras/stab589. arXiv:2103.00292 [astro-ph.HE] Britzen S, Zajaček M, Gopal-Krishna, Fendt C, Kun E, Jaron F, Sillanpää A,
- [gr-qc] Britzen S, Witzel A, Gong BP, Zhang JW, Gopal-Krishna, Goyal A, Aller MF, Aller HD, Zensus JA (2010) Understanding BL Lacertae objects. Structural and kinematic mode changes in the BL Lac object PKS 0735+178. aap 515:A105. https://doi.org/ 10.1051/0004-6361/200913685. arXiv:1002.3531 [astro-ph.CO] Britzen S, Qian SJ, Steffen W, Kun E, Karouzos M, Gergely L, Schmidt J, Aller M, Aller H, Krause M, Fendt C, Böttcher M, Witzel A, Eckart A, Moser L (2017) A swirling jet in the quasar 1308+326. aap 602:A29. https://doi.org/10.1051/ 0004-6361/201629999 Britzen S, Fendt C, Witzel G, Qian SJ, Pashchenko IN, Kurtanidze O, Zajacek M, Martinez G, Karas V, Aller M, Aller H, Eckart A, Nilsson K, Arévalo P, Cuadra J, Subroweit M, Witzel A (2018) OJ287: deciphering the ‘Rosetta stone of blazars. Mon. Not. R. Astron. Soc.478(3):3199–3219. https://doi.org/10.1093/mnras/sty1026 Britzen S, Fendt C, Böttcher M, Zajaček M, Jaron F, Pashchenko IN, Araudo A, Karas V, Kurtanidze O (2019a) A cosmic collider: Was the IceCube neutrino generated in a precessing jet-jet interaction in TXS 0506+056? aap 630:A103. https://doi.org/10. 1051/0004-6361/201935422 Britzen S, Fendt C, Zajaček M, Jaron F, Pashchenko I, Aller MF, Aller HD (2019b) 3C 84: Observational Evidence for Precession and a Possible Relation to TeV Emission. Galaxies 7(3):72. https://doi.org/10.3390/galaxies7030072 Britzen S, Zajaček M, Popović LČ, Fendt C, Tramacere A, Pashchenko IN, Jaron F, Pánis R, Petrov L, Aller MF, Aller HD (2021) A ring accelerator? Unusual jet dynamics in the IceCube candidate PKS 1502+106. mnras 503(3):3145–3178. https: //doi.org/10.1093/mnras/stab589. arXiv:2103.00292 [astro-ph.HE] Britzen S, Zajaček M, Gopal-Krishna, Fendt C, Kun E, Jaron F, Sillanpää A,
- [gr-qc] Britzen S, Witzel A, Gong BP, Zhang JW, Gopal-Krishna, Goyal A, Aller MF, Aller HD, Zensus JA (2010) Understanding BL Lacertae objects. Structural and kinematic mode changes in the BL Lac object PKS 0735+178. aap 515:A105. https://doi.org/ 10.1051/0004-6361/200913685. arXiv:1002.3531 [astro-ph.CO] Britzen S, Qian SJ, Steffen W, Kun E, Karouzos M, Gergely L, Schmidt J, Aller M, Aller H, Krause M, Fendt C, Böttcher M, Witzel A, Eckart A, Moser L (2017) A swirling jet in the quasar 1308+326. aap 602:A29. https://doi.org/10.1051/ 0004-6361/201629999 Britzen S, Fendt C, Witzel G, Qian SJ, Pashchenko IN, Kurtanidze O, Zajacek M, Martinez G, Karas V, Aller M, Aller H, Eckart A, Nilsson K, Arévalo P, Cuadra J, Subroweit M, Witzel A (2018) OJ287: deciphering the ‘Rosetta stone of blazars. Mon. Not. R. Astron. Soc.478(3):3199–3219. https://doi.org/10.1093/mnras/sty1026 Britzen S, Fendt C, Böttcher M, Zajaček M, Jaron F, Pashchenko IN, Araudo A, Karas V, Kurtanidze O (2019a) A cosmic collider: Was the IceCube neutrino generated in a precessing jet-jet interaction in TXS 0506+056? aap 630:A103. https://doi.org/10. 1051/0004-6361/201935422 Britzen S, Fendt C, Zajaček M, Jaron F, Pashchenko I, Aller MF, Aller HD (2019b) 3C 84: Observational Evidence for Precession and a Possible Relation to TeV Emission. Galaxies 7(3):72. https://doi.org/10.3390/galaxies7030072 Britzen S, Zajaček M, Popović LČ, Fendt C, Tramacere A, Pashchenko IN, Jaron F, Pánis R, Petrov L, Aller MF, Aller HD (2021) A ring accelerator? Unusual jet dynamics in the IceCube candidate PKS 1502+106. mnras 503(3):3145–3178. https: //doi.org/10.1093/mnras/stab589. arXiv:2103.00292 [astro-ph.HE] Britzen S, Zajaček M, Gopal-Krishna, Fendt C, Kun E, Jaron F, Sillanpää A,
- [gr-qc] Britzen S, Witzel A, Gong BP, Zhang JW, Gopal-Krishna, Goyal A, Aller MF, Aller HD, Zensus JA (2010) Understanding BL Lacertae objects. Structural and kinematic mode changes in the BL Lac object PKS 0735+178. aap 515:A105. https://doi.org/ 10.1051/0004-6361/200913685. arXiv:1002.3531 [astro-ph.CO] Britzen S, Qian SJ, Steffen W, Kun E, Karouzos M, Gergely L, Schmidt J, Aller M, Aller H, Krause M, Fendt C, Böttcher M, Witzel A, Eckart A, Moser L (2017) A swirling jet in the quasar 1308+326. aap 602:A29. https://doi.org/10.1051/ 0004-6361/201629999 Britzen S, Fendt C, Witzel G, Qian SJ, Pashchenko IN, Kurtanidze O, Zajacek M, Martinez G, Karas V, Aller M, Aller H, Eckart A, Nilsson K, Arévalo P, Cuadra J, Subroweit M, Witzel A (2018) OJ287: deciphering the ‘Rosetta stone of blazars. Mon. Not. R. Astron. Soc.478(3):3199–3219. https://doi.org/10.1093/mnras/sty1026 Britzen S, Fendt C, Böttcher M, Zajaček M, Jaron F, Pashchenko IN, Araudo A, Karas V, Kurtanidze O (2019a) A cosmic collider: Was the IceCube neutrino generated in a precessing jet-jet interaction in TXS 0506+056? aap 630:A103. https://doi.org/10. 1051/0004-6361/201935422 Britzen S, Fendt C, Zajaček M, Jaron F, Pashchenko I, Aller MF, Aller HD (2019b) 3C 84: Observational Evidence for Precession and a Possible Relation to TeV Emission. Galaxies 7(3):72. https://doi.org/10.3390/galaxies7030072 Britzen S, Zajaček M, Popović LČ, Fendt C, Tramacere A, Pashchenko IN, Jaron F, Pánis R, Petrov L, Aller MF, Aller HD (2021) A ring accelerator? Unusual jet dynamics in the IceCube candidate PKS 1502+106. mnras 503(3):3145–3178. https: //doi.org/10.1093/mnras/stab589. arXiv:2103.00292 [astro-ph.HE] Britzen S, Zajaček M, Gopal-Krishna, Fendt C, Kun E, Jaron F, Sillanpää A,
- [gr-qc] Britzen S, Witzel A, Gong BP, Zhang JW, Gopal-Krishna, Goyal A, Aller MF, Aller HD, Zensus JA (2010) Understanding BL Lacertae objects. Structural and kinematic mode changes in the BL Lac object PKS 0735+178. aap 515:A105. https://doi.org/ 10.1051/0004-6361/200913685. arXiv:1002.3531 [astro-ph.CO] Britzen S, Qian SJ, Steffen W, Kun E, Karouzos M, Gergely L, Schmidt J, Aller M, Aller H, Krause M, Fendt C, Böttcher M, Witzel A, Eckart A, Moser L (2017) A swirling jet in the quasar 1308+326. aap 602:A29. https://doi.org/10.1051/ 0004-6361/201629999 Britzen S, Fendt C, Witzel G, Qian SJ, Pashchenko IN, Kurtanidze O, Zajacek M, Martinez G, Karas V, Aller M, Aller H, Eckart A, Nilsson K, Arévalo P, Cuadra J, Subroweit M, Witzel A (2018) OJ287: deciphering the ‘Rosetta stone of blazars. Mon. Not. R. Astron. Soc.478(3):3199–3219. https://doi.org/10.1093/mnras/sty1026 Britzen S, Fendt C, Böttcher M, Zajaček M, Jaron F, Pashchenko IN, Araudo A, Karas V, Kurtanidze O (2019a) A cosmic collider: Was the IceCube neutrino generated in a precessing jet-jet interaction in TXS 0506+056? aap 630:A103. https://doi.org/10. 1051/0004-6361/201935422 Britzen S, Fendt C, Zajaček M, Jaron F, Pashchenko I, Aller MF, Aller HD (2019b) 3C 84: Observational Evidence for Precession and a Possible Relation to TeV Emission. Galaxies 7(3):72. https://doi.org/10.3390/galaxies7030072 Britzen S, Zajaček M, Popović LČ, Fendt C, Tramacere A, Pashchenko IN, Jaron F, Pánis R, Petrov L, Aller MF, Aller HD (2021) A ring accelerator? Unusual jet dynamics in the IceCube candidate PKS 1502+106. mnras 503(3):3145–3178. https: //doi.org/10.1093/mnras/stab589. arXiv:2103.00292 [astro-ph.HE] Britzen S, Zajaček M, Gopal-Krishna, Fendt C, Kun E, Jaron F, Sillanpää A,
- [astro-ph] Broderick AE, Loeb A, Narayan R (2009) The Event Horizon of Sagittarius A*. Astrophys J 701:1357–1366. https://doi.org/10.1088/0004-637X/701/2/1357. arXiv:0903.1105 [astro-ph.HE] Broderick AE, Fish VL, Doeleman SS, Loeb A (2011) Evidence for Low Black Hole Spin and Physically Motivated Accretion Models from Millimeter-VLBI Observations of Sagittarius A*. Astrophys. J.735(2):110. https://doi.org/10.1088/0004-637X/735/2/ 110. arXiv:1011.2770 [astro-ph.HE] Broderick AE, Johannsen T, Loeb A, Psaltis D (2014) Testing the No-hair Theorem with Event Horizon Telescope Observations of Sagittarius A*. Astrophys. J.784(1):7. https://doi.org/10.1088/0004-637X/784/1/7. arXiv:1311.5564 [astro-ph.HE] Broderick AE, Narayan R, Kormendy J, Perlman ES, Rieke MJ, Doeleman SS (2015) The Event Horizon of M87. Astrophys J 805(2):179. https://doi.org/10.1088/ 0004-637X/805/2/179. arXiv:1503.03873 [astro-ph.HE] Broderick AE, Gold R, Karami M, et al (2020a) THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophys. J.897(2):139. https://doi. org/10.3847/1538-4357/ab91a4 Broderick AE, Pesce DW, Tiede P, Pu HY, Gold R (2020b) Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J.898(1):9. https: //doi.org/10.3847/1538-4357/ab9c1f Broderick AE, Pesce DW, Tiede P, Pu HY, Gold R (2020c) Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J.898(1):9. https: //doi.org/10.3847/1538-4357/ab9c1f. arXiv:2208.09003 [astro-ph.IM] Broderick AE, Tiede P, Pesce DW, Gold R (2022) Measuring Spin from Relative Photon-ring Sizes. Astrophys. J.927(1):6. https://doi.org/10.3847/1538-4357/ ac4970. arXiv:2105.09962 [astro-ph.HE]
- [astro-ph] Broderick AE, Loeb A, Narayan R (2009) The Event Horizon of Sagittarius A*. Astrophys J 701:1357–1366. https://doi.org/10.1088/0004-637X/701/2/1357. arXiv:0903.1105 [astro-ph.HE] Broderick AE, Fish VL, Doeleman SS, Loeb A (2011) Evidence for Low Black Hole Spin and Physically Motivated Accretion Models from Millimeter-VLBI Observations of Sagittarius A*. Astrophys. J.735(2):110. https://doi.org/10.1088/0004-637X/735/2/ 110. arXiv:1011.2770 [astro-ph.HE] Broderick AE, Johannsen T, Loeb A, Psaltis D (2014) Testing the No-hair Theorem with Event Horizon Telescope Observations of Sagittarius A*. Astrophys. J.784(1):7. https://doi.org/10.1088/0004-637X/784/1/7. arXiv:1311.5564 [astro-ph.HE] Broderick AE, Narayan R, Kormendy J, Perlman ES, Rieke MJ, Doeleman SS (2015) The Event Horizon of M87. Astrophys J 805(2):179. https://doi.org/10.1088/ 0004-637X/805/2/179. arXiv:1503.03873 [astro-ph.HE] Broderick AE, Gold R, Karami M, et al (2020a) THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophys. J.897(2):139. https://doi. org/10.3847/1538-4357/ab91a4 Broderick AE, Pesce DW, Tiede P, Pu HY, Gold R (2020b) Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J.898(1):9. https: //doi.org/10.3847/1538-4357/ab9c1f Broderick AE, Pesce DW, Tiede P, Pu HY, Gold R (2020c) Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J.898(1):9. https: //doi.org/10.3847/1538-4357/ab9c1f. arXiv:2208.09003 [astro-ph.IM] Broderick AE, Tiede P, Pesce DW, Gold R (2022) Measuring Spin from Relative Photon-ring Sizes. Astrophys. J.927(1):6. https://doi.org/10.3847/1538-4357/ ac4970. arXiv:2105.09962 [astro-ph.HE]
- [astro-ph] Broderick AE, Loeb A, Narayan R (2009) The Event Horizon of Sagittarius A*. Astrophys J 701:1357–1366. https://doi.org/10.1088/0004-637X/701/2/1357. arXiv:0903.1105 [astro-ph.HE] Broderick AE, Fish VL, Doeleman SS, Loeb A (2011) Evidence for Low Black Hole Spin and Physically Motivated Accretion Models from Millimeter-VLBI Observations of Sagittarius A*. Astrophys. J.735(2):110. https://doi.org/10.1088/0004-637X/735/2/ 110. arXiv:1011.2770 [astro-ph.HE] Broderick AE, Johannsen T, Loeb A, Psaltis D (2014) Testing the No-hair Theorem with Event Horizon Telescope Observations of Sagittarius A*. Astrophys. J.784(1):7. https://doi.org/10.1088/0004-637X/784/1/7. arXiv:1311.5564 [astro-ph.HE] Broderick AE, Narayan R, Kormendy J, Perlman ES, Rieke MJ, Doeleman SS (2015) The Event Horizon of M87. Astrophys J 805(2):179. https://doi.org/10.1088/ 0004-637X/805/2/179. arXiv:1503.03873 [astro-ph.HE] Broderick AE, Gold R, Karami M, et al (2020a) THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophys. J.897(2):139. https://doi. org/10.3847/1538-4357/ab91a4 Broderick AE, Pesce DW, Tiede P, Pu HY, Gold R (2020b) Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J.898(1):9. https: //doi.org/10.3847/1538-4357/ab9c1f Broderick AE, Pesce DW, Tiede P, Pu HY, Gold R (2020c) Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J.898(1):9. https: //doi.org/10.3847/1538-4357/ab9c1f. arXiv:2208.09003 [astro-ph.IM] Broderick AE, Tiede P, Pesce DW, Gold R (2022) Measuring Spin from Relative Photon-ring Sizes. Astrophys. J.927(1):6. https://doi.org/10.3847/1538-4357/ ac4970. arXiv:2105.09962 [astro-ph.HE]
- [astro-ph] Broderick AE, Loeb A, Narayan R (2009) The Event Horizon of Sagittarius A*. Astrophys J 701:1357–1366. https://doi.org/10.1088/0004-637X/701/2/1357. arXiv:0903.1105 [astro-ph.HE] Broderick AE, Fish VL, Doeleman SS, Loeb A (2011) Evidence for Low Black Hole Spin and Physically Motivated Accretion Models from Millimeter-VLBI Observations of Sagittarius A*. Astrophys. J.735(2):110. https://doi.org/10.1088/0004-637X/735/2/ 110. arXiv:1011.2770 [astro-ph.HE] Broderick AE, Johannsen T, Loeb A, Psaltis D (2014) Testing the No-hair Theorem with Event Horizon Telescope Observations of Sagittarius A*. Astrophys. J.784(1):7. https://doi.org/10.1088/0004-637X/784/1/7. arXiv:1311.5564 [astro-ph.HE] Broderick AE, Narayan R, Kormendy J, Perlman ES, Rieke MJ, Doeleman SS (2015) The Event Horizon of M87. Astrophys J 805(2):179. https://doi.org/10.1088/ 0004-637X/805/2/179. arXiv:1503.03873 [astro-ph.HE] Broderick AE, Gold R, Karami M, et al (2020a) THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophys. J.897(2):139. https://doi. org/10.3847/1538-4357/ab91a4 Broderick AE, Pesce DW, Tiede P, Pu HY, Gold R (2020b) Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J.898(1):9. https: //doi.org/10.3847/1538-4357/ab9c1f Broderick AE, Pesce DW, Tiede P, Pu HY, Gold R (2020c) Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J.898(1):9. https: //doi.org/10.3847/1538-4357/ab9c1f. arXiv:2208.09003 [astro-ph.IM] Broderick AE, Tiede P, Pesce DW, Gold R (2022) Measuring Spin from Relative Photon-ring Sizes. Astrophys. J.927(1):6. https://doi.org/10.3847/1538-4357/ ac4970. arXiv:2105.09962 [astro-ph.HE]
- [astro-ph] Broderick AE, Loeb A, Narayan R (2009) The Event Horizon of Sagittarius A*. Astrophys J 701:1357–1366. https://doi.org/10.1088/0004-637X/701/2/1357. arXiv:0903.1105 [astro-ph.HE] Broderick AE, Fish VL, Doeleman SS, Loeb A (2011) Evidence for Low Black Hole Spin and Physically Motivated Accretion Models from Millimeter-VLBI Observations of Sagittarius A*. Astrophys. J.735(2):110. https://doi.org/10.1088/0004-637X/735/2/ 110. arXiv:1011.2770 [astro-ph.HE] Broderick AE, Johannsen T, Loeb A, Psaltis D (2014) Testing the No-hair Theorem with Event Horizon Telescope Observations of Sagittarius A*. Astrophys. J.784(1):7. https://doi.org/10.1088/0004-637X/784/1/7. arXiv:1311.5564 [astro-ph.HE] Broderick AE, Narayan R, Kormendy J, Perlman ES, Rieke MJ, Doeleman SS (2015) The Event Horizon of M87. Astrophys J 805(2):179. https://doi.org/10.1088/ 0004-637X/805/2/179. arXiv:1503.03873 [astro-ph.HE] Broderick AE, Gold R, Karami M, et al (2020a) THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophys. J.897(2):139. https://doi. org/10.3847/1538-4357/ab91a4 Broderick AE, Pesce DW, Tiede P, Pu HY, Gold R (2020b) Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J.898(1):9. https: //doi.org/10.3847/1538-4357/ab9c1f Broderick AE, Pesce DW, Tiede P, Pu HY, Gold R (2020c) Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J.898(1):9. https: //doi.org/10.3847/1538-4357/ab9c1f. arXiv:2208.09003 [astro-ph.IM] Broderick AE, Tiede P, Pesce DW, Gold R (2022) Measuring Spin from Relative Photon-ring Sizes. Astrophys. J.927(1):6. https://doi.org/10.3847/1538-4357/ ac4970. arXiv:2105.09962 [astro-ph.HE]
- [astro-ph] Broderick AE, Loeb A, Narayan R (2009) The Event Horizon of Sagittarius A*. Astrophys J 701:1357–1366. https://doi.org/10.1088/0004-637X/701/2/1357. arXiv:0903.1105 [astro-ph.HE] Broderick AE, Fish VL, Doeleman SS, Loeb A (2011) Evidence for Low Black Hole Spin and Physically Motivated Accretion Models from Millimeter-VLBI Observations of Sagittarius A*. Astrophys. J.735(2):110. https://doi.org/10.1088/0004-637X/735/2/ 110. arXiv:1011.2770 [astro-ph.HE] Broderick AE, Johannsen T, Loeb A, Psaltis D (2014) Testing the No-hair Theorem with Event Horizon Telescope Observations of Sagittarius A*. Astrophys. J.784(1):7. https://doi.org/10.1088/0004-637X/784/1/7. arXiv:1311.5564 [astro-ph.HE] Broderick AE, Narayan R, Kormendy J, Perlman ES, Rieke MJ, Doeleman SS (2015) The Event Horizon of M87. Astrophys J 805(2):179. https://doi.org/10.1088/ 0004-637X/805/2/179. arXiv:1503.03873 [astro-ph.HE] Broderick AE, Gold R, Karami M, et al (2020a) THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophys. J.897(2):139. https://doi. org/10.3847/1538-4357/ab91a4 Broderick AE, Pesce DW, Tiede P, Pu HY, Gold R (2020b) Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J.898(1):9. https: //doi.org/10.3847/1538-4357/ab9c1f Broderick AE, Pesce DW, Tiede P, Pu HY, Gold R (2020c) Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J.898(1):9. https: //doi.org/10.3847/1538-4357/ab9c1f. arXiv:2208.09003 [astro-ph.IM] Broderick AE, Tiede P, Pesce DW, Gold R (2022) Measuring Spin from Relative Photon-ring Sizes. Astrophys. J.927(1):6. https://doi.org/10.3847/1538-4357/ ac4970. arXiv:2105.09962 [astro-ph.HE]
- [astro-ph] Broderick AE, Loeb A, Narayan R (2009) The Event Horizon of Sagittarius A*. Astrophys J 701:1357–1366. https://doi.org/10.1088/0004-637X/701/2/1357. arXiv:0903.1105 [astro-ph.HE] Broderick AE, Fish VL, Doeleman SS, Loeb A (2011) Evidence for Low Black Hole Spin and Physically Motivated Accretion Models from Millimeter-VLBI Observations of Sagittarius A*. Astrophys. J.735(2):110. https://doi.org/10.1088/0004-637X/735/2/ 110. arXiv:1011.2770 [astro-ph.HE] Broderick AE, Johannsen T, Loeb A, Psaltis D (2014) Testing the No-hair Theorem with Event Horizon Telescope Observations of Sagittarius A*. Astrophys. J.784(1):7. https://doi.org/10.1088/0004-637X/784/1/7. arXiv:1311.5564 [astro-ph.HE] Broderick AE, Narayan R, Kormendy J, Perlman ES, Rieke MJ, Doeleman SS (2015) The Event Horizon of M87. Astrophys J 805(2):179. https://doi.org/10.1088/ 0004-637X/805/2/179. arXiv:1503.03873 [astro-ph.HE] Broderick AE, Gold R, Karami M, et al (2020a) THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophys. J.897(2):139. https://doi. org/10.3847/1538-4357/ab91a4 Broderick AE, Pesce DW, Tiede P, Pu HY, Gold R (2020b) Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J.898(1):9. https: //doi.org/10.3847/1538-4357/ab9c1f Broderick AE, Pesce DW, Tiede P, Pu HY, Gold R (2020c) Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J.898(1):9. https: //doi.org/10.3847/1538-4357/ab9c1f. arXiv:2208.09003 [astro-ph.IM] Broderick AE, Tiede P, Pesce DW, Gold R (2022) Measuring Spin from Relative Photon-ring Sizes. Astrophys. J.927(1):6. https://doi.org/10.3847/1538-4357/ ac4970. arXiv:2105.09962 [astro-ph.HE]
- [astro-ph] Broderick AE, Loeb A, Narayan R (2009) The Event Horizon of Sagittarius A*. Astrophys J 701:1357–1366. https://doi.org/10.1088/0004-637X/701/2/1357. arXiv:0903.1105 [astro-ph.HE] Broderick AE, Fish VL, Doeleman SS, Loeb A (2011) Evidence for Low Black Hole Spin and Physically Motivated Accretion Models from Millimeter-VLBI Observations of Sagittarius A*. Astrophys. J.735(2):110. https://doi.org/10.1088/0004-637X/735/2/ 110. arXiv:1011.2770 [astro-ph.HE] Broderick AE, Johannsen T, Loeb A, Psaltis D (2014) Testing the No-hair Theorem with Event Horizon Telescope Observations of Sagittarius A*. Astrophys. J.784(1):7. https://doi.org/10.1088/0004-637X/784/1/7. arXiv:1311.5564 [astro-ph.HE] Broderick AE, Narayan R, Kormendy J, Perlman ES, Rieke MJ, Doeleman SS (2015) The Event Horizon of M87. Astrophys J 805(2):179. https://doi.org/10.1088/ 0004-637X/805/2/179. arXiv:1503.03873 [astro-ph.HE] Broderick AE, Gold R, Karami M, et al (2020a) THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophys. J.897(2):139. https://doi. org/10.3847/1538-4357/ab91a4 Broderick AE, Pesce DW, Tiede P, Pu HY, Gold R (2020b) Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J.898(1):9. https: //doi.org/10.3847/1538-4357/ab9c1f Broderick AE, Pesce DW, Tiede P, Pu HY, Gold R (2020c) Hybrid Very Long Baseline Interferometry Imaging and Modeling with THEMIS. Astrophys. J.898(1):9. https: //doi.org/10.3847/1538-4357/ab9c1f. arXiv:2208.09003 [astro-ph.IM] Broderick AE, Tiede P, Pesce DW, Gold R (2022) Measuring Spin from Relative Photon-ring Sizes. Astrophys. J.927(1):6. https://doi.org/10.3847/1538-4357/ ac4970. arXiv:2105.09962 [astro-ph.HE]
- [gr-qc] Burke-Spolaor S (2013) Multi-messenger approaches to binary supermassive black holes in the ‘continuous-wave’ regime. Class Quant Grav 30:224013. https://doi.org/10. 1088/0264-9381/30/22/224013. arXiv:1308.4408 [astro-ph.CO] Callan CG, Maldacena JM (1996) D-brane approach to black hole quantum mechanics. Nucl Phys B 472:591–610. https://doi.org/10.1016/0550-3213(96)00225-8. arXiv:hep-th/9602043 Cannizzaro E, Caputo A, Sberna L, Pani P (2021a) Plasma-photon interaction in curved spacetime I: formalism and quasibound states around nonspinning black holes. Phys Rev D 103:124018. https://doi.org/10.1103/PhysRevD.103.124018. arXiv:2012.05114
- [gr-qc] Burke-Spolaor S (2013) Multi-messenger approaches to binary supermassive black holes in the ‘continuous-wave’ regime. Class Quant Grav 30:224013. https://doi.org/10. 1088/0264-9381/30/22/224013. arXiv:1308.4408 [astro-ph.CO] Callan CG, Maldacena JM (1996) D-brane approach to black hole quantum mechanics. Nucl Phys B 472:591–610. https://doi.org/10.1016/0550-3213(96)00225-8. arXiv:hep-th/9602043 Cannizzaro E, Caputo A, Sberna L, Pani P (2021a) Plasma-photon interaction in curved spacetime I: formalism and quasibound states around nonspinning black holes. Phys Rev D 103:124018. https://doi.org/10.1103/PhysRevD.103.124018. arXiv:2012.05114
- [gr-qc] Burke-Spolaor S (2013) Multi-messenger approaches to binary supermassive black holes in the ‘continuous-wave’ regime. Class Quant Grav 30:224013. https://doi.org/10. 1088/0264-9381/30/22/224013. arXiv:1308.4408 [astro-ph.CO] Callan CG, Maldacena JM (1996) D-brane approach to black hole quantum mechanics. Nucl Phys B 472:591–610. https://doi.org/10.1016/0550-3213(96)00225-8. arXiv:hep-th/9602043 Cannizzaro E, Caputo A, Sberna L, Pani P (2021a) Plasma-photon interaction in curved spacetime I: formalism and quasibound states around nonspinning black holes. Phys Rev D 103:124018. https://doi.org/10.1103/PhysRevD.103.124018. arXiv:2012.05114
- [gr-qc] Cannizzaro E, Caputo A, Sberna L, Pani P (2021b) Plasma-photon interaction in curved spacetime. II. Collisions, thermal corrections, and superradiant instabilities. Phys Rev D 104(10):104048. https://doi.org/10.1103/PhysRevD.104.104048. arXiv:2107.01174
- [gr-qc] Cano PA, Ruipérez A (2019) Leading higher-derivative corrections to Kerr geometry. JHEP 05:189. https://doi.org/10.1007/JHEP05(2019)189, [Erratum: JHEP 03, 187 (2020)]. arXiv:1901.01315
- [gr-qc] Cano PA, Ruipérez A (2019) Leading higher-derivative corrections to Kerr geometry. JHEP 05:189. https://doi.org/10.1007/JHEP05(2019)189, [Erratum: JHEP 03, 187 (2020)]. arXiv:1901.01315
- [gr-qc] Capozziello S, De laurentis M, Stabile A (2010) Axially symmetric solutions in f(R)gravity. Class Quant Grav 27:165008. https://doi.org/10.1088/0264-9381/27/16/ 165008. arXiv:0912.5286
- [gr-qc] Caproni A, Abraham Z (2004a) Can long-term periodic variability and jet helicity in 3C 120 be explained by jet precession? mnras 349(4):1218–1226. https://doi.org/10. 1111/j.1365-2966.2004.07550.x. arXiv:astro-ph/0312407
- [gr-qc] Caproni A, Abraham Z (2004a) Can long-term periodic variability and jet helicity in 3C 120 be explained by jet precession? mnras 349(4):1218–1226. https://doi.org/10. 1111/j.1365-2966.2004.07550.x. arXiv:astro-ph/0312407
- [astro-ph] Caproni A, Abraham Z (2004b) Precession in the Inner Jet of 3C 345. apj 602(2):625– 634. https://doi.org/10.1086/381195. arXiv:astro-ph/0311137
- [astro-ph] Caproni A, Abraham Z, Monteiro H (2013) Parsec-scale jet precession in BL Lacertae (2200+420). mnras 428(1):280–290. https://doi.org/10.1093/mnras/sts014. arXiv:1210.2286 [astro-ph.HE] Caproni A, Abraham Z, Motter JC, Monteiro H (2017) Jet Precession Driven by a Supermassive Black Hole Binary System in the BL Lac Object PG 1553+113. ApJL 851(2):L39. https://doi.org/10.3847/2041-8213/aa9fea. arXiv:1712.06881 [astroph.GA] Caputo A, Witte SJ, Blas D, Pani P (2021) Electromagnetic signatures of dark photon superradiance. Phys Rev D 104(4):043006. https://doi.org/10.1103/PhysRevD.104. 043006. arXiv:2102.11280
- [astro-ph] Caproni A, Abraham Z, Monteiro H (2013) Parsec-scale jet precession in BL Lacertae (2200+420). mnras 428(1):280–290. https://doi.org/10.1093/mnras/sts014. arXiv:1210.2286 [astro-ph.HE] Caproni A, Abraham Z, Motter JC, Monteiro H (2017) Jet Precession Driven by a Supermassive Black Hole Binary System in the BL Lac Object PG 1553+113. ApJL 851(2):L39. https://doi.org/10.3847/2041-8213/aa9fea. arXiv:1712.06881 [astroph.GA] Caputo A, Witte SJ, Blas D, Pani P (2021) Electromagnetic signatures of dark photon superradiance. Phys Rev D 104(4):043006. https://doi.org/10.1103/PhysRevD.104. 043006. arXiv:2102.11280
- [astro-ph] Caproni A, Abraham Z, Monteiro H (2013) Parsec-scale jet precession in BL Lacertae (2200+420). mnras 428(1):280–290. https://doi.org/10.1093/mnras/sts014. arXiv:1210.2286 [astro-ph.HE] Caproni A, Abraham Z, Motter JC, Monteiro H (2017) Jet Precession Driven by a Supermassive Black Hole Binary System in the BL Lac Object PG 1553+113. ApJL 851(2):L39. https://doi.org/10.3847/2041-8213/aa9fea. arXiv:1712.06881 [astroph.GA] Caputo A, Witte SJ, Blas D, Pani P (2021) Electromagnetic signatures of dark photon superradiance. Phys Rev D 104(4):043006. https://doi.org/10.1103/PhysRevD.104. 043006. arXiv:2102.11280
- [hep-ph] Carballo-Rubio R (2018) Stellar equilibrium in semiclassical gravity. Phys Rev Lett 120(6):061102. https://doi.org/10.1103/PhysRevLett.120.061102. arXiv:1706.05379
- [gr-qc] Carballo-Rubio R, Di Filippo F, Liberati S, Pacilio C, Visser M (2018a) On the viability of regular black holes. JHEP 07:023. https://doi.org/10.1007/JHEP07(2018)023. arXiv:1805.02675
- [gr-qc] 112 The ngEHT Fundamental Physics SWG Carballo-Rubio R, Di Filippo F, Liberati S, Visser M (2018b) Phenomenological aspects of black holes beyond general relativity. Phys Rev D 98(12):124009. https://doi.org/ 10.1103/PhysRevD.98.124009. arXiv:1809.08238
- [gr-qc] Carballo-Rubio R, Kumar P, Lu W (2018c) Seeking observational evidence for the formation of trapping horizons in astrophysical black holes. Phys Rev D 97(12):123012. https://doi.org/10.1103/PhysRevD.97.123012. arXiv:1804.00663
- [gr-qc] Carballo-Rubio R, Di Filippo F, Liberati S, Pacilio C, Visser M (2021) Inner horizon instability and the unstable cores of regular black holes. JHEP 05:132. https://doi. org/10.1007/JHEP05(2021)132. arXiv:2101.05006
- [gr-qc] Carballo-Rubio R, Cardoso V, Younsi Z (2022a) Towards VLBI Observations of Black Hole Structure. arXiv e-prints arXiv:2208.00704
- [gr-qc] Carballo-Rubio R, Di Filippo F, Liberati S, Pacilio C, Visser M (2022b) Regular black holes without mass inflation instability. JHEP 09:118. https://doi.org/10.1007/ JHEP09(2022)118. arXiv:2205.13556
- [gr-qc] Carballo-Rubio R, Di Filippo F, Liberati S, Visser M (2022) A connection between regular black holes and horizonless ultracompact stars. arXiv e-prints arXiv:2211.05817. https://doi.org/10.48550/arXiv.2211.05817. arXiv:2211.05817
- [gr-qc] Carballo-Rubio R, Di Filippo F, Liberati S, Visser M (2022) A connection between regular black holes and horizonless ultracompact stars. arXiv e-prints arXiv:2211.05817. https://doi.org/10.48550/arXiv.2211.05817. arXiv:2211.05817
- [gr-qc] Carballo-Rubio R, Di Filippo F, Liberati S, Visser M (2022a) Constraints on horizonless objects after the EHT observation of Sagittarius A*. JCAP 08(08):055. https://doi. org/10.1088/1475-7516/2022/08/055. arXiv:2205.13555 [astro-ph.HE] Carballo-Rubio R, Di Filippo F, Liberati S, Visser M (2022b) Geodesically complete black holes in Lorentz-violating gravity. JHEP 02:122. https://doi.org/10.1007/ JHEP02(2022)122. arXiv:2111.03113
- [gr-qc] Carballo-Rubio R, Di Filippo F, Liberati S, Visser M (2022a) Constraints on horizonless objects after the EHT observation of Sagittarius A*. JCAP 08(08):055. https://doi. org/10.1088/1475-7516/2022/08/055. arXiv:2205.13555 [astro-ph.HE] Carballo-Rubio R, Di Filippo F, Liberati S, Visser M (2022b) Geodesically complete black holes in Lorentz-violating gravity. JHEP 02:122. https://doi.org/10.1007/ JHEP02(2022)122. arXiv:2111.03113
- [gr-qc] Cárdenas-Avendaño A, Held A (2023) Lensing-band constraints on black-hole uniqueness Cardenas-Avendano A, Godfrey J, Yunes N, Lohfink A (2019) Experimental Relativity with Accretion Disk Observations. Phys Rev D 100(2):024039. https://doi.org/10. 1103/PhysRevD.100.024039. arXiv:1903.04356
- [gr-qc] Cardenas-Avendano A, Nampalliwar S, Yunes N (2020) Gravitational-wave versus Xray tests of strong-field gravity. Class Quant Grav 37(13):135008. https://doi.org/ 10.1088/1361-6382/ab8f64. arXiv:1912.08062
- [gr-qc] Cardoso V, Gualtieri L (2016) Testing the black hole ‘no-hair’ hypothesis. Class Quant Grav 33(17):174001. https://doi.org/10.1088/0264-9381/33/17/174001. arXiv:1607.03133
- [gr-qc] Cardoso V, Pani P (2017) Tests for the existence of black holes through gravitational wave echoes. Nature Astronomy 1:586–591. https://doi.org/10.1038/ s41550-017-0225-y. arXiv:1707.03021
- [gr-qc] Cardoso V, Pani P (2019) Testing the nature of dark compact objects: a status report. Living Rev Rel 22(1):4. https://doi.org/10.1007/s41114-019-0020-4. arXiv:1904.05363
- [gr-qc] Cardoso V, Yoshida S (2005) Superradiant instabilities of rotating black branes and strings. JHEP 07:009. https://doi.org/10.1088/1126-6708/2005/07/009. arXiv:hepth/0502206 Cardoso V, Pani P, Cadoni M, Cavaglia M (2008) Ergoregion instability of ultracompact astrophysical objects. Phys Rev D 77:124044. https://doi.org/10.1103/ PhysRevD.77.124044. arXiv:0709.0532
- [gr-qc] Cardoso V, Yoshida S (2005) Superradiant instabilities of rotating black branes and strings. JHEP 07:009. https://doi.org/10.1088/1126-6708/2005/07/009. arXiv:hepth/0502206 Cardoso V, Pani P, Cadoni M, Cavaglia M (2008) Ergoregion instability of ultracompact astrophysical objects. Phys Rev D 77:124044. https://doi.org/10.1103/ PhysRevD.77.124044. arXiv:0709.0532
- [gr-qc] Cardoso V, Miranda AS, Berti E, Witek H, Zanchin VT (2009) Geodesic stability, Lyapunov exponents and quasinormal modes. Phys Rev D 79(6):064016. https:// doi.org/10.1103/PhysRevD.79.064016. arXiv:0812.1806
- [hep-th] Fundamental Physics Opportunities with the ngEHT 113 Cardoso V, Chakrabarti S, Pani P, Berti E, Gualtieri L (2011) Floating and sinking: The Imprint of massive scalars around rotating black holes. Phys Rev Lett 107:241101. https://doi.org/10.1103/PhysRevLett.107.241101. arXiv:1109.6021
- [grqc] Cardoso V, Crispino LCB, Macedo CFB, Okawa H, Pani P (2014a) Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects. Phys Rev D 90(4):044069. https: //doi.org/10.1103/PhysRevD.90.044069. arXiv:1406.5510
- [gr-qc] Cardoso V, Pani P, Rico J (2014b) On generic parametrizations of spinning black-hole geometries. Phys Rev D 89:064007. https://doi.org/10.1103/PhysRevD.89.064007. arXiv:1401.0528
- [gr-qc] Cardoso V, Dias OJC, Hartnett GS, Middleton M, Pani P, Santos JE (2018a) Constraining the mass of dark photons and axion-like particles through blackhole superradiance. JCAP 03:043. https://doi.org/10.1088/1475-7516/2018/03/043. arXiv:1801.01420
- [gr-qc] Cardoso V, Kimura M, Maselli A, Senatore L (2018b) Black Holes in an Effective Field Theory Extension of General Relativity. Phys Rev Lett 121(25):251105. https: //doi.org/10.1103/PhysRevLett.121.251105. arXiv:1808.08962
- [gr-qc] Cardoso V, Duque F, Foschi A (2021a) Light ring and the appearance of matter accreted by black holes. Phys Rev D 103(10):104044. https://doi.org/10.1103/ PhysRevD.103.104044. arXiv:2102.07784
- [gr-qc] Cardoso V, Guo WD, Macedo CFB, Pani P (2021b) The tune of the Universe: the role of plasma in tests of strong-field gravity. Mon Not Roy Astron Soc 503(1):563–573. https://doi.org/10.1093/mnras/stab404. arXiv:2009.07287
- [gr-qc] Cardoso V, Hilditch D, Marouda K, Natário J, Sperhake U (2023) Curvature and dynamical spacetimes: can we peer into the quantum regime? Classical and Quantum Gravity 40(6):065008. https://doi.org/10.1088/1361-6382/acb9cd. arXiv:2209.12589
- [gr-qc] Carroll SM, Field GB, Jackiw R (1990) Limits on a Lorentz and Parity Violating Modification of Electrodynamics. Phys Rev D 41:1231. https://doi.org/10.1103/ PhysRevD.41.1231 Carson Z, Yagi K (2020) Probing beyond-Kerr spacetimes with inspiral-ringdown corrections to gravitational waves. Phys Rev D 101:084050. https://doi.org/10.1103/ PhysRevD.101.084050. arXiv:2003.02374
- [gr-qc] Carroll SM, Field GB, Jackiw R (1990) Limits on a Lorentz and Parity Violating Modification of Electrodynamics. Phys Rev D 41:1231. https://doi.org/10.1103/ PhysRevD.41.1231 Carson Z, Yagi K (2020) Probing beyond-Kerr spacetimes with inspiral-ringdown corrections to gravitational waves. Phys Rev D 101:084050. https://doi.org/10.1103/ PhysRevD.101.084050. arXiv:2003.02374
- [gr-qc] Carter B (1968) Global structure of the kerr family of gravitational fields. Phys Rev 174:1559–1571. https://doi.org/10.1103/PhysRev.174.1559, URL https://link. aps.org/doi/10.1103/PhysRev.174.1559 Cattoen C, Faber T, Visser M (2005) Gravastars must have anisotropic pressures. Class Quant Grav 22:4189–4202. https://doi.org/10.1088/0264-9381/22/20/002. arXiv:grqc/0505137 Chael A, Narayan R, Johnson MD (2019) Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87. Mon. Not. R. Astron. Soc.486(2):2873–2895. https://doi.org/10.1093/mnras/stz988. arXiv:1810.01983 [astro-ph.HE] Chael A, Johnson MD, Lupsasca A (2021) Observing the Inner Shadow of a Black Hole: A Direct View of the Event Horizon. Astrophys. J.918(1):6. https://doi.org/ 10.3847/1538-4357/ac09ee. arXiv:2106.00683 [astro-ph.HE] Chael A, et al. (2022) Multi-frequency Black Hole Imaging for the Next-Generation Event Horizon Telescope. in prep 114 The ngEHT Fundamental Physics SWG Chael AA, Johnson MD, Narayan R, Doeleman SS, Wardle JFC, Bouman KL (2016) High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope. Astrophys. J.829(1):11. https://doi.org/10.3847/0004-637X/829/1/11. arXiv:1605.06156 [astro-ph.IM] Chael AA, Johnson MD, Bouman KL, Blackburn LL, Akiyama K, Narayan R (2018) Interferometric Imaging Directly with Closure Phases and Closure Amplitudes. Astrophys J 857(1):23. https://doi.org/10.3847/1538-4357/aab6a8. arXiv:1803.07088 [astro-ph.IM] Chan Ck, Psaltis D, Özel F (2013) GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes. Astrophys. J.777(1):13. https://doi.org/10. 1088/0004-637X/777/1/13. arXiv:1303.5057 [astro-ph.IM] Chan Ck, Medeiros L, Özel F, Psaltis D (2018) GRay2: A General Purpose Geodesic
- [gr-qc] Carter B (1968) Global structure of the kerr family of gravitational fields. Phys Rev 174:1559–1571. https://doi.org/10.1103/PhysRev.174.1559, URL https://link. aps.org/doi/10.1103/PhysRev.174.1559 Cattoen C, Faber T, Visser M (2005) Gravastars must have anisotropic pressures. Class Quant Grav 22:4189–4202. https://doi.org/10.1088/0264-9381/22/20/002. arXiv:grqc/0505137 Chael A, Narayan R, Johnson MD (2019) Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87. Mon. Not. R. Astron. Soc.486(2):2873–2895. https://doi.org/10.1093/mnras/stz988. arXiv:1810.01983 [astro-ph.HE] Chael A, Johnson MD, Lupsasca A (2021) Observing the Inner Shadow of a Black Hole: A Direct View of the Event Horizon. Astrophys. J.918(1):6. https://doi.org/ 10.3847/1538-4357/ac09ee. arXiv:2106.00683 [astro-ph.HE] Chael A, et al. (2022) Multi-frequency Black Hole Imaging for the Next-Generation Event Horizon Telescope. in prep 114 The ngEHT Fundamental Physics SWG Chael AA, Johnson MD, Narayan R, Doeleman SS, Wardle JFC, Bouman KL (2016) High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope. Astrophys. J.829(1):11. https://doi.org/10.3847/0004-637X/829/1/11. arXiv:1605.06156 [astro-ph.IM] Chael AA, Johnson MD, Bouman KL, Blackburn LL, Akiyama K, Narayan R (2018) Interferometric Imaging Directly with Closure Phases and Closure Amplitudes. Astrophys J 857(1):23. https://doi.org/10.3847/1538-4357/aab6a8. arXiv:1803.07088 [astro-ph.IM] Chan Ck, Psaltis D, Özel F (2013) GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes. Astrophys. J.777(1):13. https://doi.org/10. 1088/0004-637X/777/1/13. arXiv:1303.5057 [astro-ph.IM] Chan Ck, Medeiros L, Özel F, Psaltis D (2018) GRay2: A General Purpose Geodesic
- [gr-qc] Carter B (1968) Global structure of the kerr family of gravitational fields. Phys Rev 174:1559–1571. https://doi.org/10.1103/PhysRev.174.1559, URL https://link. aps.org/doi/10.1103/PhysRev.174.1559 Cattoen C, Faber T, Visser M (2005) Gravastars must have anisotropic pressures. Class Quant Grav 22:4189–4202. https://doi.org/10.1088/0264-9381/22/20/002. arXiv:grqc/0505137 Chael A, Narayan R, Johnson MD (2019) Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87. Mon. Not. R. Astron. Soc.486(2):2873–2895. https://doi.org/10.1093/mnras/stz988. arXiv:1810.01983 [astro-ph.HE] Chael A, Johnson MD, Lupsasca A (2021) Observing the Inner Shadow of a Black Hole: A Direct View of the Event Horizon. Astrophys. J.918(1):6. https://doi.org/ 10.3847/1538-4357/ac09ee. arXiv:2106.00683 [astro-ph.HE] Chael A, et al. (2022) Multi-frequency Black Hole Imaging for the Next-Generation Event Horizon Telescope. in prep 114 The ngEHT Fundamental Physics SWG Chael AA, Johnson MD, Narayan R, Doeleman SS, Wardle JFC, Bouman KL (2016) High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope. Astrophys. J.829(1):11. https://doi.org/10.3847/0004-637X/829/1/11. arXiv:1605.06156 [astro-ph.IM] Chael AA, Johnson MD, Bouman KL, Blackburn LL, Akiyama K, Narayan R (2018) Interferometric Imaging Directly with Closure Phases and Closure Amplitudes. Astrophys J 857(1):23. https://doi.org/10.3847/1538-4357/aab6a8. arXiv:1803.07088 [astro-ph.IM] Chan Ck, Psaltis D, Özel F (2013) GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes. Astrophys. J.777(1):13. https://doi.org/10. 1088/0004-637X/777/1/13. arXiv:1303.5057 [astro-ph.IM] Chan Ck, Medeiros L, Özel F, Psaltis D (2018) GRay2: A General Purpose Geodesic
- [gr-qc] Carter B (1968) Global structure of the kerr family of gravitational fields. Phys Rev 174:1559–1571. https://doi.org/10.1103/PhysRev.174.1559, URL https://link. aps.org/doi/10.1103/PhysRev.174.1559 Cattoen C, Faber T, Visser M (2005) Gravastars must have anisotropic pressures. Class Quant Grav 22:4189–4202. https://doi.org/10.1088/0264-9381/22/20/002. arXiv:grqc/0505137 Chael A, Narayan R, Johnson MD (2019) Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87. Mon. Not. R. Astron. Soc.486(2):2873–2895. https://doi.org/10.1093/mnras/stz988. arXiv:1810.01983 [astro-ph.HE] Chael A, Johnson MD, Lupsasca A (2021) Observing the Inner Shadow of a Black Hole: A Direct View of the Event Horizon. Astrophys. J.918(1):6. https://doi.org/ 10.3847/1538-4357/ac09ee. arXiv:2106.00683 [astro-ph.HE] Chael A, et al. (2022) Multi-frequency Black Hole Imaging for the Next-Generation Event Horizon Telescope. in prep 114 The ngEHT Fundamental Physics SWG Chael AA, Johnson MD, Narayan R, Doeleman SS, Wardle JFC, Bouman KL (2016) High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope. Astrophys. J.829(1):11. https://doi.org/10.3847/0004-637X/829/1/11. arXiv:1605.06156 [astro-ph.IM] Chael AA, Johnson MD, Bouman KL, Blackburn LL, Akiyama K, Narayan R (2018) Interferometric Imaging Directly with Closure Phases and Closure Amplitudes. Astrophys J 857(1):23. https://doi.org/10.3847/1538-4357/aab6a8. arXiv:1803.07088 [astro-ph.IM] Chan Ck, Psaltis D, Özel F (2013) GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes. Astrophys. J.777(1):13. https://doi.org/10. 1088/0004-637X/777/1/13. arXiv:1303.5057 [astro-ph.IM] Chan Ck, Medeiros L, Özel F, Psaltis D (2018) GRay2: A General Purpose Geodesic
- [gr-qc] Carter B (1968) Global structure of the kerr family of gravitational fields. Phys Rev 174:1559–1571. https://doi.org/10.1103/PhysRev.174.1559, URL https://link. aps.org/doi/10.1103/PhysRev.174.1559 Cattoen C, Faber T, Visser M (2005) Gravastars must have anisotropic pressures. Class Quant Grav 22:4189–4202. https://doi.org/10.1088/0264-9381/22/20/002. arXiv:grqc/0505137 Chael A, Narayan R, Johnson MD (2019) Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87. Mon. Not. R. Astron. Soc.486(2):2873–2895. https://doi.org/10.1093/mnras/stz988. arXiv:1810.01983 [astro-ph.HE] Chael A, Johnson MD, Lupsasca A (2021) Observing the Inner Shadow of a Black Hole: A Direct View of the Event Horizon. Astrophys. J.918(1):6. https://doi.org/ 10.3847/1538-4357/ac09ee. arXiv:2106.00683 [astro-ph.HE] Chael A, et al. (2022) Multi-frequency Black Hole Imaging for the Next-Generation Event Horizon Telescope. in prep 114 The ngEHT Fundamental Physics SWG Chael AA, Johnson MD, Narayan R, Doeleman SS, Wardle JFC, Bouman KL (2016) High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope. Astrophys. J.829(1):11. https://doi.org/10.3847/0004-637X/829/1/11. arXiv:1605.06156 [astro-ph.IM] Chael AA, Johnson MD, Bouman KL, Blackburn LL, Akiyama K, Narayan R (2018) Interferometric Imaging Directly with Closure Phases and Closure Amplitudes. Astrophys J 857(1):23. https://doi.org/10.3847/1538-4357/aab6a8. arXiv:1803.07088 [astro-ph.IM] Chan Ck, Psaltis D, Özel F (2013) GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes. Astrophys. J.777(1):13. https://doi.org/10. 1088/0004-637X/777/1/13. arXiv:1303.5057 [astro-ph.IM] Chan Ck, Medeiros L, Özel F, Psaltis D (2018) GRay2: A General Purpose Geodesic
- [gr-qc] Carter B (1968) Global structure of the kerr family of gravitational fields. Phys Rev 174:1559–1571. https://doi.org/10.1103/PhysRev.174.1559, URL https://link. aps.org/doi/10.1103/PhysRev.174.1559 Cattoen C, Faber T, Visser M (2005) Gravastars must have anisotropic pressures. Class Quant Grav 22:4189–4202. https://doi.org/10.1088/0264-9381/22/20/002. arXiv:grqc/0505137 Chael A, Narayan R, Johnson MD (2019) Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87. Mon. Not. R. Astron. Soc.486(2):2873–2895. https://doi.org/10.1093/mnras/stz988. arXiv:1810.01983 [astro-ph.HE] Chael A, Johnson MD, Lupsasca A (2021) Observing the Inner Shadow of a Black Hole: A Direct View of the Event Horizon. Astrophys. J.918(1):6. https://doi.org/ 10.3847/1538-4357/ac09ee. arXiv:2106.00683 [astro-ph.HE] Chael A, et al. (2022) Multi-frequency Black Hole Imaging for the Next-Generation Event Horizon Telescope. in prep 114 The ngEHT Fundamental Physics SWG Chael AA, Johnson MD, Narayan R, Doeleman SS, Wardle JFC, Bouman KL (2016) High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope. Astrophys. J.829(1):11. https://doi.org/10.3847/0004-637X/829/1/11. arXiv:1605.06156 [astro-ph.IM] Chael AA, Johnson MD, Bouman KL, Blackburn LL, Akiyama K, Narayan R (2018) Interferometric Imaging Directly with Closure Phases and Closure Amplitudes. Astrophys J 857(1):23. https://doi.org/10.3847/1538-4357/aab6a8. arXiv:1803.07088 [astro-ph.IM] Chan Ck, Psaltis D, Özel F (2013) GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes. Astrophys. J.777(1):13. https://doi.org/10. 1088/0004-637X/777/1/13. arXiv:1303.5057 [astro-ph.IM] Chan Ck, Medeiros L, Özel F, Psaltis D (2018) GRay2: A General Purpose Geodesic
- [gr-qc] Carter B (1968) Global structure of the kerr family of gravitational fields. Phys Rev 174:1559–1571. https://doi.org/10.1103/PhysRev.174.1559, URL https://link. aps.org/doi/10.1103/PhysRev.174.1559 Cattoen C, Faber T, Visser M (2005) Gravastars must have anisotropic pressures. Class Quant Grav 22:4189–4202. https://doi.org/10.1088/0264-9381/22/20/002. arXiv:grqc/0505137 Chael A, Narayan R, Johnson MD (2019) Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87. Mon. Not. R. Astron. Soc.486(2):2873–2895. https://doi.org/10.1093/mnras/stz988. arXiv:1810.01983 [astro-ph.HE] Chael A, Johnson MD, Lupsasca A (2021) Observing the Inner Shadow of a Black Hole: A Direct View of the Event Horizon. Astrophys. J.918(1):6. https://doi.org/ 10.3847/1538-4357/ac09ee. arXiv:2106.00683 [astro-ph.HE] Chael A, et al. (2022) Multi-frequency Black Hole Imaging for the Next-Generation Event Horizon Telescope. in prep 114 The ngEHT Fundamental Physics SWG Chael AA, Johnson MD, Narayan R, Doeleman SS, Wardle JFC, Bouman KL (2016) High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope. Astrophys. J.829(1):11. https://doi.org/10.3847/0004-637X/829/1/11. arXiv:1605.06156 [astro-ph.IM] Chael AA, Johnson MD, Bouman KL, Blackburn LL, Akiyama K, Narayan R (2018) Interferometric Imaging Directly with Closure Phases and Closure Amplitudes. Astrophys J 857(1):23. https://doi.org/10.3847/1538-4357/aab6a8. arXiv:1803.07088 [astro-ph.IM] Chan Ck, Psaltis D, Özel F (2013) GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes. Astrophys. J.777(1):13. https://doi.org/10. 1088/0004-637X/777/1/13. arXiv:1303.5057 [astro-ph.IM] Chan Ck, Medeiros L, Özel F, Psaltis D (2018) GRay2: A General Purpose Geodesic
- [gr-qc] Carter B (1968) Global structure of the kerr family of gravitational fields. Phys Rev 174:1559–1571. https://doi.org/10.1103/PhysRev.174.1559, URL https://link. aps.org/doi/10.1103/PhysRev.174.1559 Cattoen C, Faber T, Visser M (2005) Gravastars must have anisotropic pressures. Class Quant Grav 22:4189–4202. https://doi.org/10.1088/0264-9381/22/20/002. arXiv:grqc/0505137 Chael A, Narayan R, Johnson MD (2019) Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87. Mon. Not. R. Astron. Soc.486(2):2873–2895. https://doi.org/10.1093/mnras/stz988. arXiv:1810.01983 [astro-ph.HE] Chael A, Johnson MD, Lupsasca A (2021) Observing the Inner Shadow of a Black Hole: A Direct View of the Event Horizon. Astrophys. J.918(1):6. https://doi.org/ 10.3847/1538-4357/ac09ee. arXiv:2106.00683 [astro-ph.HE] Chael A, et al. (2022) Multi-frequency Black Hole Imaging for the Next-Generation Event Horizon Telescope. in prep 114 The ngEHT Fundamental Physics SWG Chael AA, Johnson MD, Narayan R, Doeleman SS, Wardle JFC, Bouman KL (2016) High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope. Astrophys. J.829(1):11. https://doi.org/10.3847/0004-637X/829/1/11. arXiv:1605.06156 [astro-ph.IM] Chael AA, Johnson MD, Bouman KL, Blackburn LL, Akiyama K, Narayan R (2018) Interferometric Imaging Directly with Closure Phases and Closure Amplitudes. Astrophys J 857(1):23. https://doi.org/10.3847/1538-4357/aab6a8. arXiv:1803.07088 [astro-ph.IM] Chan Ck, Psaltis D, Özel F (2013) GRay: A Massively Parallel GPU-based Code for Ray Tracing in Relativistic Spacetimes. Astrophys. J.777(1):13. https://doi.org/10. 1088/0004-637X/777/1/13. arXiv:1303.5057 [astro-ph.IM] Chan Ck, Medeiros L, Özel F, Psaltis D (2018) GRay2: A General Purpose Geodesic
- [gr-qc] Chatterjee K, Younsi Z, Kocherlakota P, Narayan R (2023c) On the Universality of Energy Extraction from Black Hole Spacetimes. arXiv e-prints arXiv:2310.20043. https://doi.org/10.48550/arXiv.2310.20043. arXiv:2310.20043
- [gr-qc] Chatterjee K, Younsi Z, Kocherlakota P, Narayan R (2023c) On the Universality of Energy Extraction from Black Hole Spacetimes. arXiv e-prints arXiv:2310.20043. https://doi.org/10.48550/arXiv.2310.20043. arXiv:2310.20043
- [gr-qc] Chen CY (2020) Rotating black holes without Z2 symmetry and their shadow images. JCAP 05:040. https://doi.org/10.1088/1475-7516/2020/05/040. arXiv:2004.01440
- [gr-qc] Chen CY, Yang HYK (2022) Curved accretion disks around rotating black holes without reflection symmetry. Eur Phys J C 82(4):307. https://doi.org/10.1140/epjc/ s10052-022-10263-7. arXiv:2109.00564
- [gr-qc] Chen P, Unruh WG, Wu CH, Yeom DH (2018) Pre-Hawking radiation cannot prevent the formation of apparent horizon. Phys Rev D 97(6):064045. https://doi.org/10. Fundamental Physics Opportunities with the ngEHT 115 1103/PhysRevD.97.064045. arXiv:1710.01533
- [gr-qc] Chen S, et al. (2021) Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: inferences in the stochastic gravitational-wave background search. Mon Not Roy Astron Soc 508(4):4970–4993. https://doi.org/10. 1093/mnras/stab2833. arXiv:2110.13184 [astro-ph.HE] Chen Y, Shu J, Xue X, Yuan Q, Zhao Y (2020) Probing Axions with Event Horizon Telescope Polarimetric Measurements. Phys Rev Lett 124(6):061102. https://doi. org/10.1103/PhysRevLett.124.061102. arXiv:1905.02213
- [gr-qc] Chen S, et al. (2021) Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: inferences in the stochastic gravitational-wave background search. Mon Not Roy Astron Soc 508(4):4970–4993. https://doi.org/10. 1093/mnras/stab2833. arXiv:2110.13184 [astro-ph.HE] Chen Y, Shu J, Xue X, Yuan Q, Zhao Y (2020) Probing Axions with Event Horizon Telescope Polarimetric Measurements. Phys Rev Lett 124(6):061102. https://doi. org/10.1103/PhysRevLett.124.061102. arXiv:1905.02213
- [hep-ph] Chen Y, Li C, Mizuno Y, Shu J, Xue X, Yuan Q, Zhao Y, Zhou Z (2022a) Birefringence tomography for axion cloud. JCAP 09:073. https://doi.org/10.1088/1475-7516/ 2022/09/073. arXiv:2208.05724
- [hep-ph] Chen Y, Liu Y, Lu RS, Mizuno Y, Shu J, Xue X, Yuan Q, Zhao Y (2022b) Stringent axion constraints with Event Horizon Telescope polarimetric measurements of M87∗ . Nature Astron 6(5):592–598. https://doi.org/10.1038/s41550-022-01620-3. arXiv:2105.04572
- [hep-ph] Chen Y, Roy R, Vagnozzi S, Visinelli L (2022c) Superradiant evolution of the shadow and photon ring of Sgr A⋆. Phys Rev D 106(4):043021. https://doi.org/10.1103/ PhysRevD.106.043021. arXiv:2205.06238 [astro-ph.HE] Chen Y, Xue X, Brito R, Cardoso V (2023a) Photon Ring Astrometry for Superradiant Clouds. Phys Rev Lett 130(11):111401. https://doi.org/10.1103/PhysRevLett.130. 111401. arXiv:2211.03794
- [hep-ph] Chen Y, Roy R, Vagnozzi S, Visinelli L (2022c) Superradiant evolution of the shadow and photon ring of Sgr A⋆. Phys Rev D 106(4):043021. https://doi.org/10.1103/ PhysRevD.106.043021. arXiv:2205.06238 [astro-ph.HE] Chen Y, Xue X, Brito R, Cardoso V (2023a) Photon Ring Astrometry for Superradiant Clouds. Phys Rev Lett 130(11):111401. https://doi.org/10.1103/PhysRevLett.130. 111401. arXiv:2211.03794
- [gr-qc] Chen Y, Xue X, Cardoso V (2023b) Black Holes as Neutrino Factories. arXiv e-prints arXiv:2308.00741
- [hep-ph] Cherenkov Telescope Array Consortium, Acharya BS, et al (2019) Science with the Cherenkov Telescope Array. World Scientific. https://doi.org/10.1142/10986 Chesler PM, Blackburn L, Doeleman SS, Johnson MD, Moran JM, Narayan R, Wielgus M (2021) Light echos and coherent autocorrelations in a black hole spacetime. Class Quant Grav 38(12):125006. https://doi.org/10.1088/1361-6382/abeae4. arXiv:2012.11778
- [hep-ph] Cherenkov Telescope Array Consortium, Acharya BS, et al (2019) Science with the Cherenkov Telescope Array. World Scientific. https://doi.org/10.1142/10986 Chesler PM, Blackburn L, Doeleman SS, Johnson MD, Moran JM, Narayan R, Wielgus M (2021) Light echos and coherent autocorrelations in a black hole spacetime. Class Quant Grav 38(12):125006. https://doi.org/10.1088/1361-6382/abeae4. arXiv:2012.11778
- [gr-qc] Chirenti CBMH, Rezzolla L (2007) How to tell a gravastar from a black hole. Class Quant Grav 24:4191–4206. https://doi.org/10.1088/0264-9381/24/16/013. arXiv:0706.1513
- [gr-qc] Chrusciel PT, Lopes Costa J, Heusler M (2012) Stationary Black Holes: Uniqueness and Beyond. Living Rev Rel 15:7. https://doi.org/10.12942/lrr-2012-7. arXiv:1205.6112
- [gr-qc] Colladay D, Kostelecky VA (1998) Lorentz violating extension of the standard model. Phys Rev D 58:116002. https://doi.org/10.1103/PhysRevD.58.116002. arXiv:hepph/9809521 Collins NA, Hughes SA (2004) Towards a formalism for mapping the space-times of massive compact objects: Bumpy black holes and their orbits. Phys Rev D 69:124022. https://doi.org/10.1103/PhysRevD.69.124022. arXiv:gr-qc/0402063 Colpi M (2014) Massive Binary Black Holes in Galactic Nuclei and Their Path to Coalescence. Space Sci. Rev.183(1-4):189–221. https://doi.org/10.1007/ s11214-014-0067-1. arXiv:1407.3102 [astro-ph.GA] Combi L (2021) Superposed metric for spinning black hole binaries approaching merger. Physical Review D 104(4). https://doi.org/10.1103/PhysRevD.104.044041 Combi L, Armengol FGL, Campanelli M, Noble SC, Avara M, Krolik JH, Bowen D (2022) Minidisk Accretion onto Spinning Black Hole Binaries: Quasi-periodicities and Outflows. The Astrophysical Journal 928(2):187. https://doi.org/10.3847/ 116 The ngEHT Fundamental Physics SWG 1538-4357/ac532a, URL https://dx.doi.org/10.3847/1538-4357/ac532a, publisher: The American Astronomical Society Conroy NS, Bauböck M, Dhruv V, Lee D, Broderick AE, Chan Ck, Georgiev B, Joshi AV, Prather B, Gammie CF (2023) Rotation in Event Horizon Telescope Movies. Astrophys. J.951(1):46. https://doi.org/10.3847/1538-4357/acd2c8. arXiv:2304.03826 [astro-ph.HE] Contreras E, Rincón A, Panotopoulos G, Bargueño P, Koch B (2020) Black hole shadow of a rotating scale–dependent black hole. Phys Rev D 101(6):064053. https://doi.org/ 10.1103/PhysRevD.101.064053. arXiv:1906.06990
- [gr-qc] Colladay D, Kostelecky VA (1998) Lorentz violating extension of the standard model. Phys Rev D 58:116002. https://doi.org/10.1103/PhysRevD.58.116002. arXiv:hepph/9809521 Collins NA, Hughes SA (2004) Towards a formalism for mapping the space-times of massive compact objects: Bumpy black holes and their orbits. Phys Rev D 69:124022. https://doi.org/10.1103/PhysRevD.69.124022. arXiv:gr-qc/0402063 Colpi M (2014) Massive Binary Black Holes in Galactic Nuclei and Their Path to Coalescence. Space Sci. Rev.183(1-4):189–221. https://doi.org/10.1007/ s11214-014-0067-1. arXiv:1407.3102 [astro-ph.GA] Combi L (2021) Superposed metric for spinning black hole binaries approaching merger. Physical Review D 104(4). https://doi.org/10.1103/PhysRevD.104.044041 Combi L, Armengol FGL, Campanelli M, Noble SC, Avara M, Krolik JH, Bowen D (2022) Minidisk Accretion onto Spinning Black Hole Binaries: Quasi-periodicities and Outflows. The Astrophysical Journal 928(2):187. https://doi.org/10.3847/ 116 The ngEHT Fundamental Physics SWG 1538-4357/ac532a, URL https://dx.doi.org/10.3847/1538-4357/ac532a, publisher: The American Astronomical Society Conroy NS, Bauböck M, Dhruv V, Lee D, Broderick AE, Chan Ck, Georgiev B, Joshi AV, Prather B, Gammie CF (2023) Rotation in Event Horizon Telescope Movies. Astrophys. J.951(1):46. https://doi.org/10.3847/1538-4357/acd2c8. arXiv:2304.03826 [astro-ph.HE] Contreras E, Rincón A, Panotopoulos G, Bargueño P, Koch B (2020) Black hole shadow of a rotating scale–dependent black hole. Phys Rev D 101(6):064053. https://doi.org/ 10.1103/PhysRevD.101.064053. arXiv:1906.06990
- [gr-qc] Colladay D, Kostelecky VA (1998) Lorentz violating extension of the standard model. Phys Rev D 58:116002. https://doi.org/10.1103/PhysRevD.58.116002. arXiv:hepph/9809521 Collins NA, Hughes SA (2004) Towards a formalism for mapping the space-times of massive compact objects: Bumpy black holes and their orbits. Phys Rev D 69:124022. https://doi.org/10.1103/PhysRevD.69.124022. arXiv:gr-qc/0402063 Colpi M (2014) Massive Binary Black Holes in Galactic Nuclei and Their Path to Coalescence. Space Sci. Rev.183(1-4):189–221. https://doi.org/10.1007/ s11214-014-0067-1. arXiv:1407.3102 [astro-ph.GA] Combi L (2021) Superposed metric for spinning black hole binaries approaching merger. Physical Review D 104(4). https://doi.org/10.1103/PhysRevD.104.044041 Combi L, Armengol FGL, Campanelli M, Noble SC, Avara M, Krolik JH, Bowen D (2022) Minidisk Accretion onto Spinning Black Hole Binaries: Quasi-periodicities and Outflows. The Astrophysical Journal 928(2):187. https://doi.org/10.3847/ 116 The ngEHT Fundamental Physics SWG 1538-4357/ac532a, URL https://dx.doi.org/10.3847/1538-4357/ac532a, publisher: The American Astronomical Society Conroy NS, Bauböck M, Dhruv V, Lee D, Broderick AE, Chan Ck, Georgiev B, Joshi AV, Prather B, Gammie CF (2023) Rotation in Event Horizon Telescope Movies. Astrophys. J.951(1):46. https://doi.org/10.3847/1538-4357/acd2c8. arXiv:2304.03826 [astro-ph.HE] Contreras E, Rincón A, Panotopoulos G, Bargueño P, Koch B (2020) Black hole shadow of a rotating scale–dependent black hole. Phys Rev D 101(6):064053. https://doi.org/ 10.1103/PhysRevD.101.064053. arXiv:1906.06990
- [gr-qc] Colladay D, Kostelecky VA (1998) Lorentz violating extension of the standard model. Phys Rev D 58:116002. https://doi.org/10.1103/PhysRevD.58.116002. arXiv:hepph/9809521 Collins NA, Hughes SA (2004) Towards a formalism for mapping the space-times of massive compact objects: Bumpy black holes and their orbits. Phys Rev D 69:124022. https://doi.org/10.1103/PhysRevD.69.124022. arXiv:gr-qc/0402063 Colpi M (2014) Massive Binary Black Holes in Galactic Nuclei and Their Path to Coalescence. Space Sci. Rev.183(1-4):189–221. https://doi.org/10.1007/ s11214-014-0067-1. arXiv:1407.3102 [astro-ph.GA] Combi L (2021) Superposed metric for spinning black hole binaries approaching merger. Physical Review D 104(4). https://doi.org/10.1103/PhysRevD.104.044041 Combi L, Armengol FGL, Campanelli M, Noble SC, Avara M, Krolik JH, Bowen D (2022) Minidisk Accretion onto Spinning Black Hole Binaries: Quasi-periodicities and Outflows. The Astrophysical Journal 928(2):187. https://doi.org/10.3847/ 116 The ngEHT Fundamental Physics SWG 1538-4357/ac532a, URL https://dx.doi.org/10.3847/1538-4357/ac532a, publisher: The American Astronomical Society Conroy NS, Bauböck M, Dhruv V, Lee D, Broderick AE, Chan Ck, Georgiev B, Joshi AV, Prather B, Gammie CF (2023) Rotation in Event Horizon Telescope Movies. Astrophys. J.951(1):46. https://doi.org/10.3847/1538-4357/acd2c8. arXiv:2304.03826 [astro-ph.HE] Contreras E, Rincón A, Panotopoulos G, Bargueño P, Koch B (2020) Black hole shadow of a rotating scale–dependent black hole. Phys Rev D 101(6):064053. https://doi.org/ 10.1103/PhysRevD.101.064053. arXiv:1906.06990
- [gr-qc] Colladay D, Kostelecky VA (1998) Lorentz violating extension of the standard model. Phys Rev D 58:116002. https://doi.org/10.1103/PhysRevD.58.116002. arXiv:hepph/9809521 Collins NA, Hughes SA (2004) Towards a formalism for mapping the space-times of massive compact objects: Bumpy black holes and their orbits. Phys Rev D 69:124022. https://doi.org/10.1103/PhysRevD.69.124022. arXiv:gr-qc/0402063 Colpi M (2014) Massive Binary Black Holes in Galactic Nuclei and Their Path to Coalescence. Space Sci. Rev.183(1-4):189–221. https://doi.org/10.1007/ s11214-014-0067-1. arXiv:1407.3102 [astro-ph.GA] Combi L (2021) Superposed metric for spinning black hole binaries approaching merger. Physical Review D 104(4). https://doi.org/10.1103/PhysRevD.104.044041 Combi L, Armengol FGL, Campanelli M, Noble SC, Avara M, Krolik JH, Bowen D (2022) Minidisk Accretion onto Spinning Black Hole Binaries: Quasi-periodicities and Outflows. The Astrophysical Journal 928(2):187. https://doi.org/10.3847/ 116 The ngEHT Fundamental Physics SWG 1538-4357/ac532a, URL https://dx.doi.org/10.3847/1538-4357/ac532a, publisher: The American Astronomical Society Conroy NS, Bauböck M, Dhruv V, Lee D, Broderick AE, Chan Ck, Georgiev B, Joshi AV, Prather B, Gammie CF (2023) Rotation in Event Horizon Telescope Movies. Astrophys. J.951(1):46. https://doi.org/10.3847/1538-4357/acd2c8. arXiv:2304.03826 [astro-ph.HE] Contreras E, Rincón A, Panotopoulos G, Bargueño P, Koch B (2020) Black hole shadow of a rotating scale–dependent black hole. Phys Rev D 101(6):064053. https://doi.org/ 10.1103/PhysRevD.101.064053. arXiv:1906.06990
- [gr-qc] Colladay D, Kostelecky VA (1998) Lorentz violating extension of the standard model. Phys Rev D 58:116002. https://doi.org/10.1103/PhysRevD.58.116002. arXiv:hepph/9809521 Collins NA, Hughes SA (2004) Towards a formalism for mapping the space-times of massive compact objects: Bumpy black holes and their orbits. Phys Rev D 69:124022. https://doi.org/10.1103/PhysRevD.69.124022. arXiv:gr-qc/0402063 Colpi M (2014) Massive Binary Black Holes in Galactic Nuclei and Their Path to Coalescence. Space Sci. Rev.183(1-4):189–221. https://doi.org/10.1007/ s11214-014-0067-1. arXiv:1407.3102 [astro-ph.GA] Combi L (2021) Superposed metric for spinning black hole binaries approaching merger. Physical Review D 104(4). https://doi.org/10.1103/PhysRevD.104.044041 Combi L, Armengol FGL, Campanelli M, Noble SC, Avara M, Krolik JH, Bowen D (2022) Minidisk Accretion onto Spinning Black Hole Binaries: Quasi-periodicities and Outflows. The Astrophysical Journal 928(2):187. https://doi.org/10.3847/ 116 The ngEHT Fundamental Physics SWG 1538-4357/ac532a, URL https://dx.doi.org/10.3847/1538-4357/ac532a, publisher: The American Astronomical Society Conroy NS, Bauböck M, Dhruv V, Lee D, Broderick AE, Chan Ck, Georgiev B, Joshi AV, Prather B, Gammie CF (2023) Rotation in Event Horizon Telescope Movies. Astrophys. J.951(1):46. https://doi.org/10.3847/1538-4357/acd2c8. arXiv:2304.03826 [astro-ph.HE] Contreras E, Rincón A, Panotopoulos G, Bargueño P, Koch B (2020) Black hole shadow of a rotating scale–dependent black hole. Phys Rev D 101(6):064053. https://doi.org/ 10.1103/PhysRevD.101.064053. arXiv:1906.06990
- [gr-qc] Craig Walker R, Hardee PE, Davies FB, Ly C, Junor W (2018) The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz. Astrophys J 855(2):128. https://doi.org/10.3847/1538-4357/ aaafcc. arXiv:1802.06166 [astro-ph.HE] Creci G, Vandoren S, Witek H (2020) Evolution of black hole shadows from superradiance. Phys Rev D 101(12):124051. https://doi.org/10.1103/PhysRevD.101.124051. arXiv:2004.05178
- [gr-qc] Craig Walker R, Hardee PE, Davies FB, Ly C, Junor W (2018) The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz. Astrophys J 855(2):128. https://doi.org/10.3847/1538-4357/ aaafcc. arXiv:1802.06166 [astro-ph.HE] Creci G, Vandoren S, Witek H (2020) Evolution of black hole shadows from superradiance. Phys Rev D 101(12):124051. https://doi.org/10.1103/PhysRevD.101.124051. arXiv:2004.05178
- [gr-qc] Crew GB, Goddi C, Matthews LD, Rottmann H, Saez A, Martí-Vidal I (2023) A Characterization of the ALMA Phasing System at 345 GHz. Publ. Astron. Soc. Pac135(1044):025002. https://doi.org/10.1088/1538-3873/ acb348. arXiv:2301.04543 [astro-ph.IM] Crispino LCB, Kennefick D (2019) 100 years of the first experimental test of General Relativity. Nature Phys 15:416. https://doi.org/10.1038/s41567-019-0519-3. arXiv:1907.10687 [physics.hist-ph] Cruz-Osorio A, Fromm CM, Mizuno Y, Nathanail A, Younsi Z, Porth O, Davelaar J, Falcke H, Kramer M, Rezzolla L (2022) State-of-the-art energetic and morphological modelling of the launching site of the M87 jet. Nature Astron 6(1):103–108. https: //doi.org/10.1038/s41550-021-01506-w. arXiv:2111.02517 [astro-ph.HE] Cunha PVP, Herdeiro CAR (2018) Shadows and strong gravitational lensing: a brief review. Gen Rel Grav 50(4):42. https://doi.org/10.1007/s10714-018-2361-9. arXiv:1801.00860
- [gr-qc] Crew GB, Goddi C, Matthews LD, Rottmann H, Saez A, Martí-Vidal I (2023) A Characterization of the ALMA Phasing System at 345 GHz. Publ. Astron. Soc. Pac135(1044):025002. https://doi.org/10.1088/1538-3873/ acb348. arXiv:2301.04543 [astro-ph.IM] Crispino LCB, Kennefick D (2019) 100 years of the first experimental test of General Relativity. Nature Phys 15:416. https://doi.org/10.1038/s41567-019-0519-3. arXiv:1907.10687 [physics.hist-ph] Cruz-Osorio A, Fromm CM, Mizuno Y, Nathanail A, Younsi Z, Porth O, Davelaar J, Falcke H, Kramer M, Rezzolla L (2022) State-of-the-art energetic and morphological modelling of the launching site of the M87 jet. Nature Astron 6(1):103–108. https: //doi.org/10.1038/s41550-021-01506-w. arXiv:2111.02517 [astro-ph.HE] Cunha PVP, Herdeiro CAR (2018) Shadows and strong gravitational lensing: a brief review. Gen Rel Grav 50(4):42. https://doi.org/10.1007/s10714-018-2361-9. arXiv:1801.00860
- [gr-qc] Crew GB, Goddi C, Matthews LD, Rottmann H, Saez A, Martí-Vidal I (2023) A Characterization of the ALMA Phasing System at 345 GHz. Publ. Astron. Soc. Pac135(1044):025002. https://doi.org/10.1088/1538-3873/ acb348. arXiv:2301.04543 [astro-ph.IM] Crispino LCB, Kennefick D (2019) 100 years of the first experimental test of General Relativity. Nature Phys 15:416. https://doi.org/10.1038/s41567-019-0519-3. arXiv:1907.10687 [physics.hist-ph] Cruz-Osorio A, Fromm CM, Mizuno Y, Nathanail A, Younsi Z, Porth O, Davelaar J, Falcke H, Kramer M, Rezzolla L (2022) State-of-the-art energetic and morphological modelling of the launching site of the M87 jet. Nature Astron 6(1):103–108. https: //doi.org/10.1038/s41550-021-01506-w. arXiv:2111.02517 [astro-ph.HE] Cunha PVP, Herdeiro CAR (2018) Shadows and strong gravitational lensing: a brief review. Gen Rel Grav 50(4):42. https://doi.org/10.1007/s10714-018-2361-9. arXiv:1801.00860
- [gr-qc] Crew GB, Goddi C, Matthews LD, Rottmann H, Saez A, Martí-Vidal I (2023) A Characterization of the ALMA Phasing System at 345 GHz. Publ. Astron. Soc. Pac135(1044):025002. https://doi.org/10.1088/1538-3873/ acb348. arXiv:2301.04543 [astro-ph.IM] Crispino LCB, Kennefick D (2019) 100 years of the first experimental test of General Relativity. Nature Phys 15:416. https://doi.org/10.1038/s41567-019-0519-3. arXiv:1907.10687 [physics.hist-ph] Cruz-Osorio A, Fromm CM, Mizuno Y, Nathanail A, Younsi Z, Porth O, Davelaar J, Falcke H, Kramer M, Rezzolla L (2022) State-of-the-art energetic and morphological modelling of the launching site of the M87 jet. Nature Astron 6(1):103–108. https: //doi.org/10.1038/s41550-021-01506-w. arXiv:2111.02517 [astro-ph.HE] Cunha PVP, Herdeiro CAR (2018) Shadows and strong gravitational lensing: a brief review. Gen Rel Grav 50(4):42. https://doi.org/10.1007/s10714-018-2361-9. arXiv:1801.00860
- [gr-qc] Cunha PVP, Herdeiro CAR, Radu E, Runarsson HF (2015) Shadows of Kerr black holes with scalar hair. Phys Rev Lett 115(21):211102. https://doi.org/10.1103/ PhysRevLett.115.211102. arXiv:1509.00021
- [gr-qc] Cunha PVP, Herdeiro CAR, Radu E (2018) Isolated black holes without Z2 isometry. Phys Rev D 98(10):104060. https://doi.org/10.1103/PhysRevD.98.104060. arXiv:1808.06692
- [gr-qc] Cunha PVP, Herdeiro CAR, Radu E (2019) EHT constraint on the ultralight scalar hair of the M87 supermassive black hole. Universe 5(12):220. https://doi.org/10. 3390/universe5120220. arXiv:1909.08039
- [gr-qc] Cutler C (1998) Angular resolution of the lisa gravitational wave detector. Phys Rev D 57:7089–7102. https://doi.org/10.1103/PhysRevD.57.7089, URL https://link.aps. org/doi/10.1103/PhysRevD.57.7089 Daas J, Kuijpers K, Saueressig F, Wondrak MF, Falcke H (2022a) Probing Quadratic Gravity with the Event Horizon Telescope. arXiv e-prints arXiv:2204.08480
- [gr-qc] Cutler C (1998) Angular resolution of the lisa gravitational wave detector. Phys Rev D 57:7089–7102. https://doi.org/10.1103/PhysRevD.57.7089, URL https://link.aps. org/doi/10.1103/PhysRevD.57.7089 Daas J, Kuijpers K, Saueressig F, Wondrak MF, Falcke H (2022a) Probing Quadratic Gravity with the Event Horizon Telescope. arXiv e-prints arXiv:2204.08480
- [gr-qc] Daas J, Kuijpers K, Saueressig F, Wondrak MF, Falcke H (2022b) Probing Quadratic Gravity with the Event Horizon Telescope. URL https://ui.adsabs. harvard.edu/abs/2022arXiv220408480D, publication Title: arXiv e-prints ADS Bibcode: 2022arXiv220408480D Type: article Fundamental Physics Opportunities with the ngEHT 117 Danielsson U, Giri S (2018) Observational signatures from horizonless black shells imitating rotating black holes. JHEP 07:070. https://doi.org/10.1007/JHEP07(2018) 070. arXiv:1712.00511
- [gr-qc] Daas J, Kuijpers K, Saueressig F, Wondrak MF, Falcke H (2022b) Probing Quadratic Gravity with the Event Horizon Telescope. URL https://ui.adsabs. harvard.edu/abs/2022arXiv220408480D, publication Title: arXiv e-prints ADS Bibcode: 2022arXiv220408480D Type: article Fundamental Physics Opportunities with the ngEHT 117 Danielsson U, Giri S (2018) Observational signatures from horizonless black shells imitating rotating black holes. JHEP 07:070. https://doi.org/10.1007/JHEP07(2018) 070. arXiv:1712.00511
- [gr-qc] Daas J, Kuijpers K, Saueressig F, Wondrak MF, Falcke H (2022b) Probing Quadratic Gravity with the Event Horizon Telescope. URL https://ui.adsabs. harvard.edu/abs/2022arXiv220408480D, publication Title: arXiv e-prints ADS Bibcode: 2022arXiv220408480D Type: article Fundamental Physics Opportunities with the ngEHT 117 Danielsson U, Giri S (2018) Observational signatures from horizonless black shells imitating rotating black holes. JHEP 07:070. https://doi.org/10.1007/JHEP07(2018) 070. arXiv:1712.00511
- [hep-th] Danielsson UH, Dibitetto G, Giri S (2017) Black holes as bubbles of AdS. JHEP 10:171. https://doi.org/10.1007/JHEP10(2017)171. arXiv:1705.10172
- [hep-th] Darwin C (1959) The Gravity Field of a Particle. Proceedings of the Royal Society of London Series A 249(1257):180–194. https://doi.org/10.1098/rspa.1959.0015 Davelaar J, Haiman Z (2022) Self-lensing flares from black hole binaries: Generalrelativistic ray tracing of black hole binaries. Phys. Rev. D105(10):103010. https: //doi.org/10.1103/PhysRevD.105.103010. arXiv:2112.05828 [astro-ph.HE] Davelaar J, Haiman Z (2022) Self-Lensing Flares from Black Hole Binaries: Observing Black Hole Shadows via Light Curve Tomography. Phys Rev Lett 128(19):191101. https://doi.org/10.1103/PhysRevLett.128.191101. arXiv:2112.05829 [astro-ph.HE] Davoudiasl H, Denton PB (2019) Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M87*. Phys Rev Lett 123(2):021102. https://doi.org/10. 1103/PhysRevLett.123.021102. arXiv:1904.09242 [astro-ph.CO] De Martino I, Broadhurst T, Tye SHH, Chiueh T, Schive HY (2020) Dynamical Evidence of a Solitonic Core of 109M⊙ in the Milky Way. Phys Dark Univ 28:100503. https://doi.org/10.1016/j.dark.2020.100503. arXiv:1807.08153 [astro-ph.GA] Deane RP, Paragi Z, Jarvis MJ, Coriat M, Bernardi G, Fender RP, Frey S, Heywood I, Klöckner HR, Grainge K, Rumsey C (2014) A close-pair binary in a distant triple supermassive black hole system. Nature511(7507):57–60. https://doi.org/10.1038/ nature13454. arXiv:1406.6365 [astro-ph.GA] Deffayet C, Gao X, Steer DA, Zahariade G (2011) From k-essence to generalised Galileons. Phys Rev D 84:064039. https://doi.org/10.1103/PhysRevD.84.064039. arXiv:1103.3260
- [hep-th] Darwin C (1959) The Gravity Field of a Particle. Proceedings of the Royal Society of London Series A 249(1257):180–194. https://doi.org/10.1098/rspa.1959.0015 Davelaar J, Haiman Z (2022) Self-lensing flares from black hole binaries: Generalrelativistic ray tracing of black hole binaries. Phys. Rev. D105(10):103010. https: //doi.org/10.1103/PhysRevD.105.103010. arXiv:2112.05828 [astro-ph.HE] Davelaar J, Haiman Z (2022) Self-Lensing Flares from Black Hole Binaries: Observing Black Hole Shadows via Light Curve Tomography. Phys Rev Lett 128(19):191101. https://doi.org/10.1103/PhysRevLett.128.191101. arXiv:2112.05829 [astro-ph.HE] Davoudiasl H, Denton PB (2019) Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M87*. Phys Rev Lett 123(2):021102. https://doi.org/10. 1103/PhysRevLett.123.021102. arXiv:1904.09242 [astro-ph.CO] De Martino I, Broadhurst T, Tye SHH, Chiueh T, Schive HY (2020) Dynamical Evidence of a Solitonic Core of 109M⊙ in the Milky Way. Phys Dark Univ 28:100503. https://doi.org/10.1016/j.dark.2020.100503. arXiv:1807.08153 [astro-ph.GA] Deane RP, Paragi Z, Jarvis MJ, Coriat M, Bernardi G, Fender RP, Frey S, Heywood I, Klöckner HR, Grainge K, Rumsey C (2014) A close-pair binary in a distant triple supermassive black hole system. Nature511(7507):57–60. https://doi.org/10.1038/ nature13454. arXiv:1406.6365 [astro-ph.GA] Deffayet C, Gao X, Steer DA, Zahariade G (2011) From k-essence to generalised Galileons. Phys Rev D 84:064039. https://doi.org/10.1103/PhysRevD.84.064039. arXiv:1103.3260
- [hep-th] Darwin C (1959) The Gravity Field of a Particle. Proceedings of the Royal Society of London Series A 249(1257):180–194. https://doi.org/10.1098/rspa.1959.0015 Davelaar J, Haiman Z (2022) Self-lensing flares from black hole binaries: Generalrelativistic ray tracing of black hole binaries. Phys. Rev. D105(10):103010. https: //doi.org/10.1103/PhysRevD.105.103010. arXiv:2112.05828 [astro-ph.HE] Davelaar J, Haiman Z (2022) Self-Lensing Flares from Black Hole Binaries: Observing Black Hole Shadows via Light Curve Tomography. Phys Rev Lett 128(19):191101. https://doi.org/10.1103/PhysRevLett.128.191101. arXiv:2112.05829 [astro-ph.HE] Davoudiasl H, Denton PB (2019) Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M87*. Phys Rev Lett 123(2):021102. https://doi.org/10. 1103/PhysRevLett.123.021102. arXiv:1904.09242 [astro-ph.CO] De Martino I, Broadhurst T, Tye SHH, Chiueh T, Schive HY (2020) Dynamical Evidence of a Solitonic Core of 109M⊙ in the Milky Way. Phys Dark Univ 28:100503. https://doi.org/10.1016/j.dark.2020.100503. arXiv:1807.08153 [astro-ph.GA] Deane RP, Paragi Z, Jarvis MJ, Coriat M, Bernardi G, Fender RP, Frey S, Heywood I, Klöckner HR, Grainge K, Rumsey C (2014) A close-pair binary in a distant triple supermassive black hole system. Nature511(7507):57–60. https://doi.org/10.1038/ nature13454. arXiv:1406.6365 [astro-ph.GA] Deffayet C, Gao X, Steer DA, Zahariade G (2011) From k-essence to generalised Galileons. Phys Rev D 84:064039. https://doi.org/10.1103/PhysRevD.84.064039. arXiv:1103.3260
- [hep-th] Darwin C (1959) The Gravity Field of a Particle. Proceedings of the Royal Society of London Series A 249(1257):180–194. https://doi.org/10.1098/rspa.1959.0015 Davelaar J, Haiman Z (2022) Self-lensing flares from black hole binaries: Generalrelativistic ray tracing of black hole binaries. Phys. Rev. D105(10):103010. https: //doi.org/10.1103/PhysRevD.105.103010. arXiv:2112.05828 [astro-ph.HE] Davelaar J, Haiman Z (2022) Self-Lensing Flares from Black Hole Binaries: Observing Black Hole Shadows via Light Curve Tomography. Phys Rev Lett 128(19):191101. https://doi.org/10.1103/PhysRevLett.128.191101. arXiv:2112.05829 [astro-ph.HE] Davoudiasl H, Denton PB (2019) Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M87*. Phys Rev Lett 123(2):021102. https://doi.org/10. 1103/PhysRevLett.123.021102. arXiv:1904.09242 [astro-ph.CO] De Martino I, Broadhurst T, Tye SHH, Chiueh T, Schive HY (2020) Dynamical Evidence of a Solitonic Core of 109M⊙ in the Milky Way. Phys Dark Univ 28:100503. https://doi.org/10.1016/j.dark.2020.100503. arXiv:1807.08153 [astro-ph.GA] Deane RP, Paragi Z, Jarvis MJ, Coriat M, Bernardi G, Fender RP, Frey S, Heywood I, Klöckner HR, Grainge K, Rumsey C (2014) A close-pair binary in a distant triple supermassive black hole system. Nature511(7507):57–60. https://doi.org/10.1038/ nature13454. arXiv:1406.6365 [astro-ph.GA] Deffayet C, Gao X, Steer DA, Zahariade G (2011) From k-essence to generalised Galileons. Phys Rev D 84:064039. https://doi.org/10.1103/PhysRevD.84.064039. arXiv:1103.3260
- [hep-th] Darwin C (1959) The Gravity Field of a Particle. Proceedings of the Royal Society of London Series A 249(1257):180–194. https://doi.org/10.1098/rspa.1959.0015 Davelaar J, Haiman Z (2022) Self-lensing flares from black hole binaries: Generalrelativistic ray tracing of black hole binaries. Phys. Rev. D105(10):103010. https: //doi.org/10.1103/PhysRevD.105.103010. arXiv:2112.05828 [astro-ph.HE] Davelaar J, Haiman Z (2022) Self-Lensing Flares from Black Hole Binaries: Observing Black Hole Shadows via Light Curve Tomography. Phys Rev Lett 128(19):191101. https://doi.org/10.1103/PhysRevLett.128.191101. arXiv:2112.05829 [astro-ph.HE] Davoudiasl H, Denton PB (2019) Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M87*. Phys Rev Lett 123(2):021102. https://doi.org/10. 1103/PhysRevLett.123.021102. arXiv:1904.09242 [astro-ph.CO] De Martino I, Broadhurst T, Tye SHH, Chiueh T, Schive HY (2020) Dynamical Evidence of a Solitonic Core of 109M⊙ in the Milky Way. Phys Dark Univ 28:100503. https://doi.org/10.1016/j.dark.2020.100503. arXiv:1807.08153 [astro-ph.GA] Deane RP, Paragi Z, Jarvis MJ, Coriat M, Bernardi G, Fender RP, Frey S, Heywood I, Klöckner HR, Grainge K, Rumsey C (2014) A close-pair binary in a distant triple supermassive black hole system. Nature511(7507):57–60. https://doi.org/10.1038/ nature13454. arXiv:1406.6365 [astro-ph.GA] Deffayet C, Gao X, Steer DA, Zahariade G (2011) From k-essence to generalised Galileons. Phys Rev D 84:064039. https://doi.org/10.1103/PhysRevD.84.064039. arXiv:1103.3260
- [hep-th] Darwin C (1959) The Gravity Field of a Particle. Proceedings of the Royal Society of London Series A 249(1257):180–194. https://doi.org/10.1098/rspa.1959.0015 Davelaar J, Haiman Z (2022) Self-lensing flares from black hole binaries: Generalrelativistic ray tracing of black hole binaries. Phys. Rev. D105(10):103010. https: //doi.org/10.1103/PhysRevD.105.103010. arXiv:2112.05828 [astro-ph.HE] Davelaar J, Haiman Z (2022) Self-Lensing Flares from Black Hole Binaries: Observing Black Hole Shadows via Light Curve Tomography. Phys Rev Lett 128(19):191101. https://doi.org/10.1103/PhysRevLett.128.191101. arXiv:2112.05829 [astro-ph.HE] Davoudiasl H, Denton PB (2019) Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M87*. Phys Rev Lett 123(2):021102. https://doi.org/10. 1103/PhysRevLett.123.021102. arXiv:1904.09242 [astro-ph.CO] De Martino I, Broadhurst T, Tye SHH, Chiueh T, Schive HY (2020) Dynamical Evidence of a Solitonic Core of 109M⊙ in the Milky Way. Phys Dark Univ 28:100503. https://doi.org/10.1016/j.dark.2020.100503. arXiv:1807.08153 [astro-ph.GA] Deane RP, Paragi Z, Jarvis MJ, Coriat M, Bernardi G, Fender RP, Frey S, Heywood I, Klöckner HR, Grainge K, Rumsey C (2014) A close-pair binary in a distant triple supermassive black hole system. Nature511(7507):57–60. https://doi.org/10.1038/ nature13454. arXiv:1406.6365 [astro-ph.GA] Deffayet C, Gao X, Steer DA, Zahariade G (2011) From k-essence to generalised Galileons. Phys Rev D 84:064039. https://doi.org/10.1103/PhysRevD.84.064039. arXiv:1103.3260
- [hep-th] Darwin C (1959) The Gravity Field of a Particle. Proceedings of the Royal Society of London Series A 249(1257):180–194. https://doi.org/10.1098/rspa.1959.0015 Davelaar J, Haiman Z (2022) Self-lensing flares from black hole binaries: Generalrelativistic ray tracing of black hole binaries. Phys. Rev. D105(10):103010. https: //doi.org/10.1103/PhysRevD.105.103010. arXiv:2112.05828 [astro-ph.HE] Davelaar J, Haiman Z (2022) Self-Lensing Flares from Black Hole Binaries: Observing Black Hole Shadows via Light Curve Tomography. Phys Rev Lett 128(19):191101. https://doi.org/10.1103/PhysRevLett.128.191101. arXiv:2112.05829 [astro-ph.HE] Davoudiasl H, Denton PB (2019) Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M87*. Phys Rev Lett 123(2):021102. https://doi.org/10. 1103/PhysRevLett.123.021102. arXiv:1904.09242 [astro-ph.CO] De Martino I, Broadhurst T, Tye SHH, Chiueh T, Schive HY (2020) Dynamical Evidence of a Solitonic Core of 109M⊙ in the Milky Way. Phys Dark Univ 28:100503. https://doi.org/10.1016/j.dark.2020.100503. arXiv:1807.08153 [astro-ph.GA] Deane RP, Paragi Z, Jarvis MJ, Coriat M, Bernardi G, Fender RP, Frey S, Heywood I, Klöckner HR, Grainge K, Rumsey C (2014) A close-pair binary in a distant triple supermassive black hole system. Nature511(7507):57–60. https://doi.org/10.1038/ nature13454. arXiv:1406.6365 [astro-ph.GA] Deffayet C, Gao X, Steer DA, Zahariade G (2011) From k-essence to generalised Galileons. Phys Rev D 84:064039. https://doi.org/10.1103/PhysRevD.84.064039. arXiv:1103.3260
- [hep-th] Degollado JC, Herdeiro CAR, Radu E (2018) Effective stability against superradiance of Kerr black holes with synchronised hair. Phys Lett B 781:651–655. https://doi. org/10.1016/j.physletb.2018.04.052. arXiv:1802.07266
- [gr-qc] Delaporte H, Eichhorn A, Held A (2022) Parameterizations of black-hole spacetimes beyond circularity. arXiv e-prints arXiv:2203.00105
- [gr-qc] Delgado JFM, Herdeiro CAR, Radu E (2019) Kerr black holes with synchronised scalar hair and higher azimuthal harmonic index. Phys Lett B 792:436–444. https://doi. org/10.1016/j.physletb.2019.04.009. arXiv:1903.01488
- [gr-qc] Delgado JFM, Herdeiro CAR, Radu E (2021) Kerr black holes with synchronized axionic hair. Phys Rev D 103(10):104029. https://doi.org/10.1103/PhysRevD.103. 104029. arXiv:2012.03952
- [gr-qc] Delijski V, Gyulchev G, Nedkova P, Yazadjiev S (2022) Polarized image of equatorial emission in horizonless spacetimes: Traversable wormholes. Phys Rev D 106(10):104024. https://doi.org/10.1103/PhysRevD.106.104024. arXiv:2206.09455
- [gr-qc] Deliyski V, Gyulchev G, Nedkova P, Yazadjiev S (2023) Polarized image of equatorial emission in horizonless spacetimes: naked singularities. arXiv e-prints arXiv:2303.14756. https://doi.org/10.48550/arXiv.2303.14756. arXiv:2303.14756
- [gr-qc] Deliyski V, Gyulchev G, Nedkova P, Yazadjiev S (2023) Polarized image of equatorial emission in horizonless spacetimes: naked singularities. arXiv e-prints arXiv:2303.14756. https://doi.org/10.48550/arXiv.2303.14756. arXiv:2303.14756
- [gr-qc] Della Monica R, de Martino I (2023a) Bounding the mass of ultralight bosonic Dark Matter particles with the motion of the S2 star around Sgr A*. arXiv e-prints arXiv:2305.10242
- [gr-qc] 118 The ngEHT Fundamental Physics SWG Della Monica R, de Martino I (2023b) Narrowing the allowed mass range of ultralight bosons with the S2 star. Astron Astrophys 670:L4. https://doi.org/10.1051/ 0004-6361/202245150. arXiv:2206.03980
- [gr-qc] Della Monica R, De Martino I, De Laurentis M (2023) Testing space-time geometries and theories of gravity at the Galactic centre with pulsar’s time delay. Mon. Not. R. Astron. Soc.524(3):3782–3796. https://doi.org/10.1093/mnras/ stad2125. arXiv:2305.18178
- [gr-qc] Detweiler SL (1980) KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES. Phys Rev D 22:2323–2326. https://doi.org/10.1103/PhysRevD.22.2323 Dexter J (2016) A public code for general relativistic, polarised radiative transfer around spinning black holes. Mon. Not. R. Astron. Soc.462(1):115–136. https: //doi.org/10.1093/mnras/stw1526. arXiv:1602.03184 [astro-ph.HE] Dexter J, Agol E (2009) A Fast New Public Code for Computing Photon Orbits in a Kerr Spacetime. Astrophys. J.696(2):1616–1629. https://doi.org/10.1088/ 0004-637X/696/2/1616. arXiv:0903.0620 [astro-ph.HE] Dexter J, O’Leary RM (2014) The Peculiar Pulsar Population of the Central Parsec. The Astrophysical Journal 783(1):L7. https://doi.org/10.1088/2041-8205/783/1/L7. arXiv:1310.7022 [astro-ph.GA] Dey L, Valtonen MJ, Gopakumar A, et al (2018) Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare: Improved Orbital Parameters. Ap J 866(1):11. https://doi.org/10.3847/ 1538-4357/aadd95. arXiv:1808.09309 [astro-ph.HE] Dias OJC, Lingetti G, Pani P, Santos JE (2023) Black hole superradiant instability for massive spin-2 fields. arXiv e-prints arXiv:2304.01265. https://doi.org/10.48550/ arXiv.2304.01265. arXiv:2304.01265
- [gr-qc] Detweiler SL (1980) KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES. Phys Rev D 22:2323–2326. https://doi.org/10.1103/PhysRevD.22.2323 Dexter J (2016) A public code for general relativistic, polarised radiative transfer around spinning black holes. Mon. Not. R. Astron. Soc.462(1):115–136. https: //doi.org/10.1093/mnras/stw1526. arXiv:1602.03184 [astro-ph.HE] Dexter J, Agol E (2009) A Fast New Public Code for Computing Photon Orbits in a Kerr Spacetime. Astrophys. J.696(2):1616–1629. https://doi.org/10.1088/ 0004-637X/696/2/1616. arXiv:0903.0620 [astro-ph.HE] Dexter J, O’Leary RM (2014) The Peculiar Pulsar Population of the Central Parsec. The Astrophysical Journal 783(1):L7. https://doi.org/10.1088/2041-8205/783/1/L7. arXiv:1310.7022 [astro-ph.GA] Dey L, Valtonen MJ, Gopakumar A, et al (2018) Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare: Improved Orbital Parameters. Ap J 866(1):11. https://doi.org/10.3847/ 1538-4357/aadd95. arXiv:1808.09309 [astro-ph.HE] Dias OJC, Lingetti G, Pani P, Santos JE (2023) Black hole superradiant instability for massive spin-2 fields. arXiv e-prints arXiv:2304.01265. https://doi.org/10.48550/ arXiv.2304.01265. arXiv:2304.01265
- [gr-qc] Detweiler SL (1980) KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES. Phys Rev D 22:2323–2326. https://doi.org/10.1103/PhysRevD.22.2323 Dexter J (2016) A public code for general relativistic, polarised radiative transfer around spinning black holes. Mon. Not. R. Astron. Soc.462(1):115–136. https: //doi.org/10.1093/mnras/stw1526. arXiv:1602.03184 [astro-ph.HE] Dexter J, Agol E (2009) A Fast New Public Code for Computing Photon Orbits in a Kerr Spacetime. Astrophys. J.696(2):1616–1629. https://doi.org/10.1088/ 0004-637X/696/2/1616. arXiv:0903.0620 [astro-ph.HE] Dexter J, O’Leary RM (2014) The Peculiar Pulsar Population of the Central Parsec. The Astrophysical Journal 783(1):L7. https://doi.org/10.1088/2041-8205/783/1/L7. arXiv:1310.7022 [astro-ph.GA] Dey L, Valtonen MJ, Gopakumar A, et al (2018) Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare: Improved Orbital Parameters. Ap J 866(1):11. https://doi.org/10.3847/ 1538-4357/aadd95. arXiv:1808.09309 [astro-ph.HE] Dias OJC, Lingetti G, Pani P, Santos JE (2023) Black hole superradiant instability for massive spin-2 fields. arXiv e-prints arXiv:2304.01265. https://doi.org/10.48550/ arXiv.2304.01265. arXiv:2304.01265
- [gr-qc] Detweiler SL (1980) KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES. Phys Rev D 22:2323–2326. https://doi.org/10.1103/PhysRevD.22.2323 Dexter J (2016) A public code for general relativistic, polarised radiative transfer around spinning black holes. Mon. Not. R. Astron. Soc.462(1):115–136. https: //doi.org/10.1093/mnras/stw1526. arXiv:1602.03184 [astro-ph.HE] Dexter J, Agol E (2009) A Fast New Public Code for Computing Photon Orbits in a Kerr Spacetime. Astrophys. J.696(2):1616–1629. https://doi.org/10.1088/ 0004-637X/696/2/1616. arXiv:0903.0620 [astro-ph.HE] Dexter J, O’Leary RM (2014) The Peculiar Pulsar Population of the Central Parsec. The Astrophysical Journal 783(1):L7. https://doi.org/10.1088/2041-8205/783/1/L7. arXiv:1310.7022 [astro-ph.GA] Dey L, Valtonen MJ, Gopakumar A, et al (2018) Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare: Improved Orbital Parameters. Ap J 866(1):11. https://doi.org/10.3847/ 1538-4357/aadd95. arXiv:1808.09309 [astro-ph.HE] Dias OJC, Lingetti G, Pani P, Santos JE (2023) Black hole superradiant instability for massive spin-2 fields. arXiv e-prints arXiv:2304.01265. https://doi.org/10.48550/ arXiv.2304.01265. arXiv:2304.01265
- [gr-qc] Detweiler SL (1980) KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES. Phys Rev D 22:2323–2326. https://doi.org/10.1103/PhysRevD.22.2323 Dexter J (2016) A public code for general relativistic, polarised radiative transfer around spinning black holes. Mon. Not. R. Astron. Soc.462(1):115–136. https: //doi.org/10.1093/mnras/stw1526. arXiv:1602.03184 [astro-ph.HE] Dexter J, Agol E (2009) A Fast New Public Code for Computing Photon Orbits in a Kerr Spacetime. Astrophys. J.696(2):1616–1629. https://doi.org/10.1088/ 0004-637X/696/2/1616. arXiv:0903.0620 [astro-ph.HE] Dexter J, O’Leary RM (2014) The Peculiar Pulsar Population of the Central Parsec. The Astrophysical Journal 783(1):L7. https://doi.org/10.1088/2041-8205/783/1/L7. arXiv:1310.7022 [astro-ph.GA] Dey L, Valtonen MJ, Gopakumar A, et al (2018) Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare: Improved Orbital Parameters. Ap J 866(1):11. https://doi.org/10.3847/ 1538-4357/aadd95. arXiv:1808.09309 [astro-ph.HE] Dias OJC, Lingetti G, Pani P, Santos JE (2023) Black hole superradiant instability for massive spin-2 fields. arXiv e-prints arXiv:2304.01265. https://doi.org/10.48550/ arXiv.2304.01265. arXiv:2304.01265
- [gr-qc] Detweiler SL (1980) KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES. Phys Rev D 22:2323–2326. https://doi.org/10.1103/PhysRevD.22.2323 Dexter J (2016) A public code for general relativistic, polarised radiative transfer around spinning black holes. Mon. Not. R. Astron. Soc.462(1):115–136. https: //doi.org/10.1093/mnras/stw1526. arXiv:1602.03184 [astro-ph.HE] Dexter J, Agol E (2009) A Fast New Public Code for Computing Photon Orbits in a Kerr Spacetime. Astrophys. J.696(2):1616–1629. https://doi.org/10.1088/ 0004-637X/696/2/1616. arXiv:0903.0620 [astro-ph.HE] Dexter J, O’Leary RM (2014) The Peculiar Pulsar Population of the Central Parsec. The Astrophysical Journal 783(1):L7. https://doi.org/10.1088/2041-8205/783/1/L7. arXiv:1310.7022 [astro-ph.GA] Dey L, Valtonen MJ, Gopakumar A, et al (2018) Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare: Improved Orbital Parameters. Ap J 866(1):11. https://doi.org/10.3847/ 1538-4357/aadd95. arXiv:1808.09309 [astro-ph.HE] Dias OJC, Lingetti G, Pani P, Santos JE (2023) Black hole superradiant instability for massive spin-2 fields. arXiv e-prints arXiv:2304.01265. https://doi.org/10.48550/ arXiv.2304.01265. arXiv:2304.01265
- [gr-qc] Detweiler SL (1980) KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES. Phys Rev D 22:2323–2326. https://doi.org/10.1103/PhysRevD.22.2323 Dexter J (2016) A public code for general relativistic, polarised radiative transfer around spinning black holes. Mon. Not. R. Astron. Soc.462(1):115–136. https: //doi.org/10.1093/mnras/stw1526. arXiv:1602.03184 [astro-ph.HE] Dexter J, Agol E (2009) A Fast New Public Code for Computing Photon Orbits in a Kerr Spacetime. Astrophys. J.696(2):1616–1629. https://doi.org/10.1088/ 0004-637X/696/2/1616. arXiv:0903.0620 [astro-ph.HE] Dexter J, O’Leary RM (2014) The Peculiar Pulsar Population of the Central Parsec. The Astrophysical Journal 783(1):L7. https://doi.org/10.1088/2041-8205/783/1/L7. arXiv:1310.7022 [astro-ph.GA] Dey L, Valtonen MJ, Gopakumar A, et al (2018) Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare: Improved Orbital Parameters. Ap J 866(1):11. https://doi.org/10.3847/ 1538-4357/aadd95. arXiv:1808.09309 [astro-ph.HE] Dias OJC, Lingetti G, Pani P, Santos JE (2023) Black hole superradiant instability for massive spin-2 fields. arXiv e-prints arXiv:2304.01265. https://doi.org/10.48550/ arXiv.2304.01265. arXiv:2304.01265
- [gr-qc] Detweiler SL (1980) KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES. Phys Rev D 22:2323–2326. https://doi.org/10.1103/PhysRevD.22.2323 Dexter J (2016) A public code for general relativistic, polarised radiative transfer around spinning black holes. Mon. Not. R. Astron. Soc.462(1):115–136. https: //doi.org/10.1093/mnras/stw1526. arXiv:1602.03184 [astro-ph.HE] Dexter J, Agol E (2009) A Fast New Public Code for Computing Photon Orbits in a Kerr Spacetime. Astrophys. J.696(2):1616–1629. https://doi.org/10.1088/ 0004-637X/696/2/1616. arXiv:0903.0620 [astro-ph.HE] Dexter J, O’Leary RM (2014) The Peculiar Pulsar Population of the Central Parsec. The Astrophysical Journal 783(1):L7. https://doi.org/10.1088/2041-8205/783/1/L7. arXiv:1310.7022 [astro-ph.GA] Dey L, Valtonen MJ, Gopakumar A, et al (2018) Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare: Improved Orbital Parameters. Ap J 866(1):11. https://doi.org/10.3847/ 1538-4357/aadd95. arXiv:1808.09309 [astro-ph.HE] Dias OJC, Lingetti G, Pani P, Santos JE (2023) Black hole superradiant instability for massive spin-2 fields. arXiv e-prints arXiv:2304.01265. https://doi.org/10.48550/ arXiv.2304.01265. arXiv:2304.01265
- [gr-qc] Dine M, Fischler W (1983) The Not So Harmless Axion. Phys Lett B 120:137–141. https://doi.org/10.1016/0370-2693(83)90639-1 Ding C, Liu C, Casana R, Cavalcante A (2020) Exact Kerr-like solution and its shadow in a gravity model with spontaneous Lorentz symmetry breaking. Eur Phys J C 80(3):178. https://doi.org/10.1140/epjc/s10052-020-7743-y. arXiv:1910.02674
- [gr-qc] Dine M, Fischler W (1983) The Not So Harmless Axion. Phys Lett B 120:137–141. https://doi.org/10.1016/0370-2693(83)90639-1 Ding C, Liu C, Casana R, Cavalcante A (2020) Exact Kerr-like solution and its shadow in a gravity model with spontaneous Lorentz symmetry breaking. Eur Phys J C 80(3):178. https://doi.org/10.1140/epjc/s10052-020-7743-y. arXiv:1910.02674
- [gr-qc] Do T, et al (2019) Relativistic redshift of the star s0-2 orbiting the galactic center supermassive black hole. Science 365:664 – 668 Do T, et al. (2019a) Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole. Science 365(6454):664–668. https://doi.org/10.1126/science. aav8137. arXiv:1907.10731 [astro-ph.GA] Do T, et al. (2019b) Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole. Science 365(6454):664–668. https://doi.org/10.1126/science. aav8137. arXiv:1907.10731 [astro-ph.GA] Dodds-Eden K, et al. (2009) Evidence for X-ray synchrotron emission from simultaneous mid-IR to X-ray observations of a strong Sgr A* flare. Astrophys J 698:676–692. https://doi.org/10.1088/0004-637X/698/1/676. arXiv:0903.3416 [astro-ph.GA] Doeleman S, Agol E, Backer D, Baganoff F, Bower GC, Broderick A, Fabian A, Fish V, Gammie C, Ho P, Honman M, Krichbaum T, Loeb A, Marrone D, Reid M, Rogers A, Shapiro I, Strittmatter P, Tilanus R, Weintroub J, Whitney A, Wright M, Ziurys L (2009a) Imaging an Event Horizon: submm-VLBI of a Super Massive Black Hole. In: astro2010: The Astronomy and Astrophysics Decadal Survey. vol 2010. p 68. https://doi.org/10.48550/arXiv.0906.3899. arXiv:0906.3899 [astro-ph.CO] Fundamental Physics Opportunities with the ngEHT 119 Doeleman S, et al. (2019) Studying Black Holes on Horizon Scales with VLBI Ground Arrays. Bull AAS 51(7). URL https://baas.aas.org/pub/2020n7i256 Doeleman SS, Weintroub J, Rogers AEE, Plambeck R, Freund R, Tilanus RPJ, Friberg P, Ziurys LM, Moran JM, Corey B, Young KH, Smythe DL, Titus M, Marrone DP, Cappallo RJ, Bock DCJ, Bower GC, Chamberlin R, Davis GR, Krichbaum TP, Lamb J, Maness H, Niell AE, Roy A, Strittmatter P, Werthimer D, Whitney AR, Woody D (2008) Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature455(7209):78–80. https://doi.org/10.1038/nature07245. arXiv:0809.2442
- [gr-qc] Do T, et al (2019) Relativistic redshift of the star s0-2 orbiting the galactic center supermassive black hole. Science 365:664 – 668 Do T, et al. (2019a) Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole. Science 365(6454):664–668. https://doi.org/10.1126/science. aav8137. arXiv:1907.10731 [astro-ph.GA] Do T, et al. (2019b) Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole. Science 365(6454):664–668. https://doi.org/10.1126/science. aav8137. arXiv:1907.10731 [astro-ph.GA] Dodds-Eden K, et al. (2009) Evidence for X-ray synchrotron emission from simultaneous mid-IR to X-ray observations of a strong Sgr A* flare. Astrophys J 698:676–692. https://doi.org/10.1088/0004-637X/698/1/676. arXiv:0903.3416 [astro-ph.GA] Doeleman S, Agol E, Backer D, Baganoff F, Bower GC, Broderick A, Fabian A, Fish V, Gammie C, Ho P, Honman M, Krichbaum T, Loeb A, Marrone D, Reid M, Rogers A, Shapiro I, Strittmatter P, Tilanus R, Weintroub J, Whitney A, Wright M, Ziurys L (2009a) Imaging an Event Horizon: submm-VLBI of a Super Massive Black Hole. In: astro2010: The Astronomy and Astrophysics Decadal Survey. vol 2010. p 68. https://doi.org/10.48550/arXiv.0906.3899. arXiv:0906.3899 [astro-ph.CO] Fundamental Physics Opportunities with the ngEHT 119 Doeleman S, et al. (2019) Studying Black Holes on Horizon Scales with VLBI Ground Arrays. Bull AAS 51(7). URL https://baas.aas.org/pub/2020n7i256 Doeleman SS, Weintroub J, Rogers AEE, Plambeck R, Freund R, Tilanus RPJ, Friberg P, Ziurys LM, Moran JM, Corey B, Young KH, Smythe DL, Titus M, Marrone DP, Cappallo RJ, Bock DCJ, Bower GC, Chamberlin R, Davis GR, Krichbaum TP, Lamb J, Maness H, Niell AE, Roy A, Strittmatter P, Werthimer D, Whitney AR, Woody D (2008) Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature455(7209):78–80. https://doi.org/10.1038/nature07245. arXiv:0809.2442
- [gr-qc] Do T, et al (2019) Relativistic redshift of the star s0-2 orbiting the galactic center supermassive black hole. Science 365:664 – 668 Do T, et al. (2019a) Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole. Science 365(6454):664–668. https://doi.org/10.1126/science. aav8137. arXiv:1907.10731 [astro-ph.GA] Do T, et al. (2019b) Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole. Science 365(6454):664–668. https://doi.org/10.1126/science. aav8137. arXiv:1907.10731 [astro-ph.GA] Dodds-Eden K, et al. (2009) Evidence for X-ray synchrotron emission from simultaneous mid-IR to X-ray observations of a strong Sgr A* flare. Astrophys J 698:676–692. https://doi.org/10.1088/0004-637X/698/1/676. arXiv:0903.3416 [astro-ph.GA] Doeleman S, Agol E, Backer D, Baganoff F, Bower GC, Broderick A, Fabian A, Fish V, Gammie C, Ho P, Honman M, Krichbaum T, Loeb A, Marrone D, Reid M, Rogers A, Shapiro I, Strittmatter P, Tilanus R, Weintroub J, Whitney A, Wright M, Ziurys L (2009a) Imaging an Event Horizon: submm-VLBI of a Super Massive Black Hole. In: astro2010: The Astronomy and Astrophysics Decadal Survey. vol 2010. p 68. https://doi.org/10.48550/arXiv.0906.3899. arXiv:0906.3899 [astro-ph.CO] Fundamental Physics Opportunities with the ngEHT 119 Doeleman S, et al. (2019) Studying Black Holes on Horizon Scales with VLBI Ground Arrays. Bull AAS 51(7). URL https://baas.aas.org/pub/2020n7i256 Doeleman SS, Weintroub J, Rogers AEE, Plambeck R, Freund R, Tilanus RPJ, Friberg P, Ziurys LM, Moran JM, Corey B, Young KH, Smythe DL, Titus M, Marrone DP, Cappallo RJ, Bock DCJ, Bower GC, Chamberlin R, Davis GR, Krichbaum TP, Lamb J, Maness H, Niell AE, Roy A, Strittmatter P, Werthimer D, Whitney AR, Woody D (2008) Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature455(7209):78–80. https://doi.org/10.1038/nature07245. arXiv:0809.2442
- [gr-qc] Do T, et al (2019) Relativistic redshift of the star s0-2 orbiting the galactic center supermassive black hole. Science 365:664 – 668 Do T, et al. (2019a) Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole. Science 365(6454):664–668. https://doi.org/10.1126/science. aav8137. arXiv:1907.10731 [astro-ph.GA] Do T, et al. (2019b) Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole. Science 365(6454):664–668. https://doi.org/10.1126/science. aav8137. arXiv:1907.10731 [astro-ph.GA] Dodds-Eden K, et al. (2009) Evidence for X-ray synchrotron emission from simultaneous mid-IR to X-ray observations of a strong Sgr A* flare. Astrophys J 698:676–692. https://doi.org/10.1088/0004-637X/698/1/676. arXiv:0903.3416 [astro-ph.GA] Doeleman S, Agol E, Backer D, Baganoff F, Bower GC, Broderick A, Fabian A, Fish V, Gammie C, Ho P, Honman M, Krichbaum T, Loeb A, Marrone D, Reid M, Rogers A, Shapiro I, Strittmatter P, Tilanus R, Weintroub J, Whitney A, Wright M, Ziurys L (2009a) Imaging an Event Horizon: submm-VLBI of a Super Massive Black Hole. In: astro2010: The Astronomy and Astrophysics Decadal Survey. vol 2010. p 68. https://doi.org/10.48550/arXiv.0906.3899. arXiv:0906.3899 [astro-ph.CO] Fundamental Physics Opportunities with the ngEHT 119 Doeleman S, et al. (2019) Studying Black Holes on Horizon Scales with VLBI Ground Arrays. Bull AAS 51(7). URL https://baas.aas.org/pub/2020n7i256 Doeleman SS, Weintroub J, Rogers AEE, Plambeck R, Freund R, Tilanus RPJ, Friberg P, Ziurys LM, Moran JM, Corey B, Young KH, Smythe DL, Titus M, Marrone DP, Cappallo RJ, Bock DCJ, Bower GC, Chamberlin R, Davis GR, Krichbaum TP, Lamb J, Maness H, Niell AE, Roy A, Strittmatter P, Werthimer D, Whitney AR, Woody D (2008) Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature455(7209):78–80. https://doi.org/10.1038/nature07245. arXiv:0809.2442
- [gr-qc] Do T, et al (2019) Relativistic redshift of the star s0-2 orbiting the galactic center supermassive black hole. Science 365:664 – 668 Do T, et al. (2019a) Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole. Science 365(6454):664–668. https://doi.org/10.1126/science. aav8137. arXiv:1907.10731 [astro-ph.GA] Do T, et al. (2019b) Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole. Science 365(6454):664–668. https://doi.org/10.1126/science. aav8137. arXiv:1907.10731 [astro-ph.GA] Dodds-Eden K, et al. (2009) Evidence for X-ray synchrotron emission from simultaneous mid-IR to X-ray observations of a strong Sgr A* flare. Astrophys J 698:676–692. https://doi.org/10.1088/0004-637X/698/1/676. arXiv:0903.3416 [astro-ph.GA] Doeleman S, Agol E, Backer D, Baganoff F, Bower GC, Broderick A, Fabian A, Fish V, Gammie C, Ho P, Honman M, Krichbaum T, Loeb A, Marrone D, Reid M, Rogers A, Shapiro I, Strittmatter P, Tilanus R, Weintroub J, Whitney A, Wright M, Ziurys L (2009a) Imaging an Event Horizon: submm-VLBI of a Super Massive Black Hole. In: astro2010: The Astronomy and Astrophysics Decadal Survey. vol 2010. p 68. https://doi.org/10.48550/arXiv.0906.3899. arXiv:0906.3899 [astro-ph.CO] Fundamental Physics Opportunities with the ngEHT 119 Doeleman S, et al. (2019) Studying Black Holes on Horizon Scales with VLBI Ground Arrays. Bull AAS 51(7). URL https://baas.aas.org/pub/2020n7i256 Doeleman SS, Weintroub J, Rogers AEE, Plambeck R, Freund R, Tilanus RPJ, Friberg P, Ziurys LM, Moran JM, Corey B, Young KH, Smythe DL, Titus M, Marrone DP, Cappallo RJ, Bock DCJ, Bower GC, Chamberlin R, Davis GR, Krichbaum TP, Lamb J, Maness H, Niell AE, Roy A, Strittmatter P, Werthimer D, Whitney AR, Woody D (2008) Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature455(7209):78–80. https://doi.org/10.1038/nature07245. arXiv:0809.2442
- [astro-ph] Doeleman SS, Fish VL, Broderick AE, Loeb A, Rogers AEE (2009b) Detecting Flaring Structures in Sagittarius A* with High-Frequency VLBI. Astrophys. J.695(1):59–74. https://doi.org/10.1088/0004-637X/695/1/59. arXiv:0809.3424
- [astro-ph] Doeleman SS, Fish VL, Schenck DE, Beaudoin C, Blundell R, Bower GC, Broderick AE, Chamberlin R, Freund R, Friberg P, Gurwell MA, Ho PTP, Honma M, Inoue M, Krichbaum TP, Lamb J, Loeb A, Lonsdale C, Marrone DP, Moran JM, Oyama T, Plambeck R, Primiani RA, Rogers AEE, Smythe DL, SooHoo J, Strittmatter P, Tilanus RPJ, Titus M, Weintroub J, Wright M, Young KH, Ziurys LM (2012) Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87. Science 338(6105):355. https://doi.org/10.1126/science.1224768. arXiv:1210.6132 [astro-ph.HE] Doeleman SS, Barrett J, Blackburn L, Bouman KL, Broderick AE, Chaves R, Fish VL, Fitzpatrick G, Freeman M, Fuentes A, Gómez JL, Haworth K, Houston J, Issaoun S, Johnson MD, Kettenis M, Loinard L, Nagar N, Narayanan G, Oppenheimer A, Palumbo DCM, Patel N, Pesce DW, Raymond AW, Roelofs F, Srinivasan R, Tiede P, Weintroub J, Wielgus M (2023) Reference Array and Design Consideration for the Next-Generation Event Horizon Telescope. Galaxies 11(5):107. https://doi.org/ 10.3390/galaxies11050107. arXiv:2306.08787 [astro-ph.IM] Dokuchaev VI (2014) Spin and mass of the nearest supermassive black hole. General Relativity and Gravitation 46:1832. https://doi.org/10.1007/s10714-014-1832-x. arXiv:1306.2033 [astro-ph.HE] Dolan SR (2007) Instability of the massive Klein-Gordon field on the Kerr spacetime. Phys Rev D 76:084001. https://doi.org/10.1103/PhysRevD.76.084001. arXiv:0705.2880
- [astro-ph] Doeleman SS, Fish VL, Schenck DE, Beaudoin C, Blundell R, Bower GC, Broderick AE, Chamberlin R, Freund R, Friberg P, Gurwell MA, Ho PTP, Honma M, Inoue M, Krichbaum TP, Lamb J, Loeb A, Lonsdale C, Marrone DP, Moran JM, Oyama T, Plambeck R, Primiani RA, Rogers AEE, Smythe DL, SooHoo J, Strittmatter P, Tilanus RPJ, Titus M, Weintroub J, Wright M, Young KH, Ziurys LM (2012) Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87. Science 338(6105):355. https://doi.org/10.1126/science.1224768. arXiv:1210.6132 [astro-ph.HE] Doeleman SS, Barrett J, Blackburn L, Bouman KL, Broderick AE, Chaves R, Fish VL, Fitzpatrick G, Freeman M, Fuentes A, Gómez JL, Haworth K, Houston J, Issaoun S, Johnson MD, Kettenis M, Loinard L, Nagar N, Narayanan G, Oppenheimer A, Palumbo DCM, Patel N, Pesce DW, Raymond AW, Roelofs F, Srinivasan R, Tiede P, Weintroub J, Wielgus M (2023) Reference Array and Design Consideration for the Next-Generation Event Horizon Telescope. Galaxies 11(5):107. https://doi.org/ 10.3390/galaxies11050107. arXiv:2306.08787 [astro-ph.IM] Dokuchaev VI (2014) Spin and mass of the nearest supermassive black hole. General Relativity and Gravitation 46:1832. https://doi.org/10.1007/s10714-014-1832-x. arXiv:1306.2033 [astro-ph.HE] Dolan SR (2007) Instability of the massive Klein-Gordon field on the Kerr spacetime. Phys Rev D 76:084001. https://doi.org/10.1103/PhysRevD.76.084001. arXiv:0705.2880
- [astro-ph] Doeleman SS, Fish VL, Schenck DE, Beaudoin C, Blundell R, Bower GC, Broderick AE, Chamberlin R, Freund R, Friberg P, Gurwell MA, Ho PTP, Honma M, Inoue M, Krichbaum TP, Lamb J, Loeb A, Lonsdale C, Marrone DP, Moran JM, Oyama T, Plambeck R, Primiani RA, Rogers AEE, Smythe DL, SooHoo J, Strittmatter P, Tilanus RPJ, Titus M, Weintroub J, Wright M, Young KH, Ziurys LM (2012) Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87. Science 338(6105):355. https://doi.org/10.1126/science.1224768. arXiv:1210.6132 [astro-ph.HE] Doeleman SS, Barrett J, Blackburn L, Bouman KL, Broderick AE, Chaves R, Fish VL, Fitzpatrick G, Freeman M, Fuentes A, Gómez JL, Haworth K, Houston J, Issaoun S, Johnson MD, Kettenis M, Loinard L, Nagar N, Narayanan G, Oppenheimer A, Palumbo DCM, Patel N, Pesce DW, Raymond AW, Roelofs F, Srinivasan R, Tiede P, Weintroub J, Wielgus M (2023) Reference Array and Design Consideration for the Next-Generation Event Horizon Telescope. Galaxies 11(5):107. https://doi.org/ 10.3390/galaxies11050107. arXiv:2306.08787 [astro-ph.IM] Dokuchaev VI (2014) Spin and mass of the nearest supermassive black hole. General Relativity and Gravitation 46:1832. https://doi.org/10.1007/s10714-014-1832-x. arXiv:1306.2033 [astro-ph.HE] Dolan SR (2007) Instability of the massive Klein-Gordon field on the Kerr spacetime. Phys Rev D 76:084001. https://doi.org/10.1103/PhysRevD.76.084001. arXiv:0705.2880
- [astro-ph] Doeleman SS, Fish VL, Schenck DE, Beaudoin C, Blundell R, Bower GC, Broderick AE, Chamberlin R, Freund R, Friberg P, Gurwell MA, Ho PTP, Honma M, Inoue M, Krichbaum TP, Lamb J, Loeb A, Lonsdale C, Marrone DP, Moran JM, Oyama T, Plambeck R, Primiani RA, Rogers AEE, Smythe DL, SooHoo J, Strittmatter P, Tilanus RPJ, Titus M, Weintroub J, Wright M, Young KH, Ziurys LM (2012) Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87. Science 338(6105):355. https://doi.org/10.1126/science.1224768. arXiv:1210.6132 [astro-ph.HE] Doeleman SS, Barrett J, Blackburn L, Bouman KL, Broderick AE, Chaves R, Fish VL, Fitzpatrick G, Freeman M, Fuentes A, Gómez JL, Haworth K, Houston J, Issaoun S, Johnson MD, Kettenis M, Loinard L, Nagar N, Narayanan G, Oppenheimer A, Palumbo DCM, Patel N, Pesce DW, Raymond AW, Roelofs F, Srinivasan R, Tiede P, Weintroub J, Wielgus M (2023) Reference Array and Design Consideration for the Next-Generation Event Horizon Telescope. Galaxies 11(5):107. https://doi.org/ 10.3390/galaxies11050107. arXiv:2306.08787 [astro-ph.IM] Dokuchaev VI (2014) Spin and mass of the nearest supermassive black hole. General Relativity and Gravitation 46:1832. https://doi.org/10.1007/s10714-014-1832-x. arXiv:1306.2033 [astro-ph.HE] Dolan SR (2007) Instability of the massive Klein-Gordon field on the Kerr spacetime. Phys Rev D 76:084001. https://doi.org/10.1103/PhysRevD.76.084001. arXiv:0705.2880
- [gr-qc] Dolan SR (2018) Instability of the Proca field on Kerr spacetime. Phys Rev D 98(10):104006. https://doi.org/10.1103/PhysRevD.98.104006. arXiv:1806.01604
- [grqc] Dolence JC, Gammie CF, Shiokawa H, Noble SC (2012) Near-infrared and X-Ray Quasi-periodic Oscillations in Numerical Models of Sgr A*. Astrophys. J. Lett.746(1):L10. https://doi.org/10.1088/2041-8205/746/1/L10. arXiv:1201.1917 [astro-ph.HE] Dong J, Patiño N, Xie Y, Cárdenas-Avendaño A, Gammie CF, Yunes N (2022a) Blandford-Znajek process in quadratic gravity. Phys Rev D 105(4):044008. https: //doi.org/10.1103/PhysRevD.105.044008. arXiv:2111.08758
- [grqc] Dolence JC, Gammie CF, Shiokawa H, Noble SC (2012) Near-infrared and X-Ray Quasi-periodic Oscillations in Numerical Models of Sgr A*. Astrophys. J. Lett.746(1):L10. https://doi.org/10.1088/2041-8205/746/1/L10. arXiv:1201.1917 [astro-ph.HE] Dong J, Patiño N, Xie Y, Cárdenas-Avendaño A, Gammie CF, Yunes N (2022a) Blandford-Znajek process in quadratic gravity. Phys Rev D 105(4):044008. https: //doi.org/10.1103/PhysRevD.105.044008. arXiv:2111.08758
- [gr-qc] Dong Y, Shao L, Hu Z, Miao X, Wang Z (2022b) Prospects for constraining the Yukawa gravity with pulsars around Sagittarius A*. JCAP 11:051. https://doi.org/10.1088/ 1475-7516/2022/11/051. arXiv:2210.16130 [astro-ph.HE] Donoghue JF (1994) Leading quantum correction to the Newtonian potential. Phys Rev Lett 72:2996–2999. https://doi.org/10.1103/PhysRevLett.72.2996. arXiv:grqc/9310024 120 The ngEHT Fundamental Physics SWG D’Orazio DJ, Loeb A (2018a) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Loeb A (2018b) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Haiman Z, Duffell P, Farris BD, MacFadyen AI (2015) A reduced orbital period for the supermassive black hole binary candidate in the quasar PG 1302102? Monthly Notices of the Royal Astronomical Society 452(3):2540–2545. https: //doi.org/10.1093/mnras/stv1457, URL https://doi.org/10.1093/mnras/stv1457. https://academic.oup.com/mnras/article-pdf/452/3/2540/4921183/stv1457.pdf Dotti M, Sesana A, Decarli R (2012) Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures. Advances in Astronomy 2012:940568. https://doi.org/ 10.1155/2012/940568. arXiv:1111.0664 [astro-ph.CO] Drake SP, Szekeres P (2000) Uniqueness of the Newman-Janis algorithm in generating the Kerr-Newman metric. Gen Rel Grav 32:445–458. https://doi.org/10.1023/A: 1001920232180. arXiv:gr-qc/9807001 Drummond IT, Hathrell SJ (1980) QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons. Phys Rev D 22:343. https://doi.org/10.1103/PhysRevD.22.343
- [gr-qc] Dong Y, Shao L, Hu Z, Miao X, Wang Z (2022b) Prospects for constraining the Yukawa gravity with pulsars around Sagittarius A*. JCAP 11:051. https://doi.org/10.1088/ 1475-7516/2022/11/051. arXiv:2210.16130 [astro-ph.HE] Donoghue JF (1994) Leading quantum correction to the Newtonian potential. Phys Rev Lett 72:2996–2999. https://doi.org/10.1103/PhysRevLett.72.2996. arXiv:grqc/9310024 120 The ngEHT Fundamental Physics SWG D’Orazio DJ, Loeb A (2018a) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Loeb A (2018b) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Haiman Z, Duffell P, Farris BD, MacFadyen AI (2015) A reduced orbital period for the supermassive black hole binary candidate in the quasar PG 1302102? Monthly Notices of the Royal Astronomical Society 452(3):2540–2545. https: //doi.org/10.1093/mnras/stv1457, URL https://doi.org/10.1093/mnras/stv1457. https://academic.oup.com/mnras/article-pdf/452/3/2540/4921183/stv1457.pdf Dotti M, Sesana A, Decarli R (2012) Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures. Advances in Astronomy 2012:940568. https://doi.org/ 10.1155/2012/940568. arXiv:1111.0664 [astro-ph.CO] Drake SP, Szekeres P (2000) Uniqueness of the Newman-Janis algorithm in generating the Kerr-Newman metric. Gen Rel Grav 32:445–458. https://doi.org/10.1023/A: 1001920232180. arXiv:gr-qc/9807001 Drummond IT, Hathrell SJ (1980) QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons. Phys Rev D 22:343. https://doi.org/10.1103/PhysRevD.22.343
- [gr-qc] Dong Y, Shao L, Hu Z, Miao X, Wang Z (2022b) Prospects for constraining the Yukawa gravity with pulsars around Sagittarius A*. JCAP 11:051. https://doi.org/10.1088/ 1475-7516/2022/11/051. arXiv:2210.16130 [astro-ph.HE] Donoghue JF (1994) Leading quantum correction to the Newtonian potential. Phys Rev Lett 72:2996–2999. https://doi.org/10.1103/PhysRevLett.72.2996. arXiv:grqc/9310024 120 The ngEHT Fundamental Physics SWG D’Orazio DJ, Loeb A (2018a) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Loeb A (2018b) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Haiman Z, Duffell P, Farris BD, MacFadyen AI (2015) A reduced orbital period for the supermassive black hole binary candidate in the quasar PG 1302102? Monthly Notices of the Royal Astronomical Society 452(3):2540–2545. https: //doi.org/10.1093/mnras/stv1457, URL https://doi.org/10.1093/mnras/stv1457. https://academic.oup.com/mnras/article-pdf/452/3/2540/4921183/stv1457.pdf Dotti M, Sesana A, Decarli R (2012) Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures. Advances in Astronomy 2012:940568. https://doi.org/ 10.1155/2012/940568. arXiv:1111.0664 [astro-ph.CO] Drake SP, Szekeres P (2000) Uniqueness of the Newman-Janis algorithm in generating the Kerr-Newman metric. Gen Rel Grav 32:445–458. https://doi.org/10.1023/A: 1001920232180. arXiv:gr-qc/9807001 Drummond IT, Hathrell SJ (1980) QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons. Phys Rev D 22:343. https://doi.org/10.1103/PhysRevD.22.343
- [gr-qc] Dong Y, Shao L, Hu Z, Miao X, Wang Z (2022b) Prospects for constraining the Yukawa gravity with pulsars around Sagittarius A*. JCAP 11:051. https://doi.org/10.1088/ 1475-7516/2022/11/051. arXiv:2210.16130 [astro-ph.HE] Donoghue JF (1994) Leading quantum correction to the Newtonian potential. Phys Rev Lett 72:2996–2999. https://doi.org/10.1103/PhysRevLett.72.2996. arXiv:grqc/9310024 120 The ngEHT Fundamental Physics SWG D’Orazio DJ, Loeb A (2018a) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Loeb A (2018b) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Haiman Z, Duffell P, Farris BD, MacFadyen AI (2015) A reduced orbital period for the supermassive black hole binary candidate in the quasar PG 1302102? Monthly Notices of the Royal Astronomical Society 452(3):2540–2545. https: //doi.org/10.1093/mnras/stv1457, URL https://doi.org/10.1093/mnras/stv1457. https://academic.oup.com/mnras/article-pdf/452/3/2540/4921183/stv1457.pdf Dotti M, Sesana A, Decarli R (2012) Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures. Advances in Astronomy 2012:940568. https://doi.org/ 10.1155/2012/940568. arXiv:1111.0664 [astro-ph.CO] Drake SP, Szekeres P (2000) Uniqueness of the Newman-Janis algorithm in generating the Kerr-Newman metric. Gen Rel Grav 32:445–458. https://doi.org/10.1023/A: 1001920232180. arXiv:gr-qc/9807001 Drummond IT, Hathrell SJ (1980) QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons. Phys Rev D 22:343. https://doi.org/10.1103/PhysRevD.22.343
- [gr-qc] Dong Y, Shao L, Hu Z, Miao X, Wang Z (2022b) Prospects for constraining the Yukawa gravity with pulsars around Sagittarius A*. JCAP 11:051. https://doi.org/10.1088/ 1475-7516/2022/11/051. arXiv:2210.16130 [astro-ph.HE] Donoghue JF (1994) Leading quantum correction to the Newtonian potential. Phys Rev Lett 72:2996–2999. https://doi.org/10.1103/PhysRevLett.72.2996. arXiv:grqc/9310024 120 The ngEHT Fundamental Physics SWG D’Orazio DJ, Loeb A (2018a) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Loeb A (2018b) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Haiman Z, Duffell P, Farris BD, MacFadyen AI (2015) A reduced orbital period for the supermassive black hole binary candidate in the quasar PG 1302102? Monthly Notices of the Royal Astronomical Society 452(3):2540–2545. https: //doi.org/10.1093/mnras/stv1457, URL https://doi.org/10.1093/mnras/stv1457. https://academic.oup.com/mnras/article-pdf/452/3/2540/4921183/stv1457.pdf Dotti M, Sesana A, Decarli R (2012) Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures. Advances in Astronomy 2012:940568. https://doi.org/ 10.1155/2012/940568. arXiv:1111.0664 [astro-ph.CO] Drake SP, Szekeres P (2000) Uniqueness of the Newman-Janis algorithm in generating the Kerr-Newman metric. Gen Rel Grav 32:445–458. https://doi.org/10.1023/A: 1001920232180. arXiv:gr-qc/9807001 Drummond IT, Hathrell SJ (1980) QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons. Phys Rev D 22:343. https://doi.org/10.1103/PhysRevD.22.343
- [gr-qc] Dong Y, Shao L, Hu Z, Miao X, Wang Z (2022b) Prospects for constraining the Yukawa gravity with pulsars around Sagittarius A*. JCAP 11:051. https://doi.org/10.1088/ 1475-7516/2022/11/051. arXiv:2210.16130 [astro-ph.HE] Donoghue JF (1994) Leading quantum correction to the Newtonian potential. Phys Rev Lett 72:2996–2999. https://doi.org/10.1103/PhysRevLett.72.2996. arXiv:grqc/9310024 120 The ngEHT Fundamental Physics SWG D’Orazio DJ, Loeb A (2018a) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Loeb A (2018b) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Haiman Z, Duffell P, Farris BD, MacFadyen AI (2015) A reduced orbital period for the supermassive black hole binary candidate in the quasar PG 1302102? Monthly Notices of the Royal Astronomical Society 452(3):2540–2545. https: //doi.org/10.1093/mnras/stv1457, URL https://doi.org/10.1093/mnras/stv1457. https://academic.oup.com/mnras/article-pdf/452/3/2540/4921183/stv1457.pdf Dotti M, Sesana A, Decarli R (2012) Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures. Advances in Astronomy 2012:940568. https://doi.org/ 10.1155/2012/940568. arXiv:1111.0664 [astro-ph.CO] Drake SP, Szekeres P (2000) Uniqueness of the Newman-Janis algorithm in generating the Kerr-Newman metric. Gen Rel Grav 32:445–458. https://doi.org/10.1023/A: 1001920232180. arXiv:gr-qc/9807001 Drummond IT, Hathrell SJ (1980) QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons. Phys Rev D 22:343. https://doi.org/10.1103/PhysRevD.22.343
- [gr-qc] Dong Y, Shao L, Hu Z, Miao X, Wang Z (2022b) Prospects for constraining the Yukawa gravity with pulsars around Sagittarius A*. JCAP 11:051. https://doi.org/10.1088/ 1475-7516/2022/11/051. arXiv:2210.16130 [astro-ph.HE] Donoghue JF (1994) Leading quantum correction to the Newtonian potential. Phys Rev Lett 72:2996–2999. https://doi.org/10.1103/PhysRevLett.72.2996. arXiv:grqc/9310024 120 The ngEHT Fundamental Physics SWG D’Orazio DJ, Loeb A (2018a) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Loeb A (2018b) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Haiman Z, Duffell P, Farris BD, MacFadyen AI (2015) A reduced orbital period for the supermassive black hole binary candidate in the quasar PG 1302102? Monthly Notices of the Royal Astronomical Society 452(3):2540–2545. https: //doi.org/10.1093/mnras/stv1457, URL https://doi.org/10.1093/mnras/stv1457. https://academic.oup.com/mnras/article-pdf/452/3/2540/4921183/stv1457.pdf Dotti M, Sesana A, Decarli R (2012) Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures. Advances in Astronomy 2012:940568. https://doi.org/ 10.1155/2012/940568. arXiv:1111.0664 [astro-ph.CO] Drake SP, Szekeres P (2000) Uniqueness of the Newman-Janis algorithm in generating the Kerr-Newman metric. Gen Rel Grav 32:445–458. https://doi.org/10.1023/A: 1001920232180. arXiv:gr-qc/9807001 Drummond IT, Hathrell SJ (1980) QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons. Phys Rev D 22:343. https://doi.org/10.1103/PhysRevD.22.343
- [gr-qc] Dong Y, Shao L, Hu Z, Miao X, Wang Z (2022b) Prospects for constraining the Yukawa gravity with pulsars around Sagittarius A*. JCAP 11:051. https://doi.org/10.1088/ 1475-7516/2022/11/051. arXiv:2210.16130 [astro-ph.HE] Donoghue JF (1994) Leading quantum correction to the Newtonian potential. Phys Rev Lett 72:2996–2999. https://doi.org/10.1103/PhysRevLett.72.2996. arXiv:grqc/9310024 120 The ngEHT Fundamental Physics SWG D’Orazio DJ, Loeb A (2018a) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Loeb A (2018b) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Haiman Z, Duffell P, Farris BD, MacFadyen AI (2015) A reduced orbital period for the supermassive black hole binary candidate in the quasar PG 1302102? Monthly Notices of the Royal Astronomical Society 452(3):2540–2545. https: //doi.org/10.1093/mnras/stv1457, URL https://doi.org/10.1093/mnras/stv1457. https://academic.oup.com/mnras/article-pdf/452/3/2540/4921183/stv1457.pdf Dotti M, Sesana A, Decarli R (2012) Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures. Advances in Astronomy 2012:940568. https://doi.org/ 10.1155/2012/940568. arXiv:1111.0664 [astro-ph.CO] Drake SP, Szekeres P (2000) Uniqueness of the Newman-Janis algorithm in generating the Kerr-Newman metric. Gen Rel Grav 32:445–458. https://doi.org/10.1023/A: 1001920232180. arXiv:gr-qc/9807001 Drummond IT, Hathrell SJ (1980) QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons. Phys Rev D 22:343. https://doi.org/10.1103/PhysRevD.22.343
- [gr-qc] Dong Y, Shao L, Hu Z, Miao X, Wang Z (2022b) Prospects for constraining the Yukawa gravity with pulsars around Sagittarius A*. JCAP 11:051. https://doi.org/10.1088/ 1475-7516/2022/11/051. arXiv:2210.16130 [astro-ph.HE] Donoghue JF (1994) Leading quantum correction to the Newtonian potential. Phys Rev Lett 72:2996–2999. https://doi.org/10.1103/PhysRevLett.72.2996. arXiv:grqc/9310024 120 The ngEHT Fundamental Physics SWG D’Orazio DJ, Loeb A (2018a) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Loeb A (2018b) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Haiman Z, Duffell P, Farris BD, MacFadyen AI (2015) A reduced orbital period for the supermassive black hole binary candidate in the quasar PG 1302102? Monthly Notices of the Royal Astronomical Society 452(3):2540–2545. https: //doi.org/10.1093/mnras/stv1457, URL https://doi.org/10.1093/mnras/stv1457. https://academic.oup.com/mnras/article-pdf/452/3/2540/4921183/stv1457.pdf Dotti M, Sesana A, Decarli R (2012) Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures. Advances in Astronomy 2012:940568. https://doi.org/ 10.1155/2012/940568. arXiv:1111.0664 [astro-ph.CO] Drake SP, Szekeres P (2000) Uniqueness of the Newman-Janis algorithm in generating the Kerr-Newman metric. Gen Rel Grav 32:445–458. https://doi.org/10.1023/A: 1001920232180. arXiv:gr-qc/9807001 Drummond IT, Hathrell SJ (1980) QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons. Phys Rev D 22:343. https://doi.org/10.1103/PhysRevD.22.343
- [gr-qc] Dong Y, Shao L, Hu Z, Miao X, Wang Z (2022b) Prospects for constraining the Yukawa gravity with pulsars around Sagittarius A*. JCAP 11:051. https://doi.org/10.1088/ 1475-7516/2022/11/051. arXiv:2210.16130 [astro-ph.HE] Donoghue JF (1994) Leading quantum correction to the Newtonian potential. Phys Rev Lett 72:2996–2999. https://doi.org/10.1103/PhysRevLett.72.2996. arXiv:grqc/9310024 120 The ngEHT Fundamental Physics SWG D’Orazio DJ, Loeb A (2018a) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Loeb A (2018b) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Haiman Z, Duffell P, Farris BD, MacFadyen AI (2015) A reduced orbital period for the supermassive black hole binary candidate in the quasar PG 1302102? Monthly Notices of the Royal Astronomical Society 452(3):2540–2545. https: //doi.org/10.1093/mnras/stv1457, URL https://doi.org/10.1093/mnras/stv1457. https://academic.oup.com/mnras/article-pdf/452/3/2540/4921183/stv1457.pdf Dotti M, Sesana A, Decarli R (2012) Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures. Advances in Astronomy 2012:940568. https://doi.org/ 10.1155/2012/940568. arXiv:1111.0664 [astro-ph.CO] Drake SP, Szekeres P (2000) Uniqueness of the Newman-Janis algorithm in generating the Kerr-Newman metric. Gen Rel Grav 32:445–458. https://doi.org/10.1023/A: 1001920232180. arXiv:gr-qc/9807001 Drummond IT, Hathrell SJ (1980) QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons. Phys Rev D 22:343. https://doi.org/10.1103/PhysRevD.22.343
- [gr-qc] Dong Y, Shao L, Hu Z, Miao X, Wang Z (2022b) Prospects for constraining the Yukawa gravity with pulsars around Sagittarius A*. JCAP 11:051. https://doi.org/10.1088/ 1475-7516/2022/11/051. arXiv:2210.16130 [astro-ph.HE] Donoghue JF (1994) Leading quantum correction to the Newtonian potential. Phys Rev Lett 72:2996–2999. https://doi.org/10.1103/PhysRevLett.72.2996. arXiv:grqc/9310024 120 The ngEHT Fundamental Physics SWG D’Orazio DJ, Loeb A (2018a) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Loeb A (2018b) Repeated imaging of massive black hole binary orbits with millimeter interferometry: Measuring black hole masses and the hubble constant. The Astrophysical Journal 863(2):185. https://doi.org/10.3847/1538-4357/ aad413, URL https://doi.org/10.3847/1538-4357/aad413 D’Orazio DJ, Haiman Z, Duffell P, Farris BD, MacFadyen AI (2015) A reduced orbital period for the supermassive black hole binary candidate in the quasar PG 1302102? Monthly Notices of the Royal Astronomical Society 452(3):2540–2545. https: //doi.org/10.1093/mnras/stv1457, URL https://doi.org/10.1093/mnras/stv1457. https://academic.oup.com/mnras/article-pdf/452/3/2540/4921183/stv1457.pdf Dotti M, Sesana A, Decarli R (2012) Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures. Advances in Astronomy 2012:940568. https://doi.org/ 10.1155/2012/940568. arXiv:1111.0664 [astro-ph.CO] Drake SP, Szekeres P (2000) Uniqueness of the Newman-Janis algorithm in generating the Kerr-Newman metric. Gen Rel Grav 32:445–458. https://doi.org/10.1023/A: 1001920232180. arXiv:gr-qc/9807001 Drummond IT, Hathrell SJ (1980) QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons. Phys Rev D 22:343. https://doi.org/10.1103/PhysRevD.22.343
- [hep-ph] East WE, Pretorius F (2017) Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes. Phys Rev Lett 119(4):041101. https://doi. org/10.1103/PhysRevLett.119.041101. arXiv:1704.04791
- [gr-qc] Eggleton PP, Yakut K (2017) Models for 60 double-lined binaries containing giants. Mon. Not. R. Astron. Soc.468(3):3533–3556. https://doi.org/10.1093/mnras/stx598. arXiv:1611.05041 [astro-ph.SR] EHT Collaboration (2019a) First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett.875(1):L1. https://doi.org/10. 3847/2041-8213/ab0ec7. arXiv:1906.11238 [astro-ph.GA] EHT Collaboration (2019b) First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett.875(1):L2. https://doi.org/10.3847/2041-8213/ ab0c96. arXiv:1906.11239 [astro-ph.IM] EHT Collaboration (2019c) First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett.875(1):L3. https://doi.org/10.3847/ 2041-8213/ab0c57. arXiv:1906.11240 [astro-ph.GA] EHT Collaboration (2019d) First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett.875(1):L4. https://doi.org/ 10.3847/2041-8213/ab0e85. arXiv:1906.11241 [astro-ph.GA] EHT Collaboration (2019e) First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett.875(1):L5. https://doi.org/10. 3847/2041-8213/ab0f43. arXiv:1906.11242 [astro-ph.GA] Fundamental Physics Opportunities with the ngEHT 121 EHT Collaboration (2019f) First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett.875(1):L6. https: //doi.org/10.3847/2041-8213/ab1141. arXiv:1906.11243 [astro-ph.GA] EHT Collaboration (2021a) First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett.910(1):L12. https://doi.org/10.3847/2041-8213/ abe71d. arXiv:2105.01169 [astro-ph.HE]
- [gr-qc] Eggleton PP, Yakut K (2017) Models for 60 double-lined binaries containing giants. Mon. Not. R. Astron. Soc.468(3):3533–3556. https://doi.org/10.1093/mnras/stx598. arXiv:1611.05041 [astro-ph.SR] EHT Collaboration (2019a) First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett.875(1):L1. https://doi.org/10. 3847/2041-8213/ab0ec7. arXiv:1906.11238 [astro-ph.GA] EHT Collaboration (2019b) First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett.875(1):L2. https://doi.org/10.3847/2041-8213/ ab0c96. arXiv:1906.11239 [astro-ph.IM] EHT Collaboration (2019c) First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett.875(1):L3. https://doi.org/10.3847/ 2041-8213/ab0c57. arXiv:1906.11240 [astro-ph.GA] EHT Collaboration (2019d) First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett.875(1):L4. https://doi.org/ 10.3847/2041-8213/ab0e85. arXiv:1906.11241 [astro-ph.GA] EHT Collaboration (2019e) First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett.875(1):L5. https://doi.org/10. 3847/2041-8213/ab0f43. arXiv:1906.11242 [astro-ph.GA] Fundamental Physics Opportunities with the ngEHT 121 EHT Collaboration (2019f) First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett.875(1):L6. https: //doi.org/10.3847/2041-8213/ab1141. arXiv:1906.11243 [astro-ph.GA] EHT Collaboration (2021a) First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett.910(1):L12. https://doi.org/10.3847/2041-8213/ abe71d. arXiv:2105.01169 [astro-ph.HE]
- [gr-qc] Eggleton PP, Yakut K (2017) Models for 60 double-lined binaries containing giants. Mon. Not. R. Astron. Soc.468(3):3533–3556. https://doi.org/10.1093/mnras/stx598. arXiv:1611.05041 [astro-ph.SR] EHT Collaboration (2019a) First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett.875(1):L1. https://doi.org/10. 3847/2041-8213/ab0ec7. arXiv:1906.11238 [astro-ph.GA] EHT Collaboration (2019b) First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett.875(1):L2. https://doi.org/10.3847/2041-8213/ ab0c96. arXiv:1906.11239 [astro-ph.IM] EHT Collaboration (2019c) First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett.875(1):L3. https://doi.org/10.3847/ 2041-8213/ab0c57. arXiv:1906.11240 [astro-ph.GA] EHT Collaboration (2019d) First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett.875(1):L4. https://doi.org/ 10.3847/2041-8213/ab0e85. arXiv:1906.11241 [astro-ph.GA] EHT Collaboration (2019e) First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett.875(1):L5. https://doi.org/10. 3847/2041-8213/ab0f43. arXiv:1906.11242 [astro-ph.GA] Fundamental Physics Opportunities with the ngEHT 121 EHT Collaboration (2019f) First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett.875(1):L6. https: //doi.org/10.3847/2041-8213/ab1141. arXiv:1906.11243 [astro-ph.GA] EHT Collaboration (2021a) First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett.910(1):L12. https://doi.org/10.3847/2041-8213/ abe71d. arXiv:2105.01169 [astro-ph.HE]
- [gr-qc] Eggleton PP, Yakut K (2017) Models for 60 double-lined binaries containing giants. Mon. Not. R. Astron. Soc.468(3):3533–3556. https://doi.org/10.1093/mnras/stx598. arXiv:1611.05041 [astro-ph.SR] EHT Collaboration (2019a) First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett.875(1):L1. https://doi.org/10. 3847/2041-8213/ab0ec7. arXiv:1906.11238 [astro-ph.GA] EHT Collaboration (2019b) First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett.875(1):L2. https://doi.org/10.3847/2041-8213/ ab0c96. arXiv:1906.11239 [astro-ph.IM] EHT Collaboration (2019c) First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett.875(1):L3. https://doi.org/10.3847/ 2041-8213/ab0c57. arXiv:1906.11240 [astro-ph.GA] EHT Collaboration (2019d) First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett.875(1):L4. https://doi.org/ 10.3847/2041-8213/ab0e85. arXiv:1906.11241 [astro-ph.GA] EHT Collaboration (2019e) First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett.875(1):L5. https://doi.org/10. 3847/2041-8213/ab0f43. arXiv:1906.11242 [astro-ph.GA] Fundamental Physics Opportunities with the ngEHT 121 EHT Collaboration (2019f) First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett.875(1):L6. https: //doi.org/10.3847/2041-8213/ab1141. arXiv:1906.11243 [astro-ph.GA] EHT Collaboration (2021a) First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett.910(1):L12. https://doi.org/10.3847/2041-8213/ abe71d. arXiv:2105.01169 [astro-ph.HE]
- [gr-qc] Eggleton PP, Yakut K (2017) Models for 60 double-lined binaries containing giants. Mon. Not. R. Astron. Soc.468(3):3533–3556. https://doi.org/10.1093/mnras/stx598. arXiv:1611.05041 [astro-ph.SR] EHT Collaboration (2019a) First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett.875(1):L1. https://doi.org/10. 3847/2041-8213/ab0ec7. arXiv:1906.11238 [astro-ph.GA] EHT Collaboration (2019b) First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett.875(1):L2. https://doi.org/10.3847/2041-8213/ ab0c96. arXiv:1906.11239 [astro-ph.IM] EHT Collaboration (2019c) First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett.875(1):L3. https://doi.org/10.3847/ 2041-8213/ab0c57. arXiv:1906.11240 [astro-ph.GA] EHT Collaboration (2019d) First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett.875(1):L4. https://doi.org/ 10.3847/2041-8213/ab0e85. arXiv:1906.11241 [astro-ph.GA] EHT Collaboration (2019e) First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett.875(1):L5. https://doi.org/10. 3847/2041-8213/ab0f43. arXiv:1906.11242 [astro-ph.GA] Fundamental Physics Opportunities with the ngEHT 121 EHT Collaboration (2019f) First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett.875(1):L6. https: //doi.org/10.3847/2041-8213/ab1141. arXiv:1906.11243 [astro-ph.GA] EHT Collaboration (2021a) First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett.910(1):L12. https://doi.org/10.3847/2041-8213/ abe71d. arXiv:2105.01169 [astro-ph.HE]
- [gr-qc] Eggleton PP, Yakut K (2017) Models for 60 double-lined binaries containing giants. Mon. Not. R. Astron. Soc.468(3):3533–3556. https://doi.org/10.1093/mnras/stx598. arXiv:1611.05041 [astro-ph.SR] EHT Collaboration (2019a) First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett.875(1):L1. https://doi.org/10. 3847/2041-8213/ab0ec7. arXiv:1906.11238 [astro-ph.GA] EHT Collaboration (2019b) First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett.875(1):L2. https://doi.org/10.3847/2041-8213/ ab0c96. arXiv:1906.11239 [astro-ph.IM] EHT Collaboration (2019c) First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett.875(1):L3. https://doi.org/10.3847/ 2041-8213/ab0c57. arXiv:1906.11240 [astro-ph.GA] EHT Collaboration (2019d) First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett.875(1):L4. https://doi.org/ 10.3847/2041-8213/ab0e85. arXiv:1906.11241 [astro-ph.GA] EHT Collaboration (2019e) First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett.875(1):L5. https://doi.org/10. 3847/2041-8213/ab0f43. arXiv:1906.11242 [astro-ph.GA] Fundamental Physics Opportunities with the ngEHT 121 EHT Collaboration (2019f) First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett.875(1):L6. https: //doi.org/10.3847/2041-8213/ab1141. arXiv:1906.11243 [astro-ph.GA] EHT Collaboration (2021a) First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett.910(1):L12. https://doi.org/10.3847/2041-8213/ abe71d. arXiv:2105.01169 [astro-ph.HE]
- [gr-qc] Eggleton PP, Yakut K (2017) Models for 60 double-lined binaries containing giants. Mon. Not. R. Astron. Soc.468(3):3533–3556. https://doi.org/10.1093/mnras/stx598. arXiv:1611.05041 [astro-ph.SR] EHT Collaboration (2019a) First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett.875(1):L1. https://doi.org/10. 3847/2041-8213/ab0ec7. arXiv:1906.11238 [astro-ph.GA] EHT Collaboration (2019b) First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett.875(1):L2. https://doi.org/10.3847/2041-8213/ ab0c96. arXiv:1906.11239 [astro-ph.IM] EHT Collaboration (2019c) First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett.875(1):L3. https://doi.org/10.3847/ 2041-8213/ab0c57. arXiv:1906.11240 [astro-ph.GA] EHT Collaboration (2019d) First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett.875(1):L4. https://doi.org/ 10.3847/2041-8213/ab0e85. arXiv:1906.11241 [astro-ph.GA] EHT Collaboration (2019e) First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett.875(1):L5. https://doi.org/10. 3847/2041-8213/ab0f43. arXiv:1906.11242 [astro-ph.GA] Fundamental Physics Opportunities with the ngEHT 121 EHT Collaboration (2019f) First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett.875(1):L6. https: //doi.org/10.3847/2041-8213/ab1141. arXiv:1906.11243 [astro-ph.GA] EHT Collaboration (2021a) First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett.910(1):L12. https://doi.org/10.3847/2041-8213/ abe71d. arXiv:2105.01169 [astro-ph.HE]
- [gr-qc] Eggleton PP, Yakut K (2017) Models for 60 double-lined binaries containing giants. Mon. Not. R. Astron. Soc.468(3):3533–3556. https://doi.org/10.1093/mnras/stx598. arXiv:1611.05041 [astro-ph.SR] EHT Collaboration (2019a) First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett.875(1):L1. https://doi.org/10. 3847/2041-8213/ab0ec7. arXiv:1906.11238 [astro-ph.GA] EHT Collaboration (2019b) First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett.875(1):L2. https://doi.org/10.3847/2041-8213/ ab0c96. arXiv:1906.11239 [astro-ph.IM] EHT Collaboration (2019c) First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett.875(1):L3. https://doi.org/10.3847/ 2041-8213/ab0c57. arXiv:1906.11240 [astro-ph.GA] EHT Collaboration (2019d) First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett.875(1):L4. https://doi.org/ 10.3847/2041-8213/ab0e85. arXiv:1906.11241 [astro-ph.GA] EHT Collaboration (2019e) First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett.875(1):L5. https://doi.org/10. 3847/2041-8213/ab0f43. arXiv:1906.11242 [astro-ph.GA] Fundamental Physics Opportunities with the ngEHT 121 EHT Collaboration (2019f) First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett.875(1):L6. https: //doi.org/10.3847/2041-8213/ab1141. arXiv:1906.11243 [astro-ph.GA] EHT Collaboration (2021a) First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett.910(1):L12. https://doi.org/10.3847/2041-8213/ abe71d. arXiv:2105.01169 [astro-ph.HE]
- [gr-qc] Eichhorn A, Held A (2021b) Image features of spinning regular black holes based on a locality principle. Eur Phys J C 81(10):933. https://doi.org/10.1140/epjc/ s10052-021-09716-2. arXiv:2103.07473
- [gr-qc] Eichhorn A, Held A (2022) Quantum gravity lights up spinning black holes. arXiv e-prints arXiv:2206.11152
- [gr-qc] Eichhorn A, Gold R, Held A (2022a) Horizonless spacetimes as seen by present and next-generation Event Horizon Telescope arrays. arXiv e-prints arXiv:2205.14883 [astro-ph.HE] Eichhorn A, Held A, Johannsen PV (2022b) Universal signatures of singularityresolving physics in photon rings of black holes and horizonless objects. arXiv e-prints arXiv:2204.02429
- [gr-qc] Eichhorn A, Gold R, Held A (2022a) Horizonless spacetimes as seen by present and next-generation Event Horizon Telescope arrays. arXiv e-prints arXiv:2205.14883 [astro-ph.HE] Eichhorn A, Held A, Johannsen PV (2022b) Universal signatures of singularityresolving physics in photon rings of black holes and horizonless objects. arXiv e-prints arXiv:2204.02429
- [gr-qc] Eiroa EF, Sendra CM (2018) Shadow cast by rotating braneworld black holes with a cosmological constant. Eur Phys J C 78(2):91. https://doi.org/10.1140/epjc/ s10052-018-5586-6. arXiv:1711.08380
- [gr-qc] Ellis GFR, Meissner KA, Nicolai H (2018) The physics of infinity. Nature Physics 14(8):770–772. https://doi.org/10.1038/s41567-018-0238-1 Emami R, Loeb A (2020) Observational signatures of the black hole mass distribution in the galactic center. JCAP 02:021. https://doi.org/10.1088/1475-7516/2020/02/021. arXiv:1903.02578 [astro-ph.HE] Emami R, Loeb A (2021) Detectability of gravitational waves from a population of inspiralling black holes in Milky Way-mass galaxies. Mon Not Roy Astron Soc 502(3):3932–3941. https://doi.org/10.1093/mnras/stab290. arXiv:1903.02579 [astroph.HE] Emami R, Ricarte A, Wong GN, Palumbo D, Chang D, Doeleman SS, Broderick AE, Narayan R, Wielgus M, Blackburn L, Prather BS, Chael AA, Anantua R, Chatterjee 122 The ngEHT Fundamental Physics SWG K, Marti-Vidal I, Gómez JL, Akiyama K, Liska M, Hernquist L, Tremblay G, Vogelsberger M, Alcock C, Smith R, Steiner J, Tiede P, Roelofs F (2023) Unraveling Twisty Linear Polarization Morphologies in Black Hole Images. Astrophys. J.950(1):38. https://doi.org/10.3847/1538-4357/acc8cd. arXiv:2210.01218 [astro-ph.GA] Emir Gümrükçüoğlu A, Saravani M, Sotiriou TP (2018) Hořava gravity after GW170817. Phys Rev D 97(2):024032. https://doi.org/10.1103/PhysRevD.97. 024032. arXiv:1711.08845
- [gr-qc] Ellis GFR, Meissner KA, Nicolai H (2018) The physics of infinity. Nature Physics 14(8):770–772. https://doi.org/10.1038/s41567-018-0238-1 Emami R, Loeb A (2020) Observational signatures of the black hole mass distribution in the galactic center. JCAP 02:021. https://doi.org/10.1088/1475-7516/2020/02/021. arXiv:1903.02578 [astro-ph.HE] Emami R, Loeb A (2021) Detectability of gravitational waves from a population of inspiralling black holes in Milky Way-mass galaxies. Mon Not Roy Astron Soc 502(3):3932–3941. https://doi.org/10.1093/mnras/stab290. arXiv:1903.02579 [astroph.HE] Emami R, Ricarte A, Wong GN, Palumbo D, Chang D, Doeleman SS, Broderick AE, Narayan R, Wielgus M, Blackburn L, Prather BS, Chael AA, Anantua R, Chatterjee 122 The ngEHT Fundamental Physics SWG K, Marti-Vidal I, Gómez JL, Akiyama K, Liska M, Hernquist L, Tremblay G, Vogelsberger M, Alcock C, Smith R, Steiner J, Tiede P, Roelofs F (2023) Unraveling Twisty Linear Polarization Morphologies in Black Hole Images. Astrophys. J.950(1):38. https://doi.org/10.3847/1538-4357/acc8cd. arXiv:2210.01218 [astro-ph.GA] Emir Gümrükçüoğlu A, Saravani M, Sotiriou TP (2018) Hořava gravity after GW170817. Phys Rev D 97(2):024032. https://doi.org/10.1103/PhysRevD.97. 024032. arXiv:1711.08845
- [gr-qc] Ellis GFR, Meissner KA, Nicolai H (2018) The physics of infinity. Nature Physics 14(8):770–772. https://doi.org/10.1038/s41567-018-0238-1 Emami R, Loeb A (2020) Observational signatures of the black hole mass distribution in the galactic center. JCAP 02:021. https://doi.org/10.1088/1475-7516/2020/02/021. arXiv:1903.02578 [astro-ph.HE] Emami R, Loeb A (2021) Detectability of gravitational waves from a population of inspiralling black holes in Milky Way-mass galaxies. Mon Not Roy Astron Soc 502(3):3932–3941. https://doi.org/10.1093/mnras/stab290. arXiv:1903.02579 [astroph.HE] Emami R, Ricarte A, Wong GN, Palumbo D, Chang D, Doeleman SS, Broderick AE, Narayan R, Wielgus M, Blackburn L, Prather BS, Chael AA, Anantua R, Chatterjee 122 The ngEHT Fundamental Physics SWG K, Marti-Vidal I, Gómez JL, Akiyama K, Liska M, Hernquist L, Tremblay G, Vogelsberger M, Alcock C, Smith R, Steiner J, Tiede P, Roelofs F (2023) Unraveling Twisty Linear Polarization Morphologies in Black Hole Images. Astrophys. J.950(1):38. https://doi.org/10.3847/1538-4357/acc8cd. arXiv:2210.01218 [astro-ph.GA] Emir Gümrükçüoğlu A, Saravani M, Sotiriou TP (2018) Hořava gravity after GW170817. Phys Rev D 97(2):024032. https://doi.org/10.1103/PhysRevD.97. 024032. arXiv:1711.08845
- [gr-qc] Ellis GFR, Meissner KA, Nicolai H (2018) The physics of infinity. Nature Physics 14(8):770–772. https://doi.org/10.1038/s41567-018-0238-1 Emami R, Loeb A (2020) Observational signatures of the black hole mass distribution in the galactic center. JCAP 02:021. https://doi.org/10.1088/1475-7516/2020/02/021. arXiv:1903.02578 [astro-ph.HE] Emami R, Loeb A (2021) Detectability of gravitational waves from a population of inspiralling black holes in Milky Way-mass galaxies. Mon Not Roy Astron Soc 502(3):3932–3941. https://doi.org/10.1093/mnras/stab290. arXiv:1903.02579 [astroph.HE] Emami R, Ricarte A, Wong GN, Palumbo D, Chang D, Doeleman SS, Broderick AE, Narayan R, Wielgus M, Blackburn L, Prather BS, Chael AA, Anantua R, Chatterjee 122 The ngEHT Fundamental Physics SWG K, Marti-Vidal I, Gómez JL, Akiyama K, Liska M, Hernquist L, Tremblay G, Vogelsberger M, Alcock C, Smith R, Steiner J, Tiede P, Roelofs F (2023) Unraveling Twisty Linear Polarization Morphologies in Black Hole Images. Astrophys. J.950(1):38. https://doi.org/10.3847/1538-4357/acc8cd. arXiv:2210.01218 [astro-ph.GA] Emir Gümrükçüoğlu A, Saravani M, Sotiriou TP (2018) Hořava gravity after GW170817. Phys Rev D 97(2):024032. https://doi.org/10.1103/PhysRevD.97. 024032. arXiv:1711.08845
- [gr-qc] Ellis GFR, Meissner KA, Nicolai H (2018) The physics of infinity. Nature Physics 14(8):770–772. https://doi.org/10.1038/s41567-018-0238-1 Emami R, Loeb A (2020) Observational signatures of the black hole mass distribution in the galactic center. JCAP 02:021. https://doi.org/10.1088/1475-7516/2020/02/021. arXiv:1903.02578 [astro-ph.HE] Emami R, Loeb A (2021) Detectability of gravitational waves from a population of inspiralling black holes in Milky Way-mass galaxies. Mon Not Roy Astron Soc 502(3):3932–3941. https://doi.org/10.1093/mnras/stab290. arXiv:1903.02579 [astroph.HE] Emami R, Ricarte A, Wong GN, Palumbo D, Chang D, Doeleman SS, Broderick AE, Narayan R, Wielgus M, Blackburn L, Prather BS, Chael AA, Anantua R, Chatterjee 122 The ngEHT Fundamental Physics SWG K, Marti-Vidal I, Gómez JL, Akiyama K, Liska M, Hernquist L, Tremblay G, Vogelsberger M, Alcock C, Smith R, Steiner J, Tiede P, Roelofs F (2023) Unraveling Twisty Linear Polarization Morphologies in Black Hole Images. Astrophys. J.950(1):38. https://doi.org/10.3847/1538-4357/acc8cd. arXiv:2210.01218 [astro-ph.GA] Emir Gümrükçüoğlu A, Saravani M, Sotiriou TP (2018) Hořava gravity after GW170817. Phys Rev D 97(2):024032. https://doi.org/10.1103/PhysRevD.97. 024032. arXiv:1711.08845
- [gr-qc] Emparan R, Reall HS (2008) Black Holes in Higher Dimensions. Living Rev Rel 11:6. https://doi.org/10.12942/lrr-2008-6. arXiv:0801.3471
- [hep-th] Endlich S, Gorbenko V, Huang J, Senatore L (2017) An effective formalism for testing extensions to General Relativity with gravitational waves. JHEP 09:122. https:// doi.org/10.1007/JHEP09(2017)122. arXiv:1704.01590
- [gr-qc] Eperon FC, Reall HS, Santos JE (2016) Instability of supersymmetric microstate geometries. JHEP 10:031. https://doi.org/10.1007/JHEP10(2016)031. arXiv:1607.06828
- [hep-th] Eracleous M, Boroson TA, Halpern JP, Liu J (2012) A LARGE SYSTEMATIC SEARCH FOR CLOSE SUPERMASSIVE BINARY AND RAPIDLY RECOILING BLACK HOLES. The Astrophysical Journal Supplement Series 201(2):23. https: //doi.org/10.1088/0067-0049/201/2/23, URL https://doi.org/10.1088/0067-0049/ 201/2/23 Evans C, Puech M, Afonso J, Almaini O, Amram P, Aussel H, Barbuy B, Basden A, Bastian N, Battaglia G, et al. (2015) The science case for multi-object spectroscopy on the european elt. arXiv preprint arXiv:150104726 Falcke H, Melia F, Agol E (2000) Viewing the shadow of the black hole at the galactic center. Astrophys J 528:L13. https://doi.org/10.1086/312423. arXiv:astroph/9912263
- [hep-th] Eracleous M, Boroson TA, Halpern JP, Liu J (2012) A LARGE SYSTEMATIC SEARCH FOR CLOSE SUPERMASSIVE BINARY AND RAPIDLY RECOILING BLACK HOLES. The Astrophysical Journal Supplement Series 201(2):23. https: //doi.org/10.1088/0067-0049/201/2/23, URL https://doi.org/10.1088/0067-0049/ 201/2/23 Evans C, Puech M, Afonso J, Almaini O, Amram P, Aussel H, Barbuy B, Basden A, Bastian N, Battaglia G, et al. (2015) The science case for multi-object spectroscopy on the european elt. arXiv preprint arXiv:150104726 Falcke H, Melia F, Agol E (2000) Viewing the shadow of the black hole at the galactic center. Astrophys J 528:L13. https://doi.org/10.1086/312423. arXiv:astroph/9912263
- [hep-th] Eracleous M, Boroson TA, Halpern JP, Liu J (2012) A LARGE SYSTEMATIC SEARCH FOR CLOSE SUPERMASSIVE BINARY AND RAPIDLY RECOILING BLACK HOLES. The Astrophysical Journal Supplement Series 201(2):23. https: //doi.org/10.1088/0067-0049/201/2/23, URL https://doi.org/10.1088/0067-0049/ 201/2/23 Evans C, Puech M, Afonso J, Almaini O, Amram P, Aussel H, Barbuy B, Basden A, Bastian N, Battaglia G, et al. (2015) The science case for multi-object spectroscopy on the european elt. arXiv preprint arXiv:150104726 Falcke H, Melia F, Agol E (2000) Viewing the shadow of the black hole at the galactic center. Astrophys J 528:L13. https://doi.org/10.1086/312423. arXiv:astroph/9912263
- [astro-ph] Fang Y, Yang H (2022) Orbit Tomography of Binary Supermassive Black Holes with Very Long Baseline Interferometry. Astrophys J 927(1):93. https://doi.org/10.3847/ 1538-4357/ac4bd7. arXiv:2111.00368
- [gr-qc] Fazio GG, Hora JL, Witzel G, Willner SP, Ashby MLN, Baganoff F, Becklin E, Carey S, Haggard D, Gammie C, Ghez A, Gurwell MA, Ingalls J, Marrone D, Morris MR, Smith HA (2018) Multiwavelength Light Curves of Two Remarkable Sagittarius A* Flares. Astrophys. J.864(1):58. https://doi.org/10.3847/1538-4357/aad4a2. arXiv:1807.07599 [astro-ph.HE] von Fellenberg SD, et al. (2022) The Young Stars in the Galactic Center. Astrophys J Lett 932(1):L6. https://doi.org/10.3847/2041-8213/ac68ef. arXiv:2205.07595 [astroph.GA] Feng Y, Li D, Zheng Z, Tsai CW (2020) Supermassive binary black hole evolution can be traced by a small ska pulsar timing array. Phys Rev D 102:023014. https://doi.org/10.1103/PhysRevD.102.023014, URL https://link.aps.org/doi/10. 1103/PhysRevD.102.023014 Fernandes PGS, Mulryne DJ (2022) A new approach and code for spinning black holes in modified gravity. arXiv e-prints arXiv:2212.07293. https://doi.org/10.48550/ arXiv.2212.07293. arXiv:2212.07293
- [gr-qc] Fazio GG, Hora JL, Witzel G, Willner SP, Ashby MLN, Baganoff F, Becklin E, Carey S, Haggard D, Gammie C, Ghez A, Gurwell MA, Ingalls J, Marrone D, Morris MR, Smith HA (2018) Multiwavelength Light Curves of Two Remarkable Sagittarius A* Flares. Astrophys. J.864(1):58. https://doi.org/10.3847/1538-4357/aad4a2. arXiv:1807.07599 [astro-ph.HE] von Fellenberg SD, et al. (2022) The Young Stars in the Galactic Center. Astrophys J Lett 932(1):L6. https://doi.org/10.3847/2041-8213/ac68ef. arXiv:2205.07595 [astroph.GA] Feng Y, Li D, Zheng Z, Tsai CW (2020) Supermassive binary black hole evolution can be traced by a small ska pulsar timing array. Phys Rev D 102:023014. https://doi.org/10.1103/PhysRevD.102.023014, URL https://link.aps.org/doi/10. 1103/PhysRevD.102.023014 Fernandes PGS, Mulryne DJ (2022) A new approach and code for spinning black holes in modified gravity. arXiv e-prints arXiv:2212.07293. https://doi.org/10.48550/ arXiv.2212.07293. arXiv:2212.07293
- [gr-qc] Fazio GG, Hora JL, Witzel G, Willner SP, Ashby MLN, Baganoff F, Becklin E, Carey S, Haggard D, Gammie C, Ghez A, Gurwell MA, Ingalls J, Marrone D, Morris MR, Smith HA (2018) Multiwavelength Light Curves of Two Remarkable Sagittarius A* Flares. Astrophys. J.864(1):58. https://doi.org/10.3847/1538-4357/aad4a2. arXiv:1807.07599 [astro-ph.HE] von Fellenberg SD, et al. (2022) The Young Stars in the Galactic Center. Astrophys J Lett 932(1):L6. https://doi.org/10.3847/2041-8213/ac68ef. arXiv:2205.07595 [astroph.GA] Feng Y, Li D, Zheng Z, Tsai CW (2020) Supermassive binary black hole evolution can be traced by a small ska pulsar timing array. Phys Rev D 102:023014. https://doi.org/10.1103/PhysRevD.102.023014, URL https://link.aps.org/doi/10. 1103/PhysRevD.102.023014 Fernandes PGS, Mulryne DJ (2022) A new approach and code for spinning black holes in modified gravity. arXiv e-prints arXiv:2212.07293. https://doi.org/10.48550/ arXiv.2212.07293. arXiv:2212.07293
- [gr-qc] Fazio GG, Hora JL, Witzel G, Willner SP, Ashby MLN, Baganoff F, Becklin E, Carey S, Haggard D, Gammie C, Ghez A, Gurwell MA, Ingalls J, Marrone D, Morris MR, Smith HA (2018) Multiwavelength Light Curves of Two Remarkable Sagittarius A* Flares. Astrophys. J.864(1):58. https://doi.org/10.3847/1538-4357/aad4a2. arXiv:1807.07599 [astro-ph.HE] von Fellenberg SD, et al. (2022) The Young Stars in the Galactic Center. Astrophys J Lett 932(1):L6. https://doi.org/10.3847/2041-8213/ac68ef. arXiv:2205.07595 [astroph.GA] Feng Y, Li D, Zheng Z, Tsai CW (2020) Supermassive binary black hole evolution can be traced by a small ska pulsar timing array. Phys Rev D 102:023014. https://doi.org/10.1103/PhysRevD.102.023014, URL https://link.aps.org/doi/10. 1103/PhysRevD.102.023014 Fernandes PGS, Mulryne DJ (2022) A new approach and code for spinning black holes in modified gravity. arXiv e-prints arXiv:2212.07293. https://doi.org/10.48550/ arXiv.2212.07293. arXiv:2212.07293
- [gr-qc] Fazio GG, Hora JL, Witzel G, Willner SP, Ashby MLN, Baganoff F, Becklin E, Carey S, Haggard D, Gammie C, Ghez A, Gurwell MA, Ingalls J, Marrone D, Morris MR, Smith HA (2018) Multiwavelength Light Curves of Two Remarkable Sagittarius A* Flares. Astrophys. J.864(1):58. https://doi.org/10.3847/1538-4357/aad4a2. arXiv:1807.07599 [astro-ph.HE] von Fellenberg SD, et al. (2022) The Young Stars in the Galactic Center. Astrophys J Lett 932(1):L6. https://doi.org/10.3847/2041-8213/ac68ef. arXiv:2205.07595 [astroph.GA] Feng Y, Li D, Zheng Z, Tsai CW (2020) Supermassive binary black hole evolution can be traced by a small ska pulsar timing array. Phys Rev D 102:023014. https://doi.org/10.1103/PhysRevD.102.023014, URL https://link.aps.org/doi/10. 1103/PhysRevD.102.023014 Fernandes PGS, Mulryne DJ (2022) A new approach and code for spinning black holes in modified gravity. arXiv e-prints arXiv:2212.07293. https://doi.org/10.48550/ arXiv.2212.07293. arXiv:2212.07293
- [gr-qc] Ferrari V, Mashhoon B (1984) New approach to the quasinormal modes of a black hole. Phys Rev D 30:295–304. https://doi.org/10.1103/PhysRevD.30.295 Ferreira EGM (2021) Ultra-light dark matter. Astron Astrophys Rev 29(1):7. https: //doi.org/10.1007/s00159-021-00135-6. arXiv:2005.03254 [astro-ph.CO] Fundamental Physics Opportunities with the ngEHT 123 Ferreira MC, Macedo CFB, Cardoso V (2017) Orbital fingerprints of ultralight scalar fields around black holes. Phys Rev D 96(8):083017. https://doi.org/10.1103/ PhysRevD.96.083017. arXiv:1710.00830
- [gr-qc] Ferrari V, Mashhoon B (1984) New approach to the quasinormal modes of a black hole. Phys Rev D 30:295–304. https://doi.org/10.1103/PhysRevD.30.295 Ferreira EGM (2021) Ultra-light dark matter. Astron Astrophys Rev 29(1):7. https: //doi.org/10.1007/s00159-021-00135-6. arXiv:2005.03254 [astro-ph.CO] Fundamental Physics Opportunities with the ngEHT 123 Ferreira MC, Macedo CFB, Cardoso V (2017) Orbital fingerprints of ultralight scalar fields around black holes. Phys Rev D 96(8):083017. https://doi.org/10.1103/ PhysRevD.96.083017. arXiv:1710.00830
- [gr-qc] Ferrari V, Mashhoon B (1984) New approach to the quasinormal modes of a black hole. Phys Rev D 30:295–304. https://doi.org/10.1103/PhysRevD.30.295 Ferreira EGM (2021) Ultra-light dark matter. Astron Astrophys Rev 29(1):7. https: //doi.org/10.1007/s00159-021-00135-6. arXiv:2005.03254 [astro-ph.CO] Fundamental Physics Opportunities with the ngEHT 123 Ferreira MC, Macedo CFB, Cardoso V (2017) Orbital fingerprints of ultralight scalar fields around black holes. Phys Rev D 96(8):083017. https://doi.org/10.1103/ PhysRevD.96.083017. arXiv:1710.00830
- [gr-qc] Foschi A, et al. (2023) Using the motion of S2 to constrain scalar clouds around Sgr A*. Mon Not Roy Astron Soc 524(1):1075–1086. https://doi.org/10.1093/mnras/ stad1939. arXiv:2306.17215 [astro-ph.GA] Foucart F, Chandra M, Gammie CF, Quataert E, Tchekhovskoy A (2017) How important is non-ideal physics in simulations of sub-Eddington accretion on to spinning black holes? Monthly Notices of the Royal Astronomical Society 470(2):2240–2252. https://doi.org/10.1093/mnras/stx1368, URL https://doi.org/10. 1093/mnras/stx1368 Franzin E, Liberati S, Mazza J, Vellucci V (2022) Stable rotating regular black holes. Phys Rev D 106(10):104060. https://doi.org/10.1103/PhysRevD.106.104060. arXiv:2207.08864
- [gr-qc] Foschi A, et al. (2023) Using the motion of S2 to constrain scalar clouds around Sgr A*. Mon Not Roy Astron Soc 524(1):1075–1086. https://doi.org/10.1093/mnras/ stad1939. arXiv:2306.17215 [astro-ph.GA] Foucart F, Chandra M, Gammie CF, Quataert E, Tchekhovskoy A (2017) How important is non-ideal physics in simulations of sub-Eddington accretion on to spinning black holes? Monthly Notices of the Royal Astronomical Society 470(2):2240–2252. https://doi.org/10.1093/mnras/stx1368, URL https://doi.org/10. 1093/mnras/stx1368 Franzin E, Liberati S, Mazza J, Vellucci V (2022) Stable rotating regular black holes. Phys Rev D 106(10):104060. https://doi.org/10.1103/PhysRevD.106.104060. arXiv:2207.08864
- [gr-qc] Foschi A, et al. (2023) Using the motion of S2 to constrain scalar clouds around Sgr A*. Mon Not Roy Astron Soc 524(1):1075–1086. https://doi.org/10.1093/mnras/ stad1939. arXiv:2306.17215 [astro-ph.GA] Foucart F, Chandra M, Gammie CF, Quataert E, Tchekhovskoy A (2017) How important is non-ideal physics in simulations of sub-Eddington accretion on to spinning black holes? Monthly Notices of the Royal Astronomical Society 470(2):2240–2252. https://doi.org/10.1093/mnras/stx1368, URL https://doi.org/10. 1093/mnras/stx1368 Franzin E, Liberati S, Mazza J, Vellucci V (2022) Stable rotating regular black holes. Phys Rev D 106(10):104060. https://doi.org/10.1103/PhysRevD.106.104060. arXiv:2207.08864
- [gr-qc] Freitas FF, Herdeiro CAR, Morais AP, Onofre A, Pasechnik R, Radu E, Sanchis-Gual N, Santos R (2021) Ultralight bosons for strong gravity applications from simple Standard Model extensions. JCAP 12(12):047. https://doi.org/10.1088/1475-7516/ 2021/12/047. arXiv:2107.09493
- [hep-ph] Friedman JL (1978) Generic instability of rotating relativistic stars. Commun Math Phys 62(3):247–278. https://doi.org/10.1007/BF01202527 Frolov VP, Vilkovisky GA (1979) Quantum gravity removes classical singularities and shortens the life of black holes. In: The Second Marcel Grossmann Meeting on the Recent Developments of General Relativity (In Honor of Albert Einstein) Frolov VP, Vilkovisky GA (1981) Spherically Symmetric Collapse in Quantum Gravity. Phys Lett B 106:307–313. https://doi.org/10.1016/0370-2693(81)90542-6 Frolov VP, Zelnikov A (2017) Quantum radiation from an evaporating nonsingular black hole. Phys Rev D 95(12):124028. https://doi.org/10.1103/PhysRevD.95. 124028. arXiv:1704.03043
- [hep-ph] Friedman JL (1978) Generic instability of rotating relativistic stars. Commun Math Phys 62(3):247–278. https://doi.org/10.1007/BF01202527 Frolov VP, Vilkovisky GA (1979) Quantum gravity removes classical singularities and shortens the life of black holes. In: The Second Marcel Grossmann Meeting on the Recent Developments of General Relativity (In Honor of Albert Einstein) Frolov VP, Vilkovisky GA (1981) Spherically Symmetric Collapse in Quantum Gravity. Phys Lett B 106:307–313. https://doi.org/10.1016/0370-2693(81)90542-6 Frolov VP, Zelnikov A (2017) Quantum radiation from an evaporating nonsingular black hole. Phys Rev D 95(12):124028. https://doi.org/10.1103/PhysRevD.95. 124028. arXiv:1704.03043
- [hep-ph] Friedman JL (1978) Generic instability of rotating relativistic stars. Commun Math Phys 62(3):247–278. https://doi.org/10.1007/BF01202527 Frolov VP, Vilkovisky GA (1979) Quantum gravity removes classical singularities and shortens the life of black holes. In: The Second Marcel Grossmann Meeting on the Recent Developments of General Relativity (In Honor of Albert Einstein) Frolov VP, Vilkovisky GA (1981) Spherically Symmetric Collapse in Quantum Gravity. Phys Lett B 106:307–313. https://doi.org/10.1016/0370-2693(81)90542-6 Frolov VP, Zelnikov A (2017) Quantum radiation from an evaporating nonsingular black hole. Phys Rev D 95(12):124028. https://doi.org/10.1103/PhysRevD.95. 124028. arXiv:1704.03043
- [hep-th] Frolov VP, Krtouš P, Kubizňák D, Santos JE (2018) Massive Vector Fields in Rotating Black-Hole Spacetimes: Separability and Quasinormal Modes. Phys Rev Lett 120:231103. https://doi.org/10.1103/PhysRevLett.120.231103. arXiv:1804.00030
- [hep-th] Fromm CM, Mizuno Y, Younsi Z, Olivares H, Porth O, De Laurentis M, Falcke H, Kramer M, Rezzolla L (2021) Using space-VLBI to probe gravity around Sgr A ∗ . Astron. Astrophys.649:A116. https://doi.org/10.1051/0004-6361/201937335. arXiv:2101.08618 [astro-ph.HE] Fujita R, Cardoso V (2017) Ultralight scalars and resonances in black-hole physics. Phys Rev D 95(4):044016. https://doi.org/10.1103/PhysRevD.95.044016. arXiv:1612.00978
- [hep-th] Fromm CM, Mizuno Y, Younsi Z, Olivares H, Porth O, De Laurentis M, Falcke H, Kramer M, Rezzolla L (2021) Using space-VLBI to probe gravity around Sgr A ∗ . Astron. Astrophys.649:A116. https://doi.org/10.1051/0004-6361/201937335. arXiv:2101.08618 [astro-ph.HE] Fujita R, Cardoso V (2017) Ultralight scalars and resonances in black-hole physics. Phys Rev D 95(4):044016. https://doi.org/10.1103/PhysRevD.95.044016. arXiv:1612.00978
- [gr-qc] Fukuda H, Nakayama K (2020) Aspects of Nonlinear Effect on Black Hole Superradiance. JHEP 01:128. https://doi.org/10.1007/JHEP01(2020)128. arXiv:1910.06308
- [hep-ph] Gambini R, Pullin J (2013) Loop quantization of the Schwarzschild black hole. Phys Rev Lett 110(21):211301. https://doi.org/10.1103/PhysRevLett.110.211301. arXiv:1302.5265
- [gr-qc] Gammie CF, McKinney JC, Tóth G (2003) HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics. Astrophys. J.589:444–457. https://doi.org/10. 1086/374594. astro-ph/0301509 124 The ngEHT Fundamental Physics SWG Gan X, Wang LT, Xiao H (2023) Detecting Axion Dark Matter with Black Hole Polarimetry. arXiv e-prints arXiv:2311.02149
- [gr-qc] Gammie CF, McKinney JC, Tóth G (2003) HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics. Astrophys. J.589:444–457. https://doi.org/10. 1086/374594. astro-ph/0301509 124 The ngEHT Fundamental Physics SWG Gan X, Wang LT, Xiao H (2023) Detecting Axion Dark Matter with Black Hole Polarimetry. arXiv e-prints arXiv:2311.02149
- [hep-ph] Ganchev B, Santos JE (2018) Scalar Hairy Black Holes in Four Dimensions are Unstable. Phys Rev Lett 120(17):171101. https://doi.org/10.1103/PhysRevLett.120. 171101. arXiv:1711.08464
- [gr-qc] Garfinkle D, Horowitz GT, Strominger A (1991) Charged black holes in string theory. Phys. Rev. D43(10):3140–3143. https://doi.org/10.1103/PhysRevD.43.3140 Gelles Z, Himwich E, Johnson MD, Palumbo DCM (2021a) Polarized image of equatorial emission in the Kerr geometry. Phys. Rev. D104(4):044060. https://doi.org/ 10.1103/PhysRevD.104.044060. arXiv:2105.09440
- [gr-qc] Garfinkle D, Horowitz GT, Strominger A (1991) Charged black holes in string theory. Phys. Rev. D43(10):3140–3143. https://doi.org/10.1103/PhysRevD.43.3140 Gelles Z, Himwich E, Johnson MD, Palumbo DCM (2021a) Polarized image of equatorial emission in the Kerr geometry. Phys. Rev. D104(4):044060. https://doi.org/ 10.1103/PhysRevD.104.044060. arXiv:2105.09440
- [gr-qc] Gelles Z, Himwich E, Palumbo DCM, Johnson MD (2021b) Polarized Image of Equatorial Emission in the Kerr Geometry. arXiv e-prints arXiv:2105.09440. arXiv:2105.09440
- [gr-qc] Gelles Z, Himwich E, Palumbo DCM, Johnson MD (2021b) Polarized Image of Equatorial Emission in the Kerr Geometry. arXiv e-prints arXiv:2105.09440. arXiv:2105.09440
- [gr-qc] Genzel R, Schödel R, Ott T, Eckart A, Alexander T, Lacombe F, Rouan D, Aschenbach B (2003) Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre. Nature425(6961):934–937. https://doi.org/ 10.1038/nature02065. arXiv:astro-ph/0310821
- [astro-ph] Genzel R, Schodel R, Ott T, Eckart A, Alexander T, Lacombe F, Rouan D, Aschenbach B (2003) Near-infrared flares from accreting gas around the supermassive black hole at the galactic centre. Nature 425:934–937. https://doi.org/10.1038/nature02065. arXiv:astro-ph/0310821 Georgiev B, et al (2022) A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows. The Astrophysical Journal Letters 930(2):L20. https://doi.org/10.3847/2041-8213/AC65EB, URL https://iopscience. iop.org/article/10.3847/2041-8213/ac65eb, publisher: IOP Publishing Ghasemi-Nodehi M (2020) Testing Ghasemi-Nodehi-Bambi spacetime with continuumfitting method. European Physical Journal C 80(5):405. https://doi.org/10.1140/ epjc/s10052-020-7916-8. arXiv:2006.13628
- [astro-ph] Genzel R, Schodel R, Ott T, Eckart A, Alexander T, Lacombe F, Rouan D, Aschenbach B (2003) Near-infrared flares from accreting gas around the supermassive black hole at the galactic centre. Nature 425:934–937. https://doi.org/10.1038/nature02065. arXiv:astro-ph/0310821 Georgiev B, et al (2022) A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows. The Astrophysical Journal Letters 930(2):L20. https://doi.org/10.3847/2041-8213/AC65EB, URL https://iopscience. iop.org/article/10.3847/2041-8213/ac65eb, publisher: IOP Publishing Ghasemi-Nodehi M (2020) Testing Ghasemi-Nodehi-Bambi spacetime with continuumfitting method. European Physical Journal C 80(5):405. https://doi.org/10.1140/ epjc/s10052-020-7916-8. arXiv:2006.13628
- [astro-ph] Genzel R, Schodel R, Ott T, Eckart A, Alexander T, Lacombe F, Rouan D, Aschenbach B (2003) Near-infrared flares from accreting gas around the supermassive black hole at the galactic centre. Nature 425:934–937. https://doi.org/10.1038/nature02065. arXiv:astro-ph/0310821 Georgiev B, et al (2022) A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows. The Astrophysical Journal Letters 930(2):L20. https://doi.org/10.3847/2041-8213/AC65EB, URL https://iopscience. iop.org/article/10.3847/2041-8213/ac65eb, publisher: IOP Publishing Ghasemi-Nodehi M (2020) Testing Ghasemi-Nodehi-Bambi spacetime with continuumfitting method. European Physical Journal C 80(5):405. https://doi.org/10.1140/ epjc/s10052-020-7916-8. arXiv:2006.13628
- [gr-qc] Ghez AM, et al. (2008) Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits. Astrophys J 689:1044–1062. https: //doi.org/10.1086/592738. arXiv:0808.2870
- [astro-ph] Ghosh SG, Maharaj SD (2015) Radiating Kerr-like regular black hole. Eur Phys J C 75:7. https://doi.org/10.1140/epjc/s10052-014-3222-7. arXiv:1410.4043
- [gr-qc] Gibbons G (1975) Vacuum Polarization and the Spontaneous Loss of Charge by Black Holes. CommunMathPhys 44:245–264. https://doi.org/10.1007/BF01609829 Gibbons GW, Maeda KI (1988) Black holes and membranes in higher-dimensional theories with dilaton fields. Nuclear Physics B 298(4):741–775. https://doi.org/10. 1016/0550-3213(88)90006-5 Giddings SB (2019) Searching for quantum black hole structure with the Event Horizon Telescope. Universe 5(9):201. https://doi.org/10.3390/universe5090201. arXiv:1904.05287
- [gr-qc] Gibbons G (1975) Vacuum Polarization and the Spontaneous Loss of Charge by Black Holes. CommunMathPhys 44:245–264. https://doi.org/10.1007/BF01609829 Gibbons GW, Maeda KI (1988) Black holes and membranes in higher-dimensional theories with dilaton fields. Nuclear Physics B 298(4):741–775. https://doi.org/10. 1016/0550-3213(88)90006-5 Giddings SB (2019) Searching for quantum black hole structure with the Event Horizon Telescope. Universe 5(9):201. https://doi.org/10.3390/universe5090201. arXiv:1904.05287
- [gr-qc] Gibbons G (1975) Vacuum Polarization and the Spontaneous Loss of Charge by Black Holes. CommunMathPhys 44:245–264. https://doi.org/10.1007/BF01609829 Gibbons GW, Maeda KI (1988) Black holes and membranes in higher-dimensional theories with dilaton fields. Nuclear Physics B 298(4):741–775. https://doi.org/10. 1016/0550-3213(88)90006-5 Giddings SB (2019) Searching for quantum black hole structure with the Event Horizon Telescope. Universe 5(9):201. https://doi.org/10.3390/universe5090201. arXiv:1904.05287
- [gr-qc] Giddings SB, Psaltis D (2018) Event Horizon Telescope Observations as Probes for Quantum Structure of Astrophysical Black Holes. Phys Rev D 97(8):084035. https: //doi.org/10.1103/PhysRevD.97.084035. arXiv:1606.07814 [astro-ph.HE] Gillessen S, Eisenhauer F, Quataert E, Genzel R, Paumard T, Trippe S, Ott T, Abuter R, Eckart A, Lagage PO, Lehnert MD, Tacconi LJ, Martins F (2006) Variations in the spectral slope of Sgr A* during a NIR flare. In: Journal of Physics Conference Series. Journal of Physics Conference Series, vol 54. pp 411–419. https://doi.org/10. 1088/1742-6596/54/1/065 Fundamental Physics Opportunities with the ngEHT 125 Glampedakis K, Pappas G (2021) Can supermassive black hole shadows test the Kerr metric? Phys Rev D 104(8):L081503. https://doi.org/10.1103/PhysRevD.104. L081503. arXiv:2102.13573
- [gr-qc] Giddings SB, Psaltis D (2018) Event Horizon Telescope Observations as Probes for Quantum Structure of Astrophysical Black Holes. Phys Rev D 97(8):084035. https: //doi.org/10.1103/PhysRevD.97.084035. arXiv:1606.07814 [astro-ph.HE] Gillessen S, Eisenhauer F, Quataert E, Genzel R, Paumard T, Trippe S, Ott T, Abuter R, Eckart A, Lagage PO, Lehnert MD, Tacconi LJ, Martins F (2006) Variations in the spectral slope of Sgr A* during a NIR flare. In: Journal of Physics Conference Series. Journal of Physics Conference Series, vol 54. pp 411–419. https://doi.org/10. 1088/1742-6596/54/1/065 Fundamental Physics Opportunities with the ngEHT 125 Glampedakis K, Pappas G (2021) Can supermassive black hole shadows test the Kerr metric? Phys Rev D 104(8):L081503. https://doi.org/10.1103/PhysRevD.104. L081503. arXiv:2102.13573
- [gr-qc] Goddi C, et al. (2016) BlackHoleCam: Fundamental physics of the galactic center. Int J Mod Phys D 26(02):1730001. https://doi.org/10.1142/9789813226609_0046. arXiv:1606.08879 [astro-ph.HE] Gold R (2019) Relativistic aspects of accreting supermassive black hole binaries in their natural habitat: A review. Galaxies 7:63 Gold R, Paschalidis V, Etienne ZB, Shapiro SL, Pfeiffer HP (2014) Accretion disks around binary black holes of unequal mass: General relativistic magnetohydrodynamic simulations near decoupling. Physical Review D 89(6):064060. https://doi.org/10.1103/PhysRevD.89.064060, URL https://link.aps. org/doi/10.1103/PhysRevD.89.064060, publisher: American Physical Society Goldreich P, Julian WH (1969) Pulsar Electrodynamics. Astrophys. J.157:869. https: //doi.org/10.1086/150119 Goncharov B, et al (2021) On the evidence for a common-spectrum process in the search for the nanohertz gravitational-wave background with the parkes pulsar timing array. The Astrophysical Journal Letters 917(2):L19. https://doi.org/10.3847/2041-8213/ ac17f4, URL https://doi.org/10.3847/2041-8213/ac17f4 Goodsell M, Jaeckel J, Redondo J, Ringwald A (2009) Naturally Light Hidden Photons in LARGE Volume String Compactifications. JHEP 11:027. https://doi.org/10.1088/ 1126-6708/2009/11/027. arXiv:0909.0515
- [gr-qc] Goddi C, et al. (2016) BlackHoleCam: Fundamental physics of the galactic center. Int J Mod Phys D 26(02):1730001. https://doi.org/10.1142/9789813226609_0046. arXiv:1606.08879 [astro-ph.HE] Gold R (2019) Relativistic aspects of accreting supermassive black hole binaries in their natural habitat: A review. Galaxies 7:63 Gold R, Paschalidis V, Etienne ZB, Shapiro SL, Pfeiffer HP (2014) Accretion disks around binary black holes of unequal mass: General relativistic magnetohydrodynamic simulations near decoupling. Physical Review D 89(6):064060. https://doi.org/10.1103/PhysRevD.89.064060, URL https://link.aps. org/doi/10.1103/PhysRevD.89.064060, publisher: American Physical Society Goldreich P, Julian WH (1969) Pulsar Electrodynamics. Astrophys. J.157:869. https: //doi.org/10.1086/150119 Goncharov B, et al (2021) On the evidence for a common-spectrum process in the search for the nanohertz gravitational-wave background with the parkes pulsar timing array. The Astrophysical Journal Letters 917(2):L19. https://doi.org/10.3847/2041-8213/ ac17f4, URL https://doi.org/10.3847/2041-8213/ac17f4 Goodsell M, Jaeckel J, Redondo J, Ringwald A (2009) Naturally Light Hidden Photons in LARGE Volume String Compactifications. JHEP 11:027. https://doi.org/10.1088/ 1126-6708/2009/11/027. arXiv:0909.0515
- [gr-qc] Goddi C, et al. (2016) BlackHoleCam: Fundamental physics of the galactic center. Int J Mod Phys D 26(02):1730001. https://doi.org/10.1142/9789813226609_0046. arXiv:1606.08879 [astro-ph.HE] Gold R (2019) Relativistic aspects of accreting supermassive black hole binaries in their natural habitat: A review. Galaxies 7:63 Gold R, Paschalidis V, Etienne ZB, Shapiro SL, Pfeiffer HP (2014) Accretion disks around binary black holes of unequal mass: General relativistic magnetohydrodynamic simulations near decoupling. Physical Review D 89(6):064060. https://doi.org/10.1103/PhysRevD.89.064060, URL https://link.aps. org/doi/10.1103/PhysRevD.89.064060, publisher: American Physical Society Goldreich P, Julian WH (1969) Pulsar Electrodynamics. Astrophys. J.157:869. https: //doi.org/10.1086/150119 Goncharov B, et al (2021) On the evidence for a common-spectrum process in the search for the nanohertz gravitational-wave background with the parkes pulsar timing array. The Astrophysical Journal Letters 917(2):L19. https://doi.org/10.3847/2041-8213/ ac17f4, URL https://doi.org/10.3847/2041-8213/ac17f4 Goodsell M, Jaeckel J, Redondo J, Ringwald A (2009) Naturally Light Hidden Photons in LARGE Volume String Compactifications. JHEP 11:027. https://doi.org/10.1088/ 1126-6708/2009/11/027. arXiv:0909.0515
- [gr-qc] Goddi C, et al. (2016) BlackHoleCam: Fundamental physics of the galactic center. Int J Mod Phys D 26(02):1730001. https://doi.org/10.1142/9789813226609_0046. arXiv:1606.08879 [astro-ph.HE] Gold R (2019) Relativistic aspects of accreting supermassive black hole binaries in their natural habitat: A review. Galaxies 7:63 Gold R, Paschalidis V, Etienne ZB, Shapiro SL, Pfeiffer HP (2014) Accretion disks around binary black holes of unequal mass: General relativistic magnetohydrodynamic simulations near decoupling. Physical Review D 89(6):064060. https://doi.org/10.1103/PhysRevD.89.064060, URL https://link.aps. org/doi/10.1103/PhysRevD.89.064060, publisher: American Physical Society Goldreich P, Julian WH (1969) Pulsar Electrodynamics. Astrophys. J.157:869. https: //doi.org/10.1086/150119 Goncharov B, et al (2021) On the evidence for a common-spectrum process in the search for the nanohertz gravitational-wave background with the parkes pulsar timing array. The Astrophysical Journal Letters 917(2):L19. https://doi.org/10.3847/2041-8213/ ac17f4, URL https://doi.org/10.3847/2041-8213/ac17f4 Goodsell M, Jaeckel J, Redondo J, Ringwald A (2009) Naturally Light Hidden Photons in LARGE Volume String Compactifications. JHEP 11:027. https://doi.org/10.1088/ 1126-6708/2009/11/027. arXiv:0909.0515
- [gr-qc] Goddi C, et al. (2016) BlackHoleCam: Fundamental physics of the galactic center. Int J Mod Phys D 26(02):1730001. https://doi.org/10.1142/9789813226609_0046. arXiv:1606.08879 [astro-ph.HE] Gold R (2019) Relativistic aspects of accreting supermassive black hole binaries in their natural habitat: A review. Galaxies 7:63 Gold R, Paschalidis V, Etienne ZB, Shapiro SL, Pfeiffer HP (2014) Accretion disks around binary black holes of unequal mass: General relativistic magnetohydrodynamic simulations near decoupling. Physical Review D 89(6):064060. https://doi.org/10.1103/PhysRevD.89.064060, URL https://link.aps. org/doi/10.1103/PhysRevD.89.064060, publisher: American Physical Society Goldreich P, Julian WH (1969) Pulsar Electrodynamics. Astrophys. J.157:869. https: //doi.org/10.1086/150119 Goncharov B, et al (2021) On the evidence for a common-spectrum process in the search for the nanohertz gravitational-wave background with the parkes pulsar timing array. The Astrophysical Journal Letters 917(2):L19. https://doi.org/10.3847/2041-8213/ ac17f4, URL https://doi.org/10.3847/2041-8213/ac17f4 Goodsell M, Jaeckel J, Redondo J, Ringwald A (2009) Naturally Light Hidden Photons in LARGE Volume String Compactifications. JHEP 11:027. https://doi.org/10.1088/ 1126-6708/2009/11/027. arXiv:0909.0515
- [gr-qc] Goddi C, et al. (2016) BlackHoleCam: Fundamental physics of the galactic center. Int J Mod Phys D 26(02):1730001. https://doi.org/10.1142/9789813226609_0046. arXiv:1606.08879 [astro-ph.HE] Gold R (2019) Relativistic aspects of accreting supermassive black hole binaries in their natural habitat: A review. Galaxies 7:63 Gold R, Paschalidis V, Etienne ZB, Shapiro SL, Pfeiffer HP (2014) Accretion disks around binary black holes of unequal mass: General relativistic magnetohydrodynamic simulations near decoupling. Physical Review D 89(6):064060. https://doi.org/10.1103/PhysRevD.89.064060, URL https://link.aps. org/doi/10.1103/PhysRevD.89.064060, publisher: American Physical Society Goldreich P, Julian WH (1969) Pulsar Electrodynamics. Astrophys. J.157:869. https: //doi.org/10.1086/150119 Goncharov B, et al (2021) On the evidence for a common-spectrum process in the search for the nanohertz gravitational-wave background with the parkes pulsar timing array. The Astrophysical Journal Letters 917(2):L19. https://doi.org/10.3847/2041-8213/ ac17f4, URL https://doi.org/10.3847/2041-8213/ac17f4 Goodsell M, Jaeckel J, Redondo J, Ringwald A (2009) Naturally Light Hidden Photons in LARGE Volume String Compactifications. JHEP 11:027. https://doi.org/10.1088/ 1126-6708/2009/11/027. arXiv:0909.0515
- [gr-qc] Goddi C, et al. (2016) BlackHoleCam: Fundamental physics of the galactic center. Int J Mod Phys D 26(02):1730001. https://doi.org/10.1142/9789813226609_0046. arXiv:1606.08879 [astro-ph.HE] Gold R (2019) Relativistic aspects of accreting supermassive black hole binaries in their natural habitat: A review. Galaxies 7:63 Gold R, Paschalidis V, Etienne ZB, Shapiro SL, Pfeiffer HP (2014) Accretion disks around binary black holes of unequal mass: General relativistic magnetohydrodynamic simulations near decoupling. Physical Review D 89(6):064060. https://doi.org/10.1103/PhysRevD.89.064060, URL https://link.aps. org/doi/10.1103/PhysRevD.89.064060, publisher: American Physical Society Goldreich P, Julian WH (1969) Pulsar Electrodynamics. Astrophys. J.157:869. https: //doi.org/10.1086/150119 Goncharov B, et al (2021) On the evidence for a common-spectrum process in the search for the nanohertz gravitational-wave background with the parkes pulsar timing array. The Astrophysical Journal Letters 917(2):L19. https://doi.org/10.3847/2041-8213/ ac17f4, URL https://doi.org/10.3847/2041-8213/ac17f4 Goodsell M, Jaeckel J, Redondo J, Ringwald A (2009) Naturally Light Hidden Photons in LARGE Volume String Compactifications. JHEP 11:027. https://doi.org/10.1088/ 1126-6708/2009/11/027. arXiv:0909.0515
- [hep-ph] Gourgoulhon E, Jaramillo JL (2008) New theoretical approaches to black holes. New Astron Rev 51:791–798. https://doi.org/10.1016/j.newar.2008.03.026. arXiv:0803.2944
- [astro-ph] Gourgoulhon E, Le Tiec A, Vincent FH, Warburton N (2019) Gravitational waves from bodies orbiting the Galactic Center black hole and their detectability by LISA. Astron Astrophys 627:A92. https://doi.org/10.1051/0004-6361/201935406. arXiv:1903.02049
- [gr-qc] Graham MJ, Djorgovski SG, Stern D, Drake AJ, Mahabal AA, Donalek C, Glikman E, Larson S, Christensen E (2015) A systematic search for close supermassive black hole binaries in the Catalina Real-time Transient Survey. Monthly Notices of the Royal Astronomical Society 453(2):1562–1576. https: //doi.org/10.1093/mnras/stv1726, URL https://doi.org/10.1093/mnras/stv1726. https://academic.oup.com/mnras/article-pdf/453/2/1562/13770995/stv1726.pdf Gralla SE, Lupsasca A (2020a) Lensing by Kerr Black Holes. Phys Rev D 101(4):044031. https://doi.org/10.1103/PhysRevD.101.044031. arXiv:1910.12873
- [gr-qc] Graham MJ, Djorgovski SG, Stern D, Drake AJ, Mahabal AA, Donalek C, Glikman E, Larson S, Christensen E (2015) A systematic search for close supermassive black hole binaries in the Catalina Real-time Transient Survey. Monthly Notices of the Royal Astronomical Society 453(2):1562–1576. https: //doi.org/10.1093/mnras/stv1726, URL https://doi.org/10.1093/mnras/stv1726. https://academic.oup.com/mnras/article-pdf/453/2/1562/13770995/stv1726.pdf Gralla SE, Lupsasca A (2020a) Lensing by Kerr Black Holes. Phys Rev D 101(4):044031. https://doi.org/10.1103/PhysRevD.101.044031. arXiv:1910.12873
- [gr-qc] Graham MJ, Djorgovski SG, Stern D, Drake AJ, Mahabal AA, Donalek C, Glikman E, Larson S, Christensen E (2015) A systematic search for close supermassive black hole binaries in the Catalina Real-time Transient Survey. Monthly Notices of the Royal Astronomical Society 453(2):1562–1576. https: //doi.org/10.1093/mnras/stv1726, URL https://doi.org/10.1093/mnras/stv1726. https://academic.oup.com/mnras/article-pdf/453/2/1562/13770995/stv1726.pdf Gralla SE, Lupsasca A (2020a) Lensing by Kerr Black Holes. Phys Rev D 101(4):044031. https://doi.org/10.1103/PhysRevD.101.044031. arXiv:1910.12873
- [gr-qc] Gralla SE, Lupsasca A (2020b) Null geodesics of the Kerr exterior. Phys Rev D 101(4):044032. https://doi.org/10.1103/PhysRevD.101.044032. arXiv:1910.12881
- [gr-qc] Gralla SE, Zimmerman P (2018) Scaling and Universality in Extremal Black Hole Perturbations. JHEP 06:061. https://doi.org/10.1007/JHEP06(2018)061. arXiv:1804.04753
- [gr-qc] Gralla SE, Lupsasca A, Strominger A (2018) Observational Signature of High Spin at the Event Horizon Telescope. Mon Not Roy Astron Soc 475(3):3829–3853. https: //doi.org/10.1093/mnras/sty039. arXiv:1710.11112 [astro-ph.HE] Gralla SE, Holz DE, Wald RM (2019) Black Hole Shadows, Photon Rings, and Lensing Rings. Phys Rev D 100(2):024018. https://doi.org/10.1103/PhysRevD.100.024018. 126 The ngEHT Fundamental Physics SWG arXiv:1906.00873 [astro-ph.HE] GRAVITY Collaboration, Bauböck M, et al (2020) Modeling the orbital motion of Sgr A*’s near-infrared flares. Astron. Astrophys.635:A143. https://doi.org/10.1051/ 0004-6361/201937233. arXiv:2002.08374 [astro-ph.HE] Gravity Collaboration, Jiménez-Rosales A, et al (2020) Dynamically important magnetic fields near the event horizon of Sgr A*. Astron. Astrophys.643:A56. https: //doi.org/10.1051/0004-6361/202038283. arXiv:2009.01859 [astro-ph.HE] Gravity Collaboration, Abuter R, et al (2022) Deep images of the Galactic center with GRAVITY. Astronomy and Astrophysics 657:A82. https://doi.org/10.1051/ 0004-6361/202142459. arXiv:2112.07477 [astro-ph.GA] Greene PB, Kofman L (1999) Preheating of fermions. Phys Lett B 448:6–12. https: //doi.org/10.1016/S0370-2693(99)00020-9. arXiv:hep-ph/9807339 Greene PB, Kofman L (2000) On the theory of fermionic preheating. Phys Rev D 62:123516. https://doi.org/10.1103/PhysRevD.62.123516. arXiv:hep-ph/0003018 Guerrero M, Olmo GJ, Rubiera-Garcia D, Gómez DSC (2021) Shadows and optical appearance of black bounces illuminated by a thin accretion disk. JCAP 08:036. https://doi.org/10.1088/1475-7516/2021/08/036. arXiv:2105.15073
- [gr-qc] Gralla SE, Lupsasca A, Strominger A (2018) Observational Signature of High Spin at the Event Horizon Telescope. Mon Not Roy Astron Soc 475(3):3829–3853. https: //doi.org/10.1093/mnras/sty039. arXiv:1710.11112 [astro-ph.HE] Gralla SE, Holz DE, Wald RM (2019) Black Hole Shadows, Photon Rings, and Lensing Rings. Phys Rev D 100(2):024018. https://doi.org/10.1103/PhysRevD.100.024018. 126 The ngEHT Fundamental Physics SWG arXiv:1906.00873 [astro-ph.HE] GRAVITY Collaboration, Bauböck M, et al (2020) Modeling the orbital motion of Sgr A*’s near-infrared flares. Astron. Astrophys.635:A143. https://doi.org/10.1051/ 0004-6361/201937233. arXiv:2002.08374 [astro-ph.HE] Gravity Collaboration, Jiménez-Rosales A, et al (2020) Dynamically important magnetic fields near the event horizon of Sgr A*. Astron. Astrophys.643:A56. https: //doi.org/10.1051/0004-6361/202038283. arXiv:2009.01859 [astro-ph.HE] Gravity Collaboration, Abuter R, et al (2022) Deep images of the Galactic center with GRAVITY. Astronomy and Astrophysics 657:A82. https://doi.org/10.1051/ 0004-6361/202142459. arXiv:2112.07477 [astro-ph.GA] Greene PB, Kofman L (1999) Preheating of fermions. Phys Lett B 448:6–12. https: //doi.org/10.1016/S0370-2693(99)00020-9. arXiv:hep-ph/9807339 Greene PB, Kofman L (2000) On the theory of fermionic preheating. Phys Rev D 62:123516. https://doi.org/10.1103/PhysRevD.62.123516. arXiv:hep-ph/0003018 Guerrero M, Olmo GJ, Rubiera-Garcia D, Gómez DSC (2021) Shadows and optical appearance of black bounces illuminated by a thin accretion disk. JCAP 08:036. https://doi.org/10.1088/1475-7516/2021/08/036. arXiv:2105.15073
- [gr-qc] Gralla SE, Lupsasca A, Strominger A (2018) Observational Signature of High Spin at the Event Horizon Telescope. Mon Not Roy Astron Soc 475(3):3829–3853. https: //doi.org/10.1093/mnras/sty039. arXiv:1710.11112 [astro-ph.HE] Gralla SE, Holz DE, Wald RM (2019) Black Hole Shadows, Photon Rings, and Lensing Rings. Phys Rev D 100(2):024018. https://doi.org/10.1103/PhysRevD.100.024018. 126 The ngEHT Fundamental Physics SWG arXiv:1906.00873 [astro-ph.HE] GRAVITY Collaboration, Bauböck M, et al (2020) Modeling the orbital motion of Sgr A*’s near-infrared flares. Astron. Astrophys.635:A143. https://doi.org/10.1051/ 0004-6361/201937233. arXiv:2002.08374 [astro-ph.HE] Gravity Collaboration, Jiménez-Rosales A, et al (2020) Dynamically important magnetic fields near the event horizon of Sgr A*. Astron. Astrophys.643:A56. https: //doi.org/10.1051/0004-6361/202038283. arXiv:2009.01859 [astro-ph.HE] Gravity Collaboration, Abuter R, et al (2022) Deep images of the Galactic center with GRAVITY. Astronomy and Astrophysics 657:A82. https://doi.org/10.1051/ 0004-6361/202142459. arXiv:2112.07477 [astro-ph.GA] Greene PB, Kofman L (1999) Preheating of fermions. Phys Lett B 448:6–12. https: //doi.org/10.1016/S0370-2693(99)00020-9. arXiv:hep-ph/9807339 Greene PB, Kofman L (2000) On the theory of fermionic preheating. Phys Rev D 62:123516. https://doi.org/10.1103/PhysRevD.62.123516. arXiv:hep-ph/0003018 Guerrero M, Olmo GJ, Rubiera-Garcia D, Gómez DSC (2021) Shadows and optical appearance of black bounces illuminated by a thin accretion disk. JCAP 08:036. https://doi.org/10.1088/1475-7516/2021/08/036. arXiv:2105.15073
- [gr-qc] Gralla SE, Lupsasca A, Strominger A (2018) Observational Signature of High Spin at the Event Horizon Telescope. Mon Not Roy Astron Soc 475(3):3829–3853. https: //doi.org/10.1093/mnras/sty039. arXiv:1710.11112 [astro-ph.HE] Gralla SE, Holz DE, Wald RM (2019) Black Hole Shadows, Photon Rings, and Lensing Rings. Phys Rev D 100(2):024018. https://doi.org/10.1103/PhysRevD.100.024018. 126 The ngEHT Fundamental Physics SWG arXiv:1906.00873 [astro-ph.HE] GRAVITY Collaboration, Bauböck M, et al (2020) Modeling the orbital motion of Sgr A*’s near-infrared flares. Astron. Astrophys.635:A143. https://doi.org/10.1051/ 0004-6361/201937233. arXiv:2002.08374 [astro-ph.HE] Gravity Collaboration, Jiménez-Rosales A, et al (2020) Dynamically important magnetic fields near the event horizon of Sgr A*. Astron. Astrophys.643:A56. https: //doi.org/10.1051/0004-6361/202038283. arXiv:2009.01859 [astro-ph.HE] Gravity Collaboration, Abuter R, et al (2022) Deep images of the Galactic center with GRAVITY. Astronomy and Astrophysics 657:A82. https://doi.org/10.1051/ 0004-6361/202142459. arXiv:2112.07477 [astro-ph.GA] Greene PB, Kofman L (1999) Preheating of fermions. Phys Lett B 448:6–12. https: //doi.org/10.1016/S0370-2693(99)00020-9. arXiv:hep-ph/9807339 Greene PB, Kofman L (2000) On the theory of fermionic preheating. Phys Rev D 62:123516. https://doi.org/10.1103/PhysRevD.62.123516. arXiv:hep-ph/0003018 Guerrero M, Olmo GJ, Rubiera-Garcia D, Gómez DSC (2021) Shadows and optical appearance of black bounces illuminated by a thin accretion disk. JCAP 08:036. https://doi.org/10.1088/1475-7516/2021/08/036. arXiv:2105.15073
- [gr-qc] Gralla SE, Lupsasca A, Strominger A (2018) Observational Signature of High Spin at the Event Horizon Telescope. Mon Not Roy Astron Soc 475(3):3829–3853. https: //doi.org/10.1093/mnras/sty039. arXiv:1710.11112 [astro-ph.HE] Gralla SE, Holz DE, Wald RM (2019) Black Hole Shadows, Photon Rings, and Lensing Rings. Phys Rev D 100(2):024018. https://doi.org/10.1103/PhysRevD.100.024018. 126 The ngEHT Fundamental Physics SWG arXiv:1906.00873 [astro-ph.HE] GRAVITY Collaboration, Bauböck M, et al (2020) Modeling the orbital motion of Sgr A*’s near-infrared flares. Astron. Astrophys.635:A143. https://doi.org/10.1051/ 0004-6361/201937233. arXiv:2002.08374 [astro-ph.HE] Gravity Collaboration, Jiménez-Rosales A, et al (2020) Dynamically important magnetic fields near the event horizon of Sgr A*. Astron. Astrophys.643:A56. https: //doi.org/10.1051/0004-6361/202038283. arXiv:2009.01859 [astro-ph.HE] Gravity Collaboration, Abuter R, et al (2022) Deep images of the Galactic center with GRAVITY. Astronomy and Astrophysics 657:A82. https://doi.org/10.1051/ 0004-6361/202142459. arXiv:2112.07477 [astro-ph.GA] Greene PB, Kofman L (1999) Preheating of fermions. Phys Lett B 448:6–12. https: //doi.org/10.1016/S0370-2693(99)00020-9. arXiv:hep-ph/9807339 Greene PB, Kofman L (2000) On the theory of fermionic preheating. Phys Rev D 62:123516. https://doi.org/10.1103/PhysRevD.62.123516. arXiv:hep-ph/0003018 Guerrero M, Olmo GJ, Rubiera-Garcia D, Gómez DSC (2021) Shadows and optical appearance of black bounces illuminated by a thin accretion disk. JCAP 08:036. https://doi.org/10.1088/1475-7516/2021/08/036. arXiv:2105.15073
- [gr-qc] Gralla SE, Lupsasca A, Strominger A (2018) Observational Signature of High Spin at the Event Horizon Telescope. Mon Not Roy Astron Soc 475(3):3829–3853. https: //doi.org/10.1093/mnras/sty039. arXiv:1710.11112 [astro-ph.HE] Gralla SE, Holz DE, Wald RM (2019) Black Hole Shadows, Photon Rings, and Lensing Rings. Phys Rev D 100(2):024018. https://doi.org/10.1103/PhysRevD.100.024018. 126 The ngEHT Fundamental Physics SWG arXiv:1906.00873 [astro-ph.HE] GRAVITY Collaboration, Bauböck M, et al (2020) Modeling the orbital motion of Sgr A*’s near-infrared flares. Astron. Astrophys.635:A143. https://doi.org/10.1051/ 0004-6361/201937233. arXiv:2002.08374 [astro-ph.HE] Gravity Collaboration, Jiménez-Rosales A, et al (2020) Dynamically important magnetic fields near the event horizon of Sgr A*. Astron. Astrophys.643:A56. https: //doi.org/10.1051/0004-6361/202038283. arXiv:2009.01859 [astro-ph.HE] Gravity Collaboration, Abuter R, et al (2022) Deep images of the Galactic center with GRAVITY. Astronomy and Astrophysics 657:A82. https://doi.org/10.1051/ 0004-6361/202142459. arXiv:2112.07477 [astro-ph.GA] Greene PB, Kofman L (1999) Preheating of fermions. Phys Lett B 448:6–12. https: //doi.org/10.1016/S0370-2693(99)00020-9. arXiv:hep-ph/9807339 Greene PB, Kofman L (2000) On the theory of fermionic preheating. Phys Rev D 62:123516. https://doi.org/10.1103/PhysRevD.62.123516. arXiv:hep-ph/0003018 Guerrero M, Olmo GJ, Rubiera-Garcia D, Gómez DSC (2021) Shadows and optical appearance of black bounces illuminated by a thin accretion disk. JCAP 08:036. https://doi.org/10.1088/1475-7516/2021/08/036. arXiv:2105.15073
- [gr-qc] Gralla SE, Lupsasca A, Strominger A (2018) Observational Signature of High Spin at the Event Horizon Telescope. Mon Not Roy Astron Soc 475(3):3829–3853. https: //doi.org/10.1093/mnras/sty039. arXiv:1710.11112 [astro-ph.HE] Gralla SE, Holz DE, Wald RM (2019) Black Hole Shadows, Photon Rings, and Lensing Rings. Phys Rev D 100(2):024018. https://doi.org/10.1103/PhysRevD.100.024018. 126 The ngEHT Fundamental Physics SWG arXiv:1906.00873 [astro-ph.HE] GRAVITY Collaboration, Bauböck M, et al (2020) Modeling the orbital motion of Sgr A*’s near-infrared flares. Astron. Astrophys.635:A143. https://doi.org/10.1051/ 0004-6361/201937233. arXiv:2002.08374 [astro-ph.HE] Gravity Collaboration, Jiménez-Rosales A, et al (2020) Dynamically important magnetic fields near the event horizon of Sgr A*. Astron. Astrophys.643:A56. https: //doi.org/10.1051/0004-6361/202038283. arXiv:2009.01859 [astro-ph.HE] Gravity Collaboration, Abuter R, et al (2022) Deep images of the Galactic center with GRAVITY. Astronomy and Astrophysics 657:A82. https://doi.org/10.1051/ 0004-6361/202142459. arXiv:2112.07477 [astro-ph.GA] Greene PB, Kofman L (1999) Preheating of fermions. Phys Lett B 448:6–12. https: //doi.org/10.1016/S0370-2693(99)00020-9. arXiv:hep-ph/9807339 Greene PB, Kofman L (2000) On the theory of fermionic preheating. Phys Rev D 62:123516. https://doi.org/10.1103/PhysRevD.62.123516. arXiv:hep-ph/0003018 Guerrero M, Olmo GJ, Rubiera-Garcia D, Gómez DSC (2021) Shadows and optical appearance of black bounces illuminated by a thin accretion disk. JCAP 08:036. https://doi.org/10.1088/1475-7516/2021/08/036. arXiv:2105.15073
- [gr-qc] Gralla SE, Lupsasca A, Strominger A (2018) Observational Signature of High Spin at the Event Horizon Telescope. Mon Not Roy Astron Soc 475(3):3829–3853. https: //doi.org/10.1093/mnras/sty039. arXiv:1710.11112 [astro-ph.HE] Gralla SE, Holz DE, Wald RM (2019) Black Hole Shadows, Photon Rings, and Lensing Rings. Phys Rev D 100(2):024018. https://doi.org/10.1103/PhysRevD.100.024018. 126 The ngEHT Fundamental Physics SWG arXiv:1906.00873 [astro-ph.HE] GRAVITY Collaboration, Bauböck M, et al (2020) Modeling the orbital motion of Sgr A*’s near-infrared flares. Astron. Astrophys.635:A143. https://doi.org/10.1051/ 0004-6361/201937233. arXiv:2002.08374 [astro-ph.HE] Gravity Collaboration, Jiménez-Rosales A, et al (2020) Dynamically important magnetic fields near the event horizon of Sgr A*. Astron. Astrophys.643:A56. https: //doi.org/10.1051/0004-6361/202038283. arXiv:2009.01859 [astro-ph.HE] Gravity Collaboration, Abuter R, et al (2022) Deep images of the Galactic center with GRAVITY. Astronomy and Astrophysics 657:A82. https://doi.org/10.1051/ 0004-6361/202142459. arXiv:2112.07477 [astro-ph.GA] Greene PB, Kofman L (1999) Preheating of fermions. Phys Lett B 448:6–12. https: //doi.org/10.1016/S0370-2693(99)00020-9. arXiv:hep-ph/9807339 Greene PB, Kofman L (2000) On the theory of fermionic preheating. Phys Rev D 62:123516. https://doi.org/10.1103/PhysRevD.62.123516. arXiv:hep-ph/0003018 Guerrero M, Olmo GJ, Rubiera-Garcia D, Gómez DSC (2021) Shadows and optical appearance of black bounces illuminated by a thin accretion disk. JCAP 08:036. https://doi.org/10.1088/1475-7516/2021/08/036. arXiv:2105.15073
- [gr-qc] Guica M, Hartman T, Song W, Strominger A (2009) The Kerr/CFT Correspondence. Phys Rev D 80:124008. https://doi.org/10.1103/PhysRevD.80.124008. arXiv:0809.4266
- [hep-th] Guo M, Li PC (2020) Innermost stable circular orbit and shadow of the 4D Einstein–Gauss–Bonnet black hole. Eur Phys J C 80(6):588. https://doi.org/10.1140/ epjc/s10052-020-8164-7. arXiv:2003.02523
- [gr-qc] Gupta T, Herrero-Valea M, Blas D, Barausse E, Cornish N, Yagi K, Yunes N (2021) New binary pulsar constraints on Einstein-æther theory after GW170817. Class Quant Grav 38(19):195003. https://doi.org/10.1088/1361-6382/ ac1a69. arXiv:2104.04596
- [gr-qc] Gurvits LI, Frey S, Krezinger M, Titov O, An T, Zhang Y, Polnarev AG, Gabányi KÉ, Perger K, Melnikov A (2023) J2102+6015: a potential distant multimessenger? In: Liodakis I, Aller MF, Krawczynski H, Lähteenmäki A, Pearson TJ (eds) The Multimessenger Chakra of Blazar Jets. vol 375. pp 86–90. https://doi.org/10.1017/ S1743921323001151. arXiv:2301.12283 [astro-ph.CO] Gutiérrez EM, Combi L, Noble SC, Campanelli M, Krolik JH, Armengol FL, García F (2022) Electromagnetic Signatures from Supermassive Binary Black Holes Approaching Merger. The Astrophysical Journal 928(2):137. https://doi.org/10.3847/ 1538-4357/ac56de, URL https://dx.doi.org/10.3847/1538-4357/ac56de, publisher: The American Astronomical Society Gyulchev G, Nedkova P, Tinchev V, Yazadjiev S (2018) On the shadow of rotating traversable wormholes. Eur Phys J C 78(7):544. https://doi.org/10.1140/epjc/ s10052-018-6012-9. arXiv:1805.11591
- [gr-qc] Gurvits LI, Frey S, Krezinger M, Titov O, An T, Zhang Y, Polnarev AG, Gabányi KÉ, Perger K, Melnikov A (2023) J2102+6015: a potential distant multimessenger? In: Liodakis I, Aller MF, Krawczynski H, Lähteenmäki A, Pearson TJ (eds) The Multimessenger Chakra of Blazar Jets. vol 375. pp 86–90. https://doi.org/10.1017/ S1743921323001151. arXiv:2301.12283 [astro-ph.CO] Gutiérrez EM, Combi L, Noble SC, Campanelli M, Krolik JH, Armengol FL, García F (2022) Electromagnetic Signatures from Supermassive Binary Black Holes Approaching Merger. The Astrophysical Journal 928(2):137. https://doi.org/10.3847/ 1538-4357/ac56de, URL https://dx.doi.org/10.3847/1538-4357/ac56de, publisher: The American Astronomical Society Gyulchev G, Nedkova P, Tinchev V, Yazadjiev S (2018) On the shadow of rotating traversable wormholes. Eur Phys J C 78(7):544. https://doi.org/10.1140/epjc/ s10052-018-6012-9. arXiv:1805.11591
- [gr-qc] Gurvits LI, Frey S, Krezinger M, Titov O, An T, Zhang Y, Polnarev AG, Gabányi KÉ, Perger K, Melnikov A (2023) J2102+6015: a potential distant multimessenger? In: Liodakis I, Aller MF, Krawczynski H, Lähteenmäki A, Pearson TJ (eds) The Multimessenger Chakra of Blazar Jets. vol 375. pp 86–90. https://doi.org/10.1017/ S1743921323001151. arXiv:2301.12283 [astro-ph.CO] Gutiérrez EM, Combi L, Noble SC, Campanelli M, Krolik JH, Armengol FL, García F (2022) Electromagnetic Signatures from Supermassive Binary Black Holes Approaching Merger. The Astrophysical Journal 928(2):137. https://doi.org/10.3847/ 1538-4357/ac56de, URL https://dx.doi.org/10.3847/1538-4357/ac56de, publisher: The American Astronomical Society Gyulchev G, Nedkova P, Tinchev V, Yazadjiev S (2018) On the shadow of rotating traversable wormholes. Eur Phys J C 78(7):544. https://doi.org/10.1140/epjc/ s10052-018-6012-9. arXiv:1805.11591
- [gr-qc] Gyulchev G, Nedkova P, Vetsov T, Yazadjiev S (2019) Image of the Janis-NewmanWinicour naked singularity with a thin accretion disk. Phys Rev D 100(2):024055. https://doi.org/10.1103/PhysRevD.100.024055. arXiv:1905.05273
- [gr-qc] Gyulchev G, Kunz J, Nedkova P, Vetsov T, Yazadjiev S (2020) Observational signatures of strongly naked singularities: image of the thin accretion disk. Eur Phys J C 80(11):1017. https://doi.org/10.1140/epjc/s10052-020-08575-7. arXiv:2003.06943
- [gr-qc] Gyulchev G, Nedkova P, Vetsov T, Yazadjiev S (2021) Image of the thin accretion disk around compact objects in the Einstein–Gauss–Bonnet gravity. Eur Phys J C Fundamental Physics Opportunities with the ngEHT 127 81(10):885. https://doi.org/10.1140/epjc/s10052-021-09624-5. arXiv:2106.14697
- [grqc] Hackmann E, Lammerzahl C, Kagramanova V, Kunz J (2010) Analytical solution of the geodesic equation in Kerr-(anti) de Sitter space-times. Phys Rev D 81:044020. https://doi.org/10.1103/PhysRevD.81.044020. arXiv:1009.6117
- [gr-qc] Hada K, Kino M, Doi A, Nagai H, Honma M, Akiyama K, Tazaki F, Lico R, Giroletti M, Giovannini G, Orienti M, Hagiwara Y (2016) High-sensitivity 86 GHz (3.5 mm) VLBI Observations of M87: Deep Imaging of the Jet Base at a Resolution of 10 Schwarzschild Radii. Astrophys. J.817(2):131. https://doi.org/10.3847/0004-637X/ 817/2/131. arXiv:1512.03783 [astro-ph.HE] Hadar S, Johnson MD, Lupsasca A, Wong GN (2021) Photon Ring Autocorrelations. Phys Rev D 103(10):104038. https://doi.org/10.1103/PhysRevD.103.104038. arXiv:2010.03683
- [gr-qc] Hada K, Kino M, Doi A, Nagai H, Honma M, Akiyama K, Tazaki F, Lico R, Giroletti M, Giovannini G, Orienti M, Hagiwara Y (2016) High-sensitivity 86 GHz (3.5 mm) VLBI Observations of M87: Deep Imaging of the Jet Base at a Resolution of 10 Schwarzschild Radii. Astrophys. J.817(2):131. https://doi.org/10.3847/0004-637X/ 817/2/131. arXiv:1512.03783 [astro-ph.HE] Hadar S, Johnson MD, Lupsasca A, Wong GN (2021) Photon Ring Autocorrelations. Phys Rev D 103(10):104038. https://doi.org/10.1103/PhysRevD.103.104038. arXiv:2010.03683
- [gr-qc] Haggard HM, Rovelli C (2016) Quantum Gravity Effects around Sagittarius A*. Int J Mod Phys D 25(12):1644021. https://doi.org/10.1142/S0218271816440211. arXiv:1607.00364
- [gr-qc] Hájíček P (1987) On the Origin of Hawking Radiation. Phys Rev D 36:1065. https: //doi.org/10.1103/PhysRevD.36.1065 Hájíček P (2001) Unitary dynamics of spherical null gravitating shells. Nucl Phys B 603:555–577. https://doi.org/10.1016/S0550-3213(01)00140-7. arXiv:hepth/0007005 Hájíček P (2003) Quantum theory of gravitational collapse: (Lecture notes on quantum conchology). Lect Notes Phys 631:255–299. https://doi.org/10.1007/ 978-3-540-45230-0_6. arXiv:gr-qc/0204049 Hamaus N, Paumard T, Muller T, Gillessen S, Eisenhauer F, Trippe S, Genzel R (2009) Prospects for testing the nature of Sgr A*’s NIR flares on the basis of current VLTand future VLTI-observations. Astrophys J 692:902–916. https://doi.org/10.1088/ 0004-637X/692/1/902. arXiv:0810.4947
- [gr-qc] Hájíček P (1987) On the Origin of Hawking Radiation. Phys Rev D 36:1065. https: //doi.org/10.1103/PhysRevD.36.1065 Hájíček P (2001) Unitary dynamics of spherical null gravitating shells. Nucl Phys B 603:555–577. https://doi.org/10.1016/S0550-3213(01)00140-7. arXiv:hepth/0007005 Hájíček P (2003) Quantum theory of gravitational collapse: (Lecture notes on quantum conchology). Lect Notes Phys 631:255–299. https://doi.org/10.1007/ 978-3-540-45230-0_6. arXiv:gr-qc/0204049 Hamaus N, Paumard T, Muller T, Gillessen S, Eisenhauer F, Trippe S, Genzel R (2009) Prospects for testing the nature of Sgr A*’s NIR flares on the basis of current VLTand future VLTI-observations. Astrophys J 692:902–916. https://doi.org/10.1088/ 0004-637X/692/1/902. arXiv:0810.4947
- [gr-qc] Hájíček P (1987) On the Origin of Hawking Radiation. Phys Rev D 36:1065. https: //doi.org/10.1103/PhysRevD.36.1065 Hájíček P (2001) Unitary dynamics of spherical null gravitating shells. Nucl Phys B 603:555–577. https://doi.org/10.1016/S0550-3213(01)00140-7. arXiv:hepth/0007005 Hájíček P (2003) Quantum theory of gravitational collapse: (Lecture notes on quantum conchology). Lect Notes Phys 631:255–299. https://doi.org/10.1007/ 978-3-540-45230-0_6. arXiv:gr-qc/0204049 Hamaus N, Paumard T, Muller T, Gillessen S, Eisenhauer F, Trippe S, Genzel R (2009) Prospects for testing the nature of Sgr A*’s NIR flares on the basis of current VLTand future VLTI-observations. Astrophys J 692:902–916. https://doi.org/10.1088/ 0004-637X/692/1/902. arXiv:0810.4947
- [gr-qc] Hájíček P (1987) On the Origin of Hawking Radiation. Phys Rev D 36:1065. https: //doi.org/10.1103/PhysRevD.36.1065 Hájíček P (2001) Unitary dynamics of spherical null gravitating shells. Nucl Phys B 603:555–577. https://doi.org/10.1016/S0550-3213(01)00140-7. arXiv:hepth/0007005 Hájíček P (2003) Quantum theory of gravitational collapse: (Lecture notes on quantum conchology). Lect Notes Phys 631:255–299. https://doi.org/10.1007/ 978-3-540-45230-0_6. arXiv:gr-qc/0204049 Hamaus N, Paumard T, Muller T, Gillessen S, Eisenhauer F, Trippe S, Genzel R (2009) Prospects for testing the nature of Sgr A*’s NIR flares on the basis of current VLTand future VLTI-observations. Astrophys J 692:902–916. https://doi.org/10.1088/ 0004-637X/692/1/902. arXiv:0810.4947
- [astro-ph] Hansen D, Yunes N (2013) Applicability of the Newman-Janis Algorithm to Black Hole Solutions of Modified Gravity Theories. Phys Rev D 88(10):104020. https://doi.org/ 10.1103/PhysRevD.88.104020. arXiv:1308.6631
- [gr-qc] Harari D, Sikivie P (1992) Effects of a Nambu-Goldstone boson on the polarization of radio galaxies and the cosmic microwave background. Phys Lett B 289:67–72. https://doi.org/10.1016/0370-2693(92)91363-E Hassan SF, Rosen RA (2012) Bimetric Gravity from Ghost-free Massive Gravity. JHEP 02:126. https://doi.org/10.1007/JHEP02(2012)126. arXiv:1109.3515
- [gr-qc] Harari D, Sikivie P (1992) Effects of a Nambu-Goldstone boson on the polarization of radio galaxies and the cosmic microwave background. Phys Lett B 289:67–72. https://doi.org/10.1016/0370-2693(92)91363-E Hassan SF, Rosen RA (2012) Bimetric Gravity from Ghost-free Massive Gravity. JHEP 02:126. https://doi.org/10.1007/JHEP02(2012)126. arXiv:1109.3515
- [hep-th] Hawking SW (1966) The Occurrence of Singularities in Cosmology. Proceedings of the Royal Society of London Series A 294(1439):511–521. https://doi.org/10.1098/rspa. 1966.0221 Hawking SW (1976) Breakdown of Predictability in Gravitational Collapse. Phys Rev D 14:2460–2473. https://doi.org/10.1103/PhysRevD.14.2460 Hawking SW, Ellis GFR (2011) The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics, Cambridge University Press. https://doi.org/ 10.1017/CBO9780511524646 Hawking SW, Penrose R (1970) The Singularities of gravitational collapse and cosmology. Proc Roy Soc Lond A 314:529–548. https://doi.org/10.1098/rspa.1970.0021 Hayward SA (1994) General laws of black hole dynamics. Phys Rev D 49:6467–6474. https://doi.org/10.1103/PhysRevD.49.6467 128 The ngEHT Fundamental Physics SWG Hayward SA (2006) Formation and evaporation of regular black holes. Phys Rev Lett 96:031103. https://doi.org/10.1103/PhysRevLett.96.031103. arXiv:gr-qc/0506126 Hees A, et al. (2020) Search for a Variation of the Fine Structure Constant around the Supermassive Black Hole in Our Galactic Center. Phys Rev Lett 124(8):081101. https://doi.org/10.1103/PhysRevLett.124.081101. arXiv:2002.11567 [astro-ph.GA] Heisenberg L (2014) Generalization of the Proca Action. JCAP 05:015. https://doi. org/10.1088/1475-7516/2014/05/015. arXiv:1402.7026
- [hep-th] Hawking SW (1966) The Occurrence of Singularities in Cosmology. Proceedings of the Royal Society of London Series A 294(1439):511–521. https://doi.org/10.1098/rspa. 1966.0221 Hawking SW (1976) Breakdown of Predictability in Gravitational Collapse. Phys Rev D 14:2460–2473. https://doi.org/10.1103/PhysRevD.14.2460 Hawking SW, Ellis GFR (2011) The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics, Cambridge University Press. https://doi.org/ 10.1017/CBO9780511524646 Hawking SW, Penrose R (1970) The Singularities of gravitational collapse and cosmology. Proc Roy Soc Lond A 314:529–548. https://doi.org/10.1098/rspa.1970.0021 Hayward SA (1994) General laws of black hole dynamics. Phys Rev D 49:6467–6474. https://doi.org/10.1103/PhysRevD.49.6467 128 The ngEHT Fundamental Physics SWG Hayward SA (2006) Formation and evaporation of regular black holes. Phys Rev Lett 96:031103. https://doi.org/10.1103/PhysRevLett.96.031103. arXiv:gr-qc/0506126 Hees A, et al. (2020) Search for a Variation of the Fine Structure Constant around the Supermassive Black Hole in Our Galactic Center. Phys Rev Lett 124(8):081101. https://doi.org/10.1103/PhysRevLett.124.081101. arXiv:2002.11567 [astro-ph.GA] Heisenberg L (2014) Generalization of the Proca Action. JCAP 05:015. https://doi. org/10.1088/1475-7516/2014/05/015. arXiv:1402.7026
- [hep-th] Hawking SW (1966) The Occurrence of Singularities in Cosmology. Proceedings of the Royal Society of London Series A 294(1439):511–521. https://doi.org/10.1098/rspa. 1966.0221 Hawking SW (1976) Breakdown of Predictability in Gravitational Collapse. Phys Rev D 14:2460–2473. https://doi.org/10.1103/PhysRevD.14.2460 Hawking SW, Ellis GFR (2011) The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics, Cambridge University Press. https://doi.org/ 10.1017/CBO9780511524646 Hawking SW, Penrose R (1970) The Singularities of gravitational collapse and cosmology. Proc Roy Soc Lond A 314:529–548. https://doi.org/10.1098/rspa.1970.0021 Hayward SA (1994) General laws of black hole dynamics. Phys Rev D 49:6467–6474. https://doi.org/10.1103/PhysRevD.49.6467 128 The ngEHT Fundamental Physics SWG Hayward SA (2006) Formation and evaporation of regular black holes. Phys Rev Lett 96:031103. https://doi.org/10.1103/PhysRevLett.96.031103. arXiv:gr-qc/0506126 Hees A, et al. (2020) Search for a Variation of the Fine Structure Constant around the Supermassive Black Hole in Our Galactic Center. Phys Rev Lett 124(8):081101. https://doi.org/10.1103/PhysRevLett.124.081101. arXiv:2002.11567 [astro-ph.GA] Heisenberg L (2014) Generalization of the Proca Action. JCAP 05:015. https://doi. org/10.1088/1475-7516/2014/05/015. arXiv:1402.7026
- [hep-th] Hawking SW (1966) The Occurrence of Singularities in Cosmology. Proceedings of the Royal Society of London Series A 294(1439):511–521. https://doi.org/10.1098/rspa. 1966.0221 Hawking SW (1976) Breakdown of Predictability in Gravitational Collapse. Phys Rev D 14:2460–2473. https://doi.org/10.1103/PhysRevD.14.2460 Hawking SW, Ellis GFR (2011) The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics, Cambridge University Press. https://doi.org/ 10.1017/CBO9780511524646 Hawking SW, Penrose R (1970) The Singularities of gravitational collapse and cosmology. Proc Roy Soc Lond A 314:529–548. https://doi.org/10.1098/rspa.1970.0021 Hayward SA (1994) General laws of black hole dynamics. Phys Rev D 49:6467–6474. https://doi.org/10.1103/PhysRevD.49.6467 128 The ngEHT Fundamental Physics SWG Hayward SA (2006) Formation and evaporation of regular black holes. Phys Rev Lett 96:031103. https://doi.org/10.1103/PhysRevLett.96.031103. arXiv:gr-qc/0506126 Hees A, et al. (2020) Search for a Variation of the Fine Structure Constant around the Supermassive Black Hole in Our Galactic Center. Phys Rev Lett 124(8):081101. https://doi.org/10.1103/PhysRevLett.124.081101. arXiv:2002.11567 [astro-ph.GA] Heisenberg L (2014) Generalization of the Proca Action. JCAP 05:015. https://doi. org/10.1088/1475-7516/2014/05/015. arXiv:1402.7026
- [hep-th] Hawking SW (1966) The Occurrence of Singularities in Cosmology. Proceedings of the Royal Society of London Series A 294(1439):511–521. https://doi.org/10.1098/rspa. 1966.0221 Hawking SW (1976) Breakdown of Predictability in Gravitational Collapse. Phys Rev D 14:2460–2473. https://doi.org/10.1103/PhysRevD.14.2460 Hawking SW, Ellis GFR (2011) The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics, Cambridge University Press. https://doi.org/ 10.1017/CBO9780511524646 Hawking SW, Penrose R (1970) The Singularities of gravitational collapse and cosmology. Proc Roy Soc Lond A 314:529–548. https://doi.org/10.1098/rspa.1970.0021 Hayward SA (1994) General laws of black hole dynamics. Phys Rev D 49:6467–6474. https://doi.org/10.1103/PhysRevD.49.6467 128 The ngEHT Fundamental Physics SWG Hayward SA (2006) Formation and evaporation of regular black holes. Phys Rev Lett 96:031103. https://doi.org/10.1103/PhysRevLett.96.031103. arXiv:gr-qc/0506126 Hees A, et al. (2020) Search for a Variation of the Fine Structure Constant around the Supermassive Black Hole in Our Galactic Center. Phys Rev Lett 124(8):081101. https://doi.org/10.1103/PhysRevLett.124.081101. arXiv:2002.11567 [astro-ph.GA] Heisenberg L (2014) Generalization of the Proca Action. JCAP 05:015. https://doi. org/10.1088/1475-7516/2014/05/015. arXiv:1402.7026
- [hep-th] Hawking SW (1966) The Occurrence of Singularities in Cosmology. Proceedings of the Royal Society of London Series A 294(1439):511–521. https://doi.org/10.1098/rspa. 1966.0221 Hawking SW (1976) Breakdown of Predictability in Gravitational Collapse. Phys Rev D 14:2460–2473. https://doi.org/10.1103/PhysRevD.14.2460 Hawking SW, Ellis GFR (2011) The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics, Cambridge University Press. https://doi.org/ 10.1017/CBO9780511524646 Hawking SW, Penrose R (1970) The Singularities of gravitational collapse and cosmology. Proc Roy Soc Lond A 314:529–548. https://doi.org/10.1098/rspa.1970.0021 Hayward SA (1994) General laws of black hole dynamics. Phys Rev D 49:6467–6474. https://doi.org/10.1103/PhysRevD.49.6467 128 The ngEHT Fundamental Physics SWG Hayward SA (2006) Formation and evaporation of regular black holes. Phys Rev Lett 96:031103. https://doi.org/10.1103/PhysRevLett.96.031103. arXiv:gr-qc/0506126 Hees A, et al. (2020) Search for a Variation of the Fine Structure Constant around the Supermassive Black Hole in Our Galactic Center. Phys Rev Lett 124(8):081101. https://doi.org/10.1103/PhysRevLett.124.081101. arXiv:2002.11567 [astro-ph.GA] Heisenberg L (2014) Generalization of the Proca Action. JCAP 05:015. https://doi. org/10.1088/1475-7516/2014/05/015. arXiv:1402.7026
- [hep-th] Hawking SW (1966) The Occurrence of Singularities in Cosmology. Proceedings of the Royal Society of London Series A 294(1439):511–521. https://doi.org/10.1098/rspa. 1966.0221 Hawking SW (1976) Breakdown of Predictability in Gravitational Collapse. Phys Rev D 14:2460–2473. https://doi.org/10.1103/PhysRevD.14.2460 Hawking SW, Ellis GFR (2011) The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics, Cambridge University Press. https://doi.org/ 10.1017/CBO9780511524646 Hawking SW, Penrose R (1970) The Singularities of gravitational collapse and cosmology. Proc Roy Soc Lond A 314:529–548. https://doi.org/10.1098/rspa.1970.0021 Hayward SA (1994) General laws of black hole dynamics. Phys Rev D 49:6467–6474. https://doi.org/10.1103/PhysRevD.49.6467 128 The ngEHT Fundamental Physics SWG Hayward SA (2006) Formation and evaporation of regular black holes. Phys Rev Lett 96:031103. https://doi.org/10.1103/PhysRevLett.96.031103. arXiv:gr-qc/0506126 Hees A, et al. (2020) Search for a Variation of the Fine Structure Constant around the Supermassive Black Hole in Our Galactic Center. Phys Rev Lett 124(8):081101. https://doi.org/10.1103/PhysRevLett.124.081101. arXiv:2002.11567 [astro-ph.GA] Heisenberg L (2014) Generalization of the Proca Action. JCAP 05:015. https://doi. org/10.1088/1475-7516/2014/05/015. arXiv:1402.7026
- [hep-th] Hawking SW (1966) The Occurrence of Singularities in Cosmology. Proceedings of the Royal Society of London Series A 294(1439):511–521. https://doi.org/10.1098/rspa. 1966.0221 Hawking SW (1976) Breakdown of Predictability in Gravitational Collapse. Phys Rev D 14:2460–2473. https://doi.org/10.1103/PhysRevD.14.2460 Hawking SW, Ellis GFR (2011) The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics, Cambridge University Press. https://doi.org/ 10.1017/CBO9780511524646 Hawking SW, Penrose R (1970) The Singularities of gravitational collapse and cosmology. Proc Roy Soc Lond A 314:529–548. https://doi.org/10.1098/rspa.1970.0021 Hayward SA (1994) General laws of black hole dynamics. Phys Rev D 49:6467–6474. https://doi.org/10.1103/PhysRevD.49.6467 128 The ngEHT Fundamental Physics SWG Hayward SA (2006) Formation and evaporation of regular black holes. Phys Rev Lett 96:031103. https://doi.org/10.1103/PhysRevLett.96.031103. arXiv:gr-qc/0506126 Hees A, et al. (2020) Search for a Variation of the Fine Structure Constant around the Supermassive Black Hole in Our Galactic Center. Phys Rev Lett 124(8):081101. https://doi.org/10.1103/PhysRevLett.124.081101. arXiv:2002.11567 [astro-ph.GA] Heisenberg L (2014) Generalization of the Proca Action. JCAP 05:015. https://doi. org/10.1088/1475-7516/2014/05/015. arXiv:1402.7026
- [hep-th] Heißel G, Paumard T, Perrin G, Vincent F (2022) The dark mass signature in the orbit of S2. Astron Astrophys 660:A13. https://doi.org/10.1051/0004-6361/202142114. arXiv:2112.07778 [astro-ph.GA] Held A, Zhang J (2023) Instability of spherically symmetric black holes in quadratic gravity. Phys. Rev. D107(6):064060. https://doi.org/10.1103/PhysRevD.107.064060. arXiv:2209.01867
- [hep-th] Heißel G, Paumard T, Perrin G, Vincent F (2022) The dark mass signature in the orbit of S2. Astron Astrophys 660:A13. https://doi.org/10.1051/0004-6361/202142114. arXiv:2112.07778 [astro-ph.GA] Held A, Zhang J (2023) Instability of spherically symmetric black holes in quadratic gravity. Phys. Rev. D107(6):064060. https://doi.org/10.1103/PhysRevD.107.064060. arXiv:2209.01867
- [gr-qc] Held A, Gold R, Eichhorn A (2019) Asymptotic safety casts its shadow. JCAP 06:029. https://doi.org/10.1088/1475-7516/2019/06/029. arXiv:1904.07133
- [gr-qc] Hellings RW, Downs GS (1983) Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys. J. Lett.265:L39–L42. https:// doi.org/10.1086/183954 Herdeiro C, Radu E (2015a) Construction and physical properties of Kerr black holes with scalar hair. Class Quant Grav 32(14):144001. https://doi.org/10.1088/ 0264-9381/32/14/144001. arXiv:1501.04319
- [gr-qc] Hellings RW, Downs GS (1983) Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys. J. Lett.265:L39–L42. https:// doi.org/10.1086/183954 Herdeiro C, Radu E (2015a) Construction and physical properties of Kerr black holes with scalar hair. Class Quant Grav 32(14):144001. https://doi.org/10.1088/ 0264-9381/32/14/144001. arXiv:1501.04319
- [gr-qc] Herdeiro C, Radu E, Rúnarsson H (2016) Kerr black holes with Proca hair. Class Quant Grav 33(15):154001. https://doi.org/10.1088/0264-9381/33/15/154001. arXiv:1603.02687
- [gr-qc] Herdeiro CAR, Radu E (2014) Kerr black holes with scalar hair. Phys Rev Lett 112:221101. https://doi.org/10.1103/PhysRevLett.112.221101. arXiv:1403.2757
- [grqc] Herdeiro CAR, Radu E (2015b) Asymptotically flat black holes with scalar hair: a review. Int J Mod Phys D 24(09):1542014. https://doi.org/10.1142/ S0218271815420146. arXiv:1504.08209
- [gr-qc] Herdeiro CAR, Radu E (2017) Dynamical Formation of Kerr Black Holes with Synchronized Hair: An Analytic Model. Phys Rev Lett 119(26):261101. https://doi.org/ 10.1103/PhysRevLett.119.261101. arXiv:1706.06597
- [gr-qc] Herdeiro CAR, Radu E, Rúnarsson H (2015) Kerr black holes with self-interacting scalar hair: hairier but not heavier. Phys Rev D 92(8):084059. https://doi.org/10. 1103/PhysRevD.92.084059. arXiv:1509.02923
- [gr-qc] Herdeiro CAR, Pombo AM, Radu E, Cunha PVP, Sanchis-Gual N (2021) The imitation game: Proca stars that can mimic the Schwarzschild shadow. JCAP 04:051. https: //doi.org/10.1088/1475-7516/2021/04/051. arXiv:2102.01703
- [gr-qc] Herdeiro CAR, Radu E, Santos NM (2022) A bound on energy extraction (and hairiness) from superradiance. Phys Lett B 824:136835. https://doi.org/10.1016/ j.physletb.2021.136835. arXiv:2111.03667
- [gr-qc] Hertog T, Hartle J (2020) Observational Implications of Fuzzball Formation. Gen Rel Grav 52(7):67. https://doi.org/10.1007/s10714-020-02720-z. arXiv:1704.02123
- [hepth] Hilbert D (1917) Nachrichten von der königlichen gesellschaft der wissenschaften zu göttingen—mathematisch-physikalische klasse, chapter die grundlagen der physik—zweite mitteilung. Weidmannsche Buchhandlung, Berlin pp 53–76 Fundamental Physics Opportunities with the ngEHT 129 Himwich E, Johnson MD, Lupsasca Ar, Strominger A (2020) Universal polarimetric signatures of the black hole photon ring. Phys. Rev. D101(8):084020. https://doi. org/10.1103/PhysRevD.101.084020. arXiv:2001.08750
- [gr-qc] Ho PM, Matsuo Y (2018) Static Black Hole and Vacuum Energy: Thin Shell and Incompressible Fluid. JHEP 03:096. https://doi.org/10.1007/JHEP03(2018)096. arXiv:1710.10390
- [hep-th] Holz DE, Hughes SA (2005) Using gravitational-wave standard sirens. The Astrophysical Journal 629(1):15 Hopkins PF, Hernquist L, Cox TJ, Kereš D (2008) A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity. Astrophys. J. Suppl.175(2):356–389. https: //doi.org/10.1086/524362. arXiv:0706.1243
- [hep-th] Holz DE, Hughes SA (2005) Using gravitational-wave standard sirens. The Astrophysical Journal 629(1):15 Hopkins PF, Hernquist L, Cox TJ, Kereš D (2008) A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity. Astrophys. J. Suppl.175(2):356–389. https: //doi.org/10.1086/524362. arXiv:0706.1243
- [astro-ph] Horndeski GW (1974) Second-order scalar-tensor field equations in a four-dimensional space. Int J Theor Phys 10:363–384. https://doi.org/10.1007/BF01807638 Hossenfelder S, Modesto L, Premont-Schwarz I (2010) A Model for non-singular black hole collapse and evaporation. Phys Rev D 81:044036. https://doi.org/10.1103/ PhysRevD.81.044036. arXiv:0912.1823
- [astro-ph] Horndeski GW (1974) Second-order scalar-tensor field equations in a four-dimensional space. Int J Theor Phys 10:363–384. https://doi.org/10.1007/BF01807638 Hossenfelder S, Modesto L, Premont-Schwarz I (2010) A Model for non-singular black hole collapse and evaporation. Phys Rev D 81:044036. https://doi.org/10.1103/ PhysRevD.81.044036. arXiv:0912.1823
- [gr-qc] Hu BX, D’Orazio DJ, Haiman Z, Smith KL, Snios B, Charisi M, Di Stefano R (2020) Spikey: self-lensing flares from eccentric SMBH binaries. Mon. Not. R. Astron. Soc.495(4):4061–4070. https://doi.org/10.1093/mnras/ staa1312. arXiv:1910.05348 [astro-ph.HE] Hu W, Barkana R, Gruzinov A (2000) Cold and fuzzy dark matter. Phys Rev Lett 85:1158–1161. https://doi.org/10.1103/PhysRevLett.85.1158. arXiv:astroph/0003365 Hu WR, Wu YL (2017) The Taiji Program in Space for gravitational wave physics and the nature of gravity. National Science Review 4(5):685–686. https://doi.org/10.1093/nsr/nwx116, URL https://doi.org/10.1093/nsr/nwx116. https://academic.oup.com/nsr/article-pdf/4/5/685/31566708/nwx116.pdf Hui L, Ostriker JP, Tremaine S, Witten E (2017) Ultralight scalars as cosmological dark matter. Phys Rev D 95(4):043541. https://doi.org/10.1103/PhysRevD.95.043541. arXiv:1610.08297 [astro-ph.CO] Igumenshchev IV, Narayan R, Abramowicz MA (2003) Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows. Astrophys. J.592(2):1042–1059. https://doi.org/10.1086/375769. arXiv:astro-ph/0301402
- [gr-qc] Hu BX, D’Orazio DJ, Haiman Z, Smith KL, Snios B, Charisi M, Di Stefano R (2020) Spikey: self-lensing flares from eccentric SMBH binaries. Mon. Not. R. Astron. Soc.495(4):4061–4070. https://doi.org/10.1093/mnras/ staa1312. arXiv:1910.05348 [astro-ph.HE] Hu W, Barkana R, Gruzinov A (2000) Cold and fuzzy dark matter. Phys Rev Lett 85:1158–1161. https://doi.org/10.1103/PhysRevLett.85.1158. arXiv:astroph/0003365 Hu WR, Wu YL (2017) The Taiji Program in Space for gravitational wave physics and the nature of gravity. National Science Review 4(5):685–686. https://doi.org/10.1093/nsr/nwx116, URL https://doi.org/10.1093/nsr/nwx116. https://academic.oup.com/nsr/article-pdf/4/5/685/31566708/nwx116.pdf Hui L, Ostriker JP, Tremaine S, Witten E (2017) Ultralight scalars as cosmological dark matter. Phys Rev D 95(4):043541. https://doi.org/10.1103/PhysRevD.95.043541. arXiv:1610.08297 [astro-ph.CO] Igumenshchev IV, Narayan R, Abramowicz MA (2003) Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows. Astrophys. J.592(2):1042–1059. https://doi.org/10.1086/375769. arXiv:astro-ph/0301402
- [gr-qc] Hu BX, D’Orazio DJ, Haiman Z, Smith KL, Snios B, Charisi M, Di Stefano R (2020) Spikey: self-lensing flares from eccentric SMBH binaries. Mon. Not. R. Astron. Soc.495(4):4061–4070. https://doi.org/10.1093/mnras/ staa1312. arXiv:1910.05348 [astro-ph.HE] Hu W, Barkana R, Gruzinov A (2000) Cold and fuzzy dark matter. Phys Rev Lett 85:1158–1161. https://doi.org/10.1103/PhysRevLett.85.1158. arXiv:astroph/0003365 Hu WR, Wu YL (2017) The Taiji Program in Space for gravitational wave physics and the nature of gravity. National Science Review 4(5):685–686. https://doi.org/10.1093/nsr/nwx116, URL https://doi.org/10.1093/nsr/nwx116. https://academic.oup.com/nsr/article-pdf/4/5/685/31566708/nwx116.pdf Hui L, Ostriker JP, Tremaine S, Witten E (2017) Ultralight scalars as cosmological dark matter. Phys Rev D 95(4):043541. https://doi.org/10.1103/PhysRevD.95.043541. arXiv:1610.08297 [astro-ph.CO] Igumenshchev IV, Narayan R, Abramowicz MA (2003) Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows. Astrophys. J.592(2):1042–1059. https://doi.org/10.1086/375769. arXiv:astro-ph/0301402
- [gr-qc] Hu BX, D’Orazio DJ, Haiman Z, Smith KL, Snios B, Charisi M, Di Stefano R (2020) Spikey: self-lensing flares from eccentric SMBH binaries. Mon. Not. R. Astron. Soc.495(4):4061–4070. https://doi.org/10.1093/mnras/ staa1312. arXiv:1910.05348 [astro-ph.HE] Hu W, Barkana R, Gruzinov A (2000) Cold and fuzzy dark matter. Phys Rev Lett 85:1158–1161. https://doi.org/10.1103/PhysRevLett.85.1158. arXiv:astroph/0003365 Hu WR, Wu YL (2017) The Taiji Program in Space for gravitational wave physics and the nature of gravity. National Science Review 4(5):685–686. https://doi.org/10.1093/nsr/nwx116, URL https://doi.org/10.1093/nsr/nwx116. https://academic.oup.com/nsr/article-pdf/4/5/685/31566708/nwx116.pdf Hui L, Ostriker JP, Tremaine S, Witten E (2017) Ultralight scalars as cosmological dark matter. Phys Rev D 95(4):043541. https://doi.org/10.1103/PhysRevD.95.043541. arXiv:1610.08297 [astro-ph.CO] Igumenshchev IV, Narayan R, Abramowicz MA (2003) Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows. Astrophys. J.592(2):1042–1059. https://doi.org/10.1086/375769. arXiv:astro-ph/0301402
- [gr-qc] Hu BX, D’Orazio DJ, Haiman Z, Smith KL, Snios B, Charisi M, Di Stefano R (2020) Spikey: self-lensing flares from eccentric SMBH binaries. Mon. Not. R. Astron. Soc.495(4):4061–4070. https://doi.org/10.1093/mnras/ staa1312. arXiv:1910.05348 [astro-ph.HE] Hu W, Barkana R, Gruzinov A (2000) Cold and fuzzy dark matter. Phys Rev Lett 85:1158–1161. https://doi.org/10.1103/PhysRevLett.85.1158. arXiv:astroph/0003365 Hu WR, Wu YL (2017) The Taiji Program in Space for gravitational wave physics and the nature of gravity. National Science Review 4(5):685–686. https://doi.org/10.1093/nsr/nwx116, URL https://doi.org/10.1093/nsr/nwx116. https://academic.oup.com/nsr/article-pdf/4/5/685/31566708/nwx116.pdf Hui L, Ostriker JP, Tremaine S, Witten E (2017) Ultralight scalars as cosmological dark matter. Phys Rev D 95(4):043541. https://doi.org/10.1103/PhysRevD.95.043541. arXiv:1610.08297 [astro-ph.CO] Igumenshchev IV, Narayan R, Abramowicz MA (2003) Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows. Astrophys. J.592(2):1042–1059. https://doi.org/10.1086/375769. arXiv:astro-ph/0301402
- [gr-qc] Hu BX, D’Orazio DJ, Haiman Z, Smith KL, Snios B, Charisi M, Di Stefano R (2020) Spikey: self-lensing flares from eccentric SMBH binaries. Mon. Not. R. Astron. Soc.495(4):4061–4070. https://doi.org/10.1093/mnras/ staa1312. arXiv:1910.05348 [astro-ph.HE] Hu W, Barkana R, Gruzinov A (2000) Cold and fuzzy dark matter. Phys Rev Lett 85:1158–1161. https://doi.org/10.1103/PhysRevLett.85.1158. arXiv:astroph/0003365 Hu WR, Wu YL (2017) The Taiji Program in Space for gravitational wave physics and the nature of gravity. National Science Review 4(5):685–686. https://doi.org/10.1093/nsr/nwx116, URL https://doi.org/10.1093/nsr/nwx116. https://academic.oup.com/nsr/article-pdf/4/5/685/31566708/nwx116.pdf Hui L, Ostriker JP, Tremaine S, Witten E (2017) Ultralight scalars as cosmological dark matter. Phys Rev D 95(4):043541. https://doi.org/10.1103/PhysRevD.95.043541. arXiv:1610.08297 [astro-ph.CO] Igumenshchev IV, Narayan R, Abramowicz MA (2003) Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows. Astrophys. J.592(2):1042–1059. https://doi.org/10.1086/375769. arXiv:astro-ph/0301402
- [astro-ph] Ikeda T, Brito R, Cardoso V (2019) Blasts of Light from Axions. Phys Rev Lett 122(8):081101. https://doi.org/10.1103/PhysRevLett.122.081101. arXiv:1811.04950
- [gr-qc] Iorio L (2020) The Short-period S-stars S4711, S62, S4714 and the Lense–Thirring Effect due to the Spin of Sgr A*. Astrophys J 904(2):186. https://doi.org/10.3847/ 1538-4357/abbfb5. arXiv:2009.01158
- [gr-qc] Ishikawa Y, Liu X, Shen Y, Zakamska NL, Chen YC, Hwang HC (2021) Kpc-scale dual supermassive black holes and their impact on galaxy formation at cosmic noon. JWST Proposal. Cycle 1, ID. #2654 Islam SU, Kumar R, Ghosh SG (2020) Gravitational lensing by black holes in the 4D Einstein-Gauss-Bonnet gravity. JCAP 09:030. https://doi.org/10.1088/1475-7516/ 2020/09/030. arXiv:2004.01038
- [gr-qc] Islam SU, Kumar J, Ghosh SG (2021) Strong gravitational lensing by rotating SimpsonVisser black holes. JCAP 10:013. https://doi.org/10.1088/1475-7516/2021/10/013. 130 The ngEHT Fundamental Physics SWG arXiv:2104.00696
- [gr-qc] Issaoun S, Pesce DW, Roelofs F, Chael A, Dodson R, Rioja MJ, Akiyama K, Aran R, Blackburn L, Doeleman SS, Fish VL, Fitzpatrick G, Johnson MD, Narayanan G, Raymond AW, Tilanus RPJ (2023) Enabling Transformational ngEHT Science via the Inclusion of 86 GHz Capabilities. Galaxies 11(1):28. https://doi.org/10.3390/ galaxies11010028. arXiv:2302.05415 [astro-ph.IM] Janis AI, Newman ET, Winicour J (1968) Reality of the Schwarzschild Singularity. Phys Rev Lett 20:878–880. https://doi.org/10.1103/PhysRevLett.20.878 Jenet FA, Lommen A, Larson SL, Wen L (2004) Constraining the properties of supermassive black hole systems using pulsar timing: Application to 3c 66b. The Astrophysical Journal 606(2):799–803. https://doi.org/10.1086/383020, URL https: //doi.org/10.1086/383020 Jeter B, Broderick AE, Gold R (2020) Differentiating disc and black hole-driven jets with EHT images of variability in M87. Mon. Not. R. Astron. Soc.493(4):5606–5616. https://doi.org/10.1093/mnras/staa679. arXiv:1804.05861 [astro-ph.HE] Jiménez-Rosales A, Dexter J, Ressler SM, Tchekhovskoy A, Bauböck M, Dallilar Y, de Zeeuw PT, Drescher A, Eisenhauer F, von Fellenberg S, Gao F, Genzel R, Gillessen S, Habibi M, Ott T, Stadler J, Straub O, Widmann F (2021) Relative depolarization of the black hole photon ring in GRMHD models of Sgr A* and M87*. Mon. Not. R. Astron. Soc.503(3):4563–4575. https://doi.org/10.1093/mnras/ stab784. arXiv:2103.06292 [astro-ph.HE] Johannsen T (2013) Regular black hole metric with three constants of motion. Phys. Rev. D88(4):044002. https://doi.org/10.1103/PhysRevD.88.044002. arXiv:1501.02809
- [gr-qc] Issaoun S, Pesce DW, Roelofs F, Chael A, Dodson R, Rioja MJ, Akiyama K, Aran R, Blackburn L, Doeleman SS, Fish VL, Fitzpatrick G, Johnson MD, Narayanan G, Raymond AW, Tilanus RPJ (2023) Enabling Transformational ngEHT Science via the Inclusion of 86 GHz Capabilities. Galaxies 11(1):28. https://doi.org/10.3390/ galaxies11010028. arXiv:2302.05415 [astro-ph.IM] Janis AI, Newman ET, Winicour J (1968) Reality of the Schwarzschild Singularity. Phys Rev Lett 20:878–880. https://doi.org/10.1103/PhysRevLett.20.878 Jenet FA, Lommen A, Larson SL, Wen L (2004) Constraining the properties of supermassive black hole systems using pulsar timing: Application to 3c 66b. The Astrophysical Journal 606(2):799–803. https://doi.org/10.1086/383020, URL https: //doi.org/10.1086/383020 Jeter B, Broderick AE, Gold R (2020) Differentiating disc and black hole-driven jets with EHT images of variability in M87. Mon. Not. R. Astron. Soc.493(4):5606–5616. https://doi.org/10.1093/mnras/staa679. arXiv:1804.05861 [astro-ph.HE] Jiménez-Rosales A, Dexter J, Ressler SM, Tchekhovskoy A, Bauböck M, Dallilar Y, de Zeeuw PT, Drescher A, Eisenhauer F, von Fellenberg S, Gao F, Genzel R, Gillessen S, Habibi M, Ott T, Stadler J, Straub O, Widmann F (2021) Relative depolarization of the black hole photon ring in GRMHD models of Sgr A* and M87*. Mon. Not. R. Astron. Soc.503(3):4563–4575. https://doi.org/10.1093/mnras/ stab784. arXiv:2103.06292 [astro-ph.HE] Johannsen T (2013) Regular black hole metric with three constants of motion. Phys. Rev. D88(4):044002. https://doi.org/10.1103/PhysRevD.88.044002. arXiv:1501.02809
- [gr-qc] Issaoun S, Pesce DW, Roelofs F, Chael A, Dodson R, Rioja MJ, Akiyama K, Aran R, Blackburn L, Doeleman SS, Fish VL, Fitzpatrick G, Johnson MD, Narayanan G, Raymond AW, Tilanus RPJ (2023) Enabling Transformational ngEHT Science via the Inclusion of 86 GHz Capabilities. Galaxies 11(1):28. https://doi.org/10.3390/ galaxies11010028. arXiv:2302.05415 [astro-ph.IM] Janis AI, Newman ET, Winicour J (1968) Reality of the Schwarzschild Singularity. Phys Rev Lett 20:878–880. https://doi.org/10.1103/PhysRevLett.20.878 Jenet FA, Lommen A, Larson SL, Wen L (2004) Constraining the properties of supermassive black hole systems using pulsar timing: Application to 3c 66b. The Astrophysical Journal 606(2):799–803. https://doi.org/10.1086/383020, URL https: //doi.org/10.1086/383020 Jeter B, Broderick AE, Gold R (2020) Differentiating disc and black hole-driven jets with EHT images of variability in M87. Mon. Not. R. Astron. Soc.493(4):5606–5616. https://doi.org/10.1093/mnras/staa679. arXiv:1804.05861 [astro-ph.HE] Jiménez-Rosales A, Dexter J, Ressler SM, Tchekhovskoy A, Bauböck M, Dallilar Y, de Zeeuw PT, Drescher A, Eisenhauer F, von Fellenberg S, Gao F, Genzel R, Gillessen S, Habibi M, Ott T, Stadler J, Straub O, Widmann F (2021) Relative depolarization of the black hole photon ring in GRMHD models of Sgr A* and M87*. Mon. Not. R. Astron. Soc.503(3):4563–4575. https://doi.org/10.1093/mnras/ stab784. arXiv:2103.06292 [astro-ph.HE] Johannsen T (2013) Regular black hole metric with three constants of motion. Phys. Rev. D88(4):044002. https://doi.org/10.1103/PhysRevD.88.044002. arXiv:1501.02809
- [gr-qc] Issaoun S, Pesce DW, Roelofs F, Chael A, Dodson R, Rioja MJ, Akiyama K, Aran R, Blackburn L, Doeleman SS, Fish VL, Fitzpatrick G, Johnson MD, Narayanan G, Raymond AW, Tilanus RPJ (2023) Enabling Transformational ngEHT Science via the Inclusion of 86 GHz Capabilities. Galaxies 11(1):28. https://doi.org/10.3390/ galaxies11010028. arXiv:2302.05415 [astro-ph.IM] Janis AI, Newman ET, Winicour J (1968) Reality of the Schwarzschild Singularity. Phys Rev Lett 20:878–880. https://doi.org/10.1103/PhysRevLett.20.878 Jenet FA, Lommen A, Larson SL, Wen L (2004) Constraining the properties of supermassive black hole systems using pulsar timing: Application to 3c 66b. The Astrophysical Journal 606(2):799–803. https://doi.org/10.1086/383020, URL https: //doi.org/10.1086/383020 Jeter B, Broderick AE, Gold R (2020) Differentiating disc and black hole-driven jets with EHT images of variability in M87. Mon. Not. R. Astron. Soc.493(4):5606–5616. https://doi.org/10.1093/mnras/staa679. arXiv:1804.05861 [astro-ph.HE] Jiménez-Rosales A, Dexter J, Ressler SM, Tchekhovskoy A, Bauböck M, Dallilar Y, de Zeeuw PT, Drescher A, Eisenhauer F, von Fellenberg S, Gao F, Genzel R, Gillessen S, Habibi M, Ott T, Stadler J, Straub O, Widmann F (2021) Relative depolarization of the black hole photon ring in GRMHD models of Sgr A* and M87*. Mon. Not. R. Astron. Soc.503(3):4563–4575. https://doi.org/10.1093/mnras/ stab784. arXiv:2103.06292 [astro-ph.HE] Johannsen T (2013) Regular black hole metric with three constants of motion. Phys. Rev. D88(4):044002. https://doi.org/10.1103/PhysRevD.88.044002. arXiv:1501.02809
- [gr-qc] Issaoun S, Pesce DW, Roelofs F, Chael A, Dodson R, Rioja MJ, Akiyama K, Aran R, Blackburn L, Doeleman SS, Fish VL, Fitzpatrick G, Johnson MD, Narayanan G, Raymond AW, Tilanus RPJ (2023) Enabling Transformational ngEHT Science via the Inclusion of 86 GHz Capabilities. Galaxies 11(1):28. https://doi.org/10.3390/ galaxies11010028. arXiv:2302.05415 [astro-ph.IM] Janis AI, Newman ET, Winicour J (1968) Reality of the Schwarzschild Singularity. Phys Rev Lett 20:878–880. https://doi.org/10.1103/PhysRevLett.20.878 Jenet FA, Lommen A, Larson SL, Wen L (2004) Constraining the properties of supermassive black hole systems using pulsar timing: Application to 3c 66b. The Astrophysical Journal 606(2):799–803. https://doi.org/10.1086/383020, URL https: //doi.org/10.1086/383020 Jeter B, Broderick AE, Gold R (2020) Differentiating disc and black hole-driven jets with EHT images of variability in M87. Mon. Not. R. Astron. Soc.493(4):5606–5616. https://doi.org/10.1093/mnras/staa679. arXiv:1804.05861 [astro-ph.HE] Jiménez-Rosales A, Dexter J, Ressler SM, Tchekhovskoy A, Bauböck M, Dallilar Y, de Zeeuw PT, Drescher A, Eisenhauer F, von Fellenberg S, Gao F, Genzel R, Gillessen S, Habibi M, Ott T, Stadler J, Straub O, Widmann F (2021) Relative depolarization of the black hole photon ring in GRMHD models of Sgr A* and M87*. Mon. Not. R. Astron. Soc.503(3):4563–4575. https://doi.org/10.1093/mnras/ stab784. arXiv:2103.06292 [astro-ph.HE] Johannsen T (2013) Regular black hole metric with three constants of motion. Phys. Rev. D88(4):044002. https://doi.org/10.1103/PhysRevD.88.044002. arXiv:1501.02809
- [gr-qc] Issaoun S, Pesce DW, Roelofs F, Chael A, Dodson R, Rioja MJ, Akiyama K, Aran R, Blackburn L, Doeleman SS, Fish VL, Fitzpatrick G, Johnson MD, Narayanan G, Raymond AW, Tilanus RPJ (2023) Enabling Transformational ngEHT Science via the Inclusion of 86 GHz Capabilities. Galaxies 11(1):28. https://doi.org/10.3390/ galaxies11010028. arXiv:2302.05415 [astro-ph.IM] Janis AI, Newman ET, Winicour J (1968) Reality of the Schwarzschild Singularity. Phys Rev Lett 20:878–880. https://doi.org/10.1103/PhysRevLett.20.878 Jenet FA, Lommen A, Larson SL, Wen L (2004) Constraining the properties of supermassive black hole systems using pulsar timing: Application to 3c 66b. The Astrophysical Journal 606(2):799–803. https://doi.org/10.1086/383020, URL https: //doi.org/10.1086/383020 Jeter B, Broderick AE, Gold R (2020) Differentiating disc and black hole-driven jets with EHT images of variability in M87. Mon. Not. R. Astron. Soc.493(4):5606–5616. https://doi.org/10.1093/mnras/staa679. arXiv:1804.05861 [astro-ph.HE] Jiménez-Rosales A, Dexter J, Ressler SM, Tchekhovskoy A, Bauböck M, Dallilar Y, de Zeeuw PT, Drescher A, Eisenhauer F, von Fellenberg S, Gao F, Genzel R, Gillessen S, Habibi M, Ott T, Stadler J, Straub O, Widmann F (2021) Relative depolarization of the black hole photon ring in GRMHD models of Sgr A* and M87*. Mon. Not. R. Astron. Soc.503(3):4563–4575. https://doi.org/10.1093/mnras/ stab784. arXiv:2103.06292 [astro-ph.HE] Johannsen T (2013) Regular black hole metric with three constants of motion. Phys. Rev. D88(4):044002. https://doi.org/10.1103/PhysRevD.88.044002. arXiv:1501.02809
- [gr-qc] Issaoun S, Pesce DW, Roelofs F, Chael A, Dodson R, Rioja MJ, Akiyama K, Aran R, Blackburn L, Doeleman SS, Fish VL, Fitzpatrick G, Johnson MD, Narayanan G, Raymond AW, Tilanus RPJ (2023) Enabling Transformational ngEHT Science via the Inclusion of 86 GHz Capabilities. Galaxies 11(1):28. https://doi.org/10.3390/ galaxies11010028. arXiv:2302.05415 [astro-ph.IM] Janis AI, Newman ET, Winicour J (1968) Reality of the Schwarzschild Singularity. Phys Rev Lett 20:878–880. https://doi.org/10.1103/PhysRevLett.20.878 Jenet FA, Lommen A, Larson SL, Wen L (2004) Constraining the properties of supermassive black hole systems using pulsar timing: Application to 3c 66b. The Astrophysical Journal 606(2):799–803. https://doi.org/10.1086/383020, URL https: //doi.org/10.1086/383020 Jeter B, Broderick AE, Gold R (2020) Differentiating disc and black hole-driven jets with EHT images of variability in M87. Mon. Not. R. Astron. Soc.493(4):5606–5616. https://doi.org/10.1093/mnras/staa679. arXiv:1804.05861 [astro-ph.HE] Jiménez-Rosales A, Dexter J, Ressler SM, Tchekhovskoy A, Bauböck M, Dallilar Y, de Zeeuw PT, Drescher A, Eisenhauer F, von Fellenberg S, Gao F, Genzel R, Gillessen S, Habibi M, Ott T, Stadler J, Straub O, Widmann F (2021) Relative depolarization of the black hole photon ring in GRMHD models of Sgr A* and M87*. Mon. Not. R. Astron. Soc.503(3):4563–4575. https://doi.org/10.1093/mnras/ stab784. arXiv:2103.06292 [astro-ph.HE] Johannsen T (2013) Regular black hole metric with three constants of motion. Phys. Rev. D88(4):044002. https://doi.org/10.1103/PhysRevD.88.044002. arXiv:1501.02809
- [gr-qc] Johannsen T, Psaltis D (2010) Testing the No-Hair Theorem with Observations in the Electromagnetic Spectrum: II. Black-Hole Images. Astrophys J 718:446–454. https: //doi.org/10.1088/0004-637X/718/1/446. arXiv:1005.1931 [astro-ph.HE] Johannsen T, Psaltis D (2011a) Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem. Phys. Rev. D83(12):124015. https://doi. org/10.1103/PhysRevD.83.124015. arXiv:1105.3191
- [gr-qc] Johannsen T, Psaltis D (2010) Testing the No-Hair Theorem with Observations in the Electromagnetic Spectrum: II. Black-Hole Images. Astrophys J 718:446–454. https: //doi.org/10.1088/0004-637X/718/1/446. arXiv:1005.1931 [astro-ph.HE] Johannsen T, Psaltis D (2011a) Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem. Phys. Rev. D83(12):124015. https://doi. org/10.1103/PhysRevD.83.124015. arXiv:1105.3191
- [gr-qc] Johannsen T, Psaltis D (2011b) Testing the No-hair Theorem with Observations in the Electromagnetic Spectrum. III. Quasi-periodic Variability. Astrophys. J.726(1):11. https://doi.org/10.1088/0004-637X/726/1/11. arXiv:1010.1000 [astro-ph.HE] Johnson MD, Akiyama K, Blackburn L, Bouman KL, Broderick AE, Cardoso V, Fender RP, Fromm CM, Galison P, Gómez JL, Haggard D, Lister ML, Lobanov AP, Markoff S, Narayan R, Natarajan P, Nichols T, Pesce DW, Younsi Z, Chael A, Chatterjee K, Chaves R, Doboszewski J, Dodson R, Doeleman SS, Elder J, Fitzpatrick G, Haworth K, Houston J, Issaoun S, Kovalev YY, Levis A, Lico R, Marcoci A, Martens NCM, Nagar NM, Oppenheimer A, Palumbo DCM, Ricarte A, Rioja MJ, Roelofs F, Thresher AC, Tiede P, Weintroub J, Wielgus M (2023) Key Science Goals for the Next-Generation Event Horizon Telescope. Galaxies 11(3):61. https://doi.org/ 10.3390/galaxies11030061. arXiv:2304.11188 [astro-ph.HE] Johnson MD, et al. (2020) Universal interferometric signatures of a black hole’s photon ring. Sci Adv 6(12):eaaz1310. https://doi.org/10.1126/sciadv.aaz1310. arXiv:1907.04329 [astro-ph.IM] Joshi PS, Malafarina D, Narayan R (2011) Equilibrium configurations from gravitational collapse. Class Quant Grav 28:235018. https://doi.org/10.1088/0264-9381/ 28/23/235018. arXiv:1106.5438
- [gr-qc] Johannsen T, Psaltis D (2011b) Testing the No-hair Theorem with Observations in the Electromagnetic Spectrum. III. Quasi-periodic Variability. Astrophys. J.726(1):11. https://doi.org/10.1088/0004-637X/726/1/11. arXiv:1010.1000 [astro-ph.HE] Johnson MD, Akiyama K, Blackburn L, Bouman KL, Broderick AE, Cardoso V, Fender RP, Fromm CM, Galison P, Gómez JL, Haggard D, Lister ML, Lobanov AP, Markoff S, Narayan R, Natarajan P, Nichols T, Pesce DW, Younsi Z, Chael A, Chatterjee K, Chaves R, Doboszewski J, Dodson R, Doeleman SS, Elder J, Fitzpatrick G, Haworth K, Houston J, Issaoun S, Kovalev YY, Levis A, Lico R, Marcoci A, Martens NCM, Nagar NM, Oppenheimer A, Palumbo DCM, Ricarte A, Rioja MJ, Roelofs F, Thresher AC, Tiede P, Weintroub J, Wielgus M (2023) Key Science Goals for the Next-Generation Event Horizon Telescope. Galaxies 11(3):61. https://doi.org/ 10.3390/galaxies11030061. arXiv:2304.11188 [astro-ph.HE] Johnson MD, et al. (2020) Universal interferometric signatures of a black hole’s photon ring. Sci Adv 6(12):eaaz1310. https://doi.org/10.1126/sciadv.aaz1310. arXiv:1907.04329 [astro-ph.IM] Joshi PS, Malafarina D, Narayan R (2011) Equilibrium configurations from gravitational collapse. Class Quant Grav 28:235018. https://doi.org/10.1088/0264-9381/ 28/23/235018. arXiv:1106.5438
- [gr-qc] Johannsen T, Psaltis D (2011b) Testing the No-hair Theorem with Observations in the Electromagnetic Spectrum. III. Quasi-periodic Variability. Astrophys. J.726(1):11. https://doi.org/10.1088/0004-637X/726/1/11. arXiv:1010.1000 [astro-ph.HE] Johnson MD, Akiyama K, Blackburn L, Bouman KL, Broderick AE, Cardoso V, Fender RP, Fromm CM, Galison P, Gómez JL, Haggard D, Lister ML, Lobanov AP, Markoff S, Narayan R, Natarajan P, Nichols T, Pesce DW, Younsi Z, Chael A, Chatterjee K, Chaves R, Doboszewski J, Dodson R, Doeleman SS, Elder J, Fitzpatrick G, Haworth K, Houston J, Issaoun S, Kovalev YY, Levis A, Lico R, Marcoci A, Martens NCM, Nagar NM, Oppenheimer A, Palumbo DCM, Ricarte A, Rioja MJ, Roelofs F, Thresher AC, Tiede P, Weintroub J, Wielgus M (2023) Key Science Goals for the Next-Generation Event Horizon Telescope. Galaxies 11(3):61. https://doi.org/ 10.3390/galaxies11030061. arXiv:2304.11188 [astro-ph.HE] Johnson MD, et al. (2020) Universal interferometric signatures of a black hole’s photon ring. Sci Adv 6(12):eaaz1310. https://doi.org/10.1126/sciadv.aaz1310. arXiv:1907.04329 [astro-ph.IM] Joshi PS, Malafarina D, Narayan R (2011) Equilibrium configurations from gravitational collapse. Class Quant Grav 28:235018. https://doi.org/10.1088/0264-9381/ 28/23/235018. arXiv:1106.5438
- [gr-qc] Johannsen T, Psaltis D (2011b) Testing the No-hair Theorem with Observations in the Electromagnetic Spectrum. III. Quasi-periodic Variability. Astrophys. J.726(1):11. https://doi.org/10.1088/0004-637X/726/1/11. arXiv:1010.1000 [astro-ph.HE] Johnson MD, Akiyama K, Blackburn L, Bouman KL, Broderick AE, Cardoso V, Fender RP, Fromm CM, Galison P, Gómez JL, Haggard D, Lister ML, Lobanov AP, Markoff S, Narayan R, Natarajan P, Nichols T, Pesce DW, Younsi Z, Chael A, Chatterjee K, Chaves R, Doboszewski J, Dodson R, Doeleman SS, Elder J, Fitzpatrick G, Haworth K, Houston J, Issaoun S, Kovalev YY, Levis A, Lico R, Marcoci A, Martens NCM, Nagar NM, Oppenheimer A, Palumbo DCM, Ricarte A, Rioja MJ, Roelofs F, Thresher AC, Tiede P, Weintroub J, Wielgus M (2023) Key Science Goals for the Next-Generation Event Horizon Telescope. Galaxies 11(3):61. https://doi.org/ 10.3390/galaxies11030061. arXiv:2304.11188 [astro-ph.HE] Johnson MD, et al. (2020) Universal interferometric signatures of a black hole’s photon ring. Sci Adv 6(12):eaaz1310. https://doi.org/10.1126/sciadv.aaz1310. arXiv:1907.04329 [astro-ph.IM] Joshi PS, Malafarina D, Narayan R (2011) Equilibrium configurations from gravitational collapse. Class Quant Grav 28:235018. https://doi.org/10.1088/0264-9381/ 28/23/235018. arXiv:1106.5438
- [gr-qc] Fundamental Physics Opportunities with the ngEHT 131 Joshi PS, Malafarina D, Narayan R (2014) Distinguishing black holes from naked singularities through their accretion disc properties. Class Quant Grav 31:015002. https://doi.org/10.1088/0264-9381/31/1/015002. arXiv:1304.7331
- [gr-qc] Kalfountzou E, Santos Lleo M, Trichas M (2017) SDSS J1056+5516: A Triple AGN or an SMBH Recoil Candidate? Astrophys. J. Lett.851(1):L15. https://doi.org/10. 3847/2041-8213/aa9b2d. arXiv:1712.03909 [astro-ph.GA] Kato Y, Miyoshi M, Takahashi R, Negoro H, Matsumoto R (2010) Measuring spin of a supermassive black hole at the Galactic centre - implications for a unique spin. Mon. Not. R. Astron. Soc.403(1):L74–L78. https://doi.org/10.1111/j.1745-3933. 2010.00818.x. arXiv:0906.5423 [astro-ph.GA] Kauffmann J, Rajagopalan G, Akiyama K, Fish V, Lonsdale C, Matthews LD, Pillai TG (2023) The haystack telescope as an astronomical instrument. Galaxies 11(1). https://doi.org/10.3390/galaxies11010009, URL https://www.mdpi.com/ 2075-4434/11/1/9 Keir J (2019) Wave propagation on microstate geometries. Annales Henri Poincare 21(3):705–760. https://doi.org/10.1007/s00023-019-00874-4. arXiv:1609.01733
- [gr-qc] Kalfountzou E, Santos Lleo M, Trichas M (2017) SDSS J1056+5516: A Triple AGN or an SMBH Recoil Candidate? Astrophys. J. Lett.851(1):L15. https://doi.org/10. 3847/2041-8213/aa9b2d. arXiv:1712.03909 [astro-ph.GA] Kato Y, Miyoshi M, Takahashi R, Negoro H, Matsumoto R (2010) Measuring spin of a supermassive black hole at the Galactic centre - implications for a unique spin. Mon. Not. R. Astron. Soc.403(1):L74–L78. https://doi.org/10.1111/j.1745-3933. 2010.00818.x. arXiv:0906.5423 [astro-ph.GA] Kauffmann J, Rajagopalan G, Akiyama K, Fish V, Lonsdale C, Matthews LD, Pillai TG (2023) The haystack telescope as an astronomical instrument. Galaxies 11(1). https://doi.org/10.3390/galaxies11010009, URL https://www.mdpi.com/ 2075-4434/11/1/9 Keir J (2019) Wave propagation on microstate geometries. Annales Henri Poincare 21(3):705–760. https://doi.org/10.1007/s00023-019-00874-4. arXiv:1609.01733
- [gr-qc] Kalfountzou E, Santos Lleo M, Trichas M (2017) SDSS J1056+5516: A Triple AGN or an SMBH Recoil Candidate? Astrophys. J. Lett.851(1):L15. https://doi.org/10. 3847/2041-8213/aa9b2d. arXiv:1712.03909 [astro-ph.GA] Kato Y, Miyoshi M, Takahashi R, Negoro H, Matsumoto R (2010) Measuring spin of a supermassive black hole at the Galactic centre - implications for a unique spin. Mon. Not. R. Astron. Soc.403(1):L74–L78. https://doi.org/10.1111/j.1745-3933. 2010.00818.x. arXiv:0906.5423 [astro-ph.GA] Kauffmann J, Rajagopalan G, Akiyama K, Fish V, Lonsdale C, Matthews LD, Pillai TG (2023) The haystack telescope as an astronomical instrument. Galaxies 11(1). https://doi.org/10.3390/galaxies11010009, URL https://www.mdpi.com/ 2075-4434/11/1/9 Keir J (2019) Wave propagation on microstate geometries. Annales Henri Poincare 21(3):705–760. https://doi.org/10.1007/s00023-019-00874-4. arXiv:1609.01733
- [gr-qc] Kalfountzou E, Santos Lleo M, Trichas M (2017) SDSS J1056+5516: A Triple AGN or an SMBH Recoil Candidate? Astrophys. J. Lett.851(1):L15. https://doi.org/10. 3847/2041-8213/aa9b2d. arXiv:1712.03909 [astro-ph.GA] Kato Y, Miyoshi M, Takahashi R, Negoro H, Matsumoto R (2010) Measuring spin of a supermassive black hole at the Galactic centre - implications for a unique spin. Mon. Not. R. Astron. Soc.403(1):L74–L78. https://doi.org/10.1111/j.1745-3933. 2010.00818.x. arXiv:0906.5423 [astro-ph.GA] Kauffmann J, Rajagopalan G, Akiyama K, Fish V, Lonsdale C, Matthews LD, Pillai TG (2023) The haystack telescope as an astronomical instrument. Galaxies 11(1). https://doi.org/10.3390/galaxies11010009, URL https://www.mdpi.com/ 2075-4434/11/1/9 Keir J (2019) Wave propagation on microstate geometries. Annales Henri Poincare 21(3):705–760. https://doi.org/10.1007/s00023-019-00874-4. arXiv:1609.01733
- [grqc] Kelley L, Charisi M, Burke-Spolaor S, et al (2019) Multi-Messenger Astrophysics With Pulsar Timing Arrays. Bulletin of the American Astronomical Society 51(3):490. arXiv:1903.07644 [astro-ph.HE] Kelley LZ, D’Orazio DJ, Di Stefano R (2021) Gravitational self-lensing in populations of massive black hole binaries. Mon. Not. R. Astron. Soc.508(2):2524–2536. https: //doi.org/10.1093/mnras/stab2776. arXiv:2107.07522 [astro-ph.HE] Kerr RP (1963) Gravitational field of a spinning mass as an example of algebraically special metrics. Phys Rev Lett 11:237–238. https://doi.org/10.1103/PhysRevLett. 11.237 Khan FM, Fiacconi D, Mayer L, Berczik P, Just A (2016a) Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophys. J.828(2):73. https://doi.org/10.3847/0004-637X/828/2/73. arXiv:1604.00015 [astro-ph.GA] Khan FM, Fiacconi D, Mayer L, Berczik P, Just A (2016b) Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophys. J.828(2):73. https://doi.org/10.3847/0004-637X/828/2/73. arXiv:1604.00015 [astro-ph.GA] Kharb P, Lal DV, Merritt D (2017) A candidate sub-parsec binary black hole in the Seyfert galaxy NGC 7674. Nature Astronomy 1:727–733. https://doi.org/10.1038/ s41550-017-0256-4. arXiv:1709.06258 [astro-ph.GA] Khodadi M, Saridakis EN (2021) Einstein-Æther gravity in the light of event horizon telescope observations of M87*. Phys Dark Univ 32:100835. https://doi.org/10.1016/ j.dark.2021.100835. arXiv:2012.05186
- [grqc] Kelley L, Charisi M, Burke-Spolaor S, et al (2019) Multi-Messenger Astrophysics With Pulsar Timing Arrays. Bulletin of the American Astronomical Society 51(3):490. arXiv:1903.07644 [astro-ph.HE] Kelley LZ, D’Orazio DJ, Di Stefano R (2021) Gravitational self-lensing in populations of massive black hole binaries. Mon. Not. R. Astron. Soc.508(2):2524–2536. https: //doi.org/10.1093/mnras/stab2776. arXiv:2107.07522 [astro-ph.HE] Kerr RP (1963) Gravitational field of a spinning mass as an example of algebraically special metrics. Phys Rev Lett 11:237–238. https://doi.org/10.1103/PhysRevLett. 11.237 Khan FM, Fiacconi D, Mayer L, Berczik P, Just A (2016a) Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophys. J.828(2):73. https://doi.org/10.3847/0004-637X/828/2/73. arXiv:1604.00015 [astro-ph.GA] Khan FM, Fiacconi D, Mayer L, Berczik P, Just A (2016b) Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophys. J.828(2):73. https://doi.org/10.3847/0004-637X/828/2/73. arXiv:1604.00015 [astro-ph.GA] Kharb P, Lal DV, Merritt D (2017) A candidate sub-parsec binary black hole in the Seyfert galaxy NGC 7674. Nature Astronomy 1:727–733. https://doi.org/10.1038/ s41550-017-0256-4. arXiv:1709.06258 [astro-ph.GA] Khodadi M, Saridakis EN (2021) Einstein-Æther gravity in the light of event horizon telescope observations of M87*. Phys Dark Univ 32:100835. https://doi.org/10.1016/ j.dark.2021.100835. arXiv:2012.05186
- [grqc] Kelley L, Charisi M, Burke-Spolaor S, et al (2019) Multi-Messenger Astrophysics With Pulsar Timing Arrays. Bulletin of the American Astronomical Society 51(3):490. arXiv:1903.07644 [astro-ph.HE] Kelley LZ, D’Orazio DJ, Di Stefano R (2021) Gravitational self-lensing in populations of massive black hole binaries. Mon. Not. R. Astron. Soc.508(2):2524–2536. https: //doi.org/10.1093/mnras/stab2776. arXiv:2107.07522 [astro-ph.HE] Kerr RP (1963) Gravitational field of a spinning mass as an example of algebraically special metrics. Phys Rev Lett 11:237–238. https://doi.org/10.1103/PhysRevLett. 11.237 Khan FM, Fiacconi D, Mayer L, Berczik P, Just A (2016a) Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophys. J.828(2):73. https://doi.org/10.3847/0004-637X/828/2/73. arXiv:1604.00015 [astro-ph.GA] Khan FM, Fiacconi D, Mayer L, Berczik P, Just A (2016b) Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophys. J.828(2):73. https://doi.org/10.3847/0004-637X/828/2/73. arXiv:1604.00015 [astro-ph.GA] Kharb P, Lal DV, Merritt D (2017) A candidate sub-parsec binary black hole in the Seyfert galaxy NGC 7674. Nature Astronomy 1:727–733. https://doi.org/10.1038/ s41550-017-0256-4. arXiv:1709.06258 [astro-ph.GA] Khodadi M, Saridakis EN (2021) Einstein-Æther gravity in the light of event horizon telescope observations of M87*. Phys Dark Univ 32:100835. https://doi.org/10.1016/ j.dark.2021.100835. arXiv:2012.05186
- [grqc] Kelley L, Charisi M, Burke-Spolaor S, et al (2019) Multi-Messenger Astrophysics With Pulsar Timing Arrays. Bulletin of the American Astronomical Society 51(3):490. arXiv:1903.07644 [astro-ph.HE] Kelley LZ, D’Orazio DJ, Di Stefano R (2021) Gravitational self-lensing in populations of massive black hole binaries. Mon. Not. R. Astron. Soc.508(2):2524–2536. https: //doi.org/10.1093/mnras/stab2776. arXiv:2107.07522 [astro-ph.HE] Kerr RP (1963) Gravitational field of a spinning mass as an example of algebraically special metrics. Phys Rev Lett 11:237–238. https://doi.org/10.1103/PhysRevLett. 11.237 Khan FM, Fiacconi D, Mayer L, Berczik P, Just A (2016a) Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophys. J.828(2):73. https://doi.org/10.3847/0004-637X/828/2/73. arXiv:1604.00015 [astro-ph.GA] Khan FM, Fiacconi D, Mayer L, Berczik P, Just A (2016b) Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophys. J.828(2):73. https://doi.org/10.3847/0004-637X/828/2/73. arXiv:1604.00015 [astro-ph.GA] Kharb P, Lal DV, Merritt D (2017) A candidate sub-parsec binary black hole in the Seyfert galaxy NGC 7674. Nature Astronomy 1:727–733. https://doi.org/10.1038/ s41550-017-0256-4. arXiv:1709.06258 [astro-ph.GA] Khodadi M, Saridakis EN (2021) Einstein-Æther gravity in the light of event horizon telescope observations of M87*. Phys Dark Univ 32:100835. https://doi.org/10.1016/ j.dark.2021.100835. arXiv:2012.05186
- [grqc] Kelley L, Charisi M, Burke-Spolaor S, et al (2019) Multi-Messenger Astrophysics With Pulsar Timing Arrays. Bulletin of the American Astronomical Society 51(3):490. arXiv:1903.07644 [astro-ph.HE] Kelley LZ, D’Orazio DJ, Di Stefano R (2021) Gravitational self-lensing in populations of massive black hole binaries. Mon. Not. R. Astron. Soc.508(2):2524–2536. https: //doi.org/10.1093/mnras/stab2776. arXiv:2107.07522 [astro-ph.HE] Kerr RP (1963) Gravitational field of a spinning mass as an example of algebraically special metrics. Phys Rev Lett 11:237–238. https://doi.org/10.1103/PhysRevLett. 11.237 Khan FM, Fiacconi D, Mayer L, Berczik P, Just A (2016a) Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophys. J.828(2):73. https://doi.org/10.3847/0004-637X/828/2/73. arXiv:1604.00015 [astro-ph.GA] Khan FM, Fiacconi D, Mayer L, Berczik P, Just A (2016b) Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophys. J.828(2):73. https://doi.org/10.3847/0004-637X/828/2/73. arXiv:1604.00015 [astro-ph.GA] Kharb P, Lal DV, Merritt D (2017) A candidate sub-parsec binary black hole in the Seyfert galaxy NGC 7674. Nature Astronomy 1:727–733. https://doi.org/10.1038/ s41550-017-0256-4. arXiv:1709.06258 [astro-ph.GA] Khodadi M, Saridakis EN (2021) Einstein-Æther gravity in the light of event horizon telescope observations of M87*. Phys Dark Univ 32:100835. https://doi.org/10.1016/ j.dark.2021.100835. arXiv:2012.05186
- [grqc] Kelley L, Charisi M, Burke-Spolaor S, et al (2019) Multi-Messenger Astrophysics With Pulsar Timing Arrays. Bulletin of the American Astronomical Society 51(3):490. arXiv:1903.07644 [astro-ph.HE] Kelley LZ, D’Orazio DJ, Di Stefano R (2021) Gravitational self-lensing in populations of massive black hole binaries. Mon. Not. R. Astron. Soc.508(2):2524–2536. https: //doi.org/10.1093/mnras/stab2776. arXiv:2107.07522 [astro-ph.HE] Kerr RP (1963) Gravitational field of a spinning mass as an example of algebraically special metrics. Phys Rev Lett 11:237–238. https://doi.org/10.1103/PhysRevLett. 11.237 Khan FM, Fiacconi D, Mayer L, Berczik P, Just A (2016a) Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophys. J.828(2):73. https://doi.org/10.3847/0004-637X/828/2/73. arXiv:1604.00015 [astro-ph.GA] Khan FM, Fiacconi D, Mayer L, Berczik P, Just A (2016b) Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophys. J.828(2):73. https://doi.org/10.3847/0004-637X/828/2/73. arXiv:1604.00015 [astro-ph.GA] Kharb P, Lal DV, Merritt D (2017) A candidate sub-parsec binary black hole in the Seyfert galaxy NGC 7674. Nature Astronomy 1:727–733. https://doi.org/10.1038/ s41550-017-0256-4. arXiv:1709.06258 [astro-ph.GA] Khodadi M, Saridakis EN (2021) Einstein-Æther gravity in the light of event horizon telescope observations of M87*. Phys Dark Univ 32:100835. https://doi.org/10.1016/ j.dark.2021.100835. arXiv:2012.05186
- [grqc] Kelley L, Charisi M, Burke-Spolaor S, et al (2019) Multi-Messenger Astrophysics With Pulsar Timing Arrays. Bulletin of the American Astronomical Society 51(3):490. arXiv:1903.07644 [astro-ph.HE] Kelley LZ, D’Orazio DJ, Di Stefano R (2021) Gravitational self-lensing in populations of massive black hole binaries. Mon. Not. R. Astron. Soc.508(2):2524–2536. https: //doi.org/10.1093/mnras/stab2776. arXiv:2107.07522 [astro-ph.HE] Kerr RP (1963) Gravitational field of a spinning mass as an example of algebraically special metrics. Phys Rev Lett 11:237–238. https://doi.org/10.1103/PhysRevLett. 11.237 Khan FM, Fiacconi D, Mayer L, Berczik P, Just A (2016a) Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophys. J.828(2):73. https://doi.org/10.3847/0004-637X/828/2/73. arXiv:1604.00015 [astro-ph.GA] Khan FM, Fiacconi D, Mayer L, Berczik P, Just A (2016b) Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies. Astrophys. J.828(2):73. https://doi.org/10.3847/0004-637X/828/2/73. arXiv:1604.00015 [astro-ph.GA] Kharb P, Lal DV, Merritt D (2017) A candidate sub-parsec binary black hole in the Seyfert galaxy NGC 7674. Nature Astronomy 1:727–733. https://doi.org/10.1038/ s41550-017-0256-4. arXiv:1709.06258 [astro-ph.GA] Khodadi M, Saridakis EN (2021) Einstein-Æther gravity in the light of event horizon telescope observations of M87*. Phys Dark Univ 32:100835. https://doi.org/10.1016/ j.dark.2021.100835. arXiv:2012.05186
- [gr-qc] Khodadi M, Allahyari A, Vagnozzi S, Mota DF (2020) Black holes with scalar hair in light of the Event Horizon Telescope. JCAP 09:026. https://doi.org/10.1088/ 1475-7516/2020/09/026. arXiv:2005.05992
- [gr-qc] Kim JY, Savolainen T, Voitsik P, Kravchenko EV, Lisakov MM, Kovalev YY, Müller H, Lobanov AP, Sokolovsky KV, Bruni G, Edwards PG, Reynolds C, Bach U, Gurvits LI, Krichbaum TP, Hada K, Giroletti M, Orienti M, Anderson JM, Lee SS, Sohn BW, Zensus JA (2023) RadioAstron Space VLBI Imaging of the Jet in M87. I. Detection of High Brightness Temperature at 22 GHz. Astrophys. J.952(1):34. https: //doi.org/10.3847/1538-4357/accf17. arXiv:2304.09816 [astro-ph.GA] 132 The ngEHT Fundamental Physics SWG Kleihaus B, Kunz J, Radu E (2011) Rotating Black Holes in Dilatonic Einstein-GaussBonnet Theory. Phys Rev Lett 106:151104. https://doi.org/10.1103/PhysRevLett. 106.151104. arXiv:1101.2868
- [gr-qc] Kim JY, Savolainen T, Voitsik P, Kravchenko EV, Lisakov MM, Kovalev YY, Müller H, Lobanov AP, Sokolovsky KV, Bruni G, Edwards PG, Reynolds C, Bach U, Gurvits LI, Krichbaum TP, Hada K, Giroletti M, Orienti M, Anderson JM, Lee SS, Sohn BW, Zensus JA (2023) RadioAstron Space VLBI Imaging of the Jet in M87. I. Detection of High Brightness Temperature at 22 GHz. Astrophys. J.952(1):34. https: //doi.org/10.3847/1538-4357/accf17. arXiv:2304.09816 [astro-ph.GA] 132 The ngEHT Fundamental Physics SWG Kleihaus B, Kunz J, Radu E (2011) Rotating Black Holes in Dilatonic Einstein-GaussBonnet Theory. Phys Rev Lett 106:151104. https://doi.org/10.1103/PhysRevLett. 106.151104. arXiv:1101.2868
- [gr-qc] Kleihaus B, Kunz J, Mojica S, Radu E (2016) Spinning black holes in Einstein–GaussBonnet–dilaton theory: Nonperturbative solutions. Phys Rev D 93(4):044047. https: //doi.org/10.1103/PhysRevD.93.044047. arXiv:1511.05513
- [gr-qc] Klein A, et al. (2016) Science with the space-based interferometer eLISA: Supermassive black hole binaries. Phys Rev D 93(2):024003. https://doi.org/10.1103/PhysRevD. 93.024003. arXiv:1511.05581
- [gr-qc] Kobayashi T, Murgia R, De Simone A, Iršič V, Viel M (2017) Lyman-α constraints on ultralight scalar dark matter: Implications for the early and late universe. Phys Rev D 96(12):123514. https://doi.org/10.1103/PhysRevD.96.123514. arXiv:1708.00015 [astro-ph.CO] Kocherlakota P, Rezzolla L (2020) Accurate mapping of spherically symmetric black holes in a parametrized framework. Phys. Rev. D102(6):064058. https://doi.org/10. 1103/PhysRevD.102.064058. arXiv:2007.15593
- [gr-qc] Kobayashi T, Murgia R, De Simone A, Iršič V, Viel M (2017) Lyman-α constraints on ultralight scalar dark matter: Implications for the early and late universe. Phys Rev D 96(12):123514. https://doi.org/10.1103/PhysRevD.96.123514. arXiv:1708.00015 [astro-ph.CO] Kocherlakota P, Rezzolla L (2020) Accurate mapping of spherically symmetric black holes in a parametrized framework. Phys. Rev. D102(6):064058. https://doi.org/10. 1103/PhysRevD.102.064058. arXiv:2007.15593
- [gr-qc] Kocherlakota P, Rezzolla L (2022) Distinguishing gravitational and emission physics in black hole imaging: spherical symmetry. Mon Not Roy Astron Soc 513(1):1229–1243. https://doi.org/10.1093/mnras/stac891. arXiv:2201.05641
- [gr-qc] Kocherlakota P, Rezzolla L (2022) Distinguishing gravitational and emission physics in black hole imaging: spherical symmetry. Mon. Not. R. Astron. Soc.513(1):1229–1243. https://doi.org/10.1093/mnras/stac891. arXiv:2201.05641
- [gr-qc] Kocherlakota P, Rezzolla L, Roy R, Wielgus M (2023) Extreme Light Bending in Spherically-Symmetric Black Hole Spacetimes: Universal Characteristics and StrongField Tests of Gravity. arXiv e-prints arXiv:2307.16841. https://doi.org/10.48550/ arXiv.2307.16841. arXiv:2307.16841
- [gr-qc] Kocherlakota P, Rezzolla L, Roy R, Wielgus M (2023) Extreme Light Bending in Spherically-Symmetric Black Hole Spacetimes: Universal Characteristics and StrongField Tests of Gravity. arXiv e-prints arXiv:2307.16841. https://doi.org/10.48550/ arXiv.2307.16841. arXiv:2307.16841
- [gr-qc] Kocherlakota P, Rezzolla L, Roy R, Wielgus M (2023) Extreme Light Bending in Spherically-Symmetric Black Hole Spacetimes: Universal Characteristics and StrongField Tests of Gravity. arXiv e-prints arXiv:2307.16841. https://doi.org/10.48550/ arXiv.2307.16841. arXiv:2307.16841
- [gr-qc] Kocherlakota P, et al. (2021) Constraints on black-hole charges with the 2017 EHT observations of M87*. Phys Rev D 103(10):104047. https://doi.org/10.1103/PhysRevD. 103.104047. arXiv:2105.09343
- [gr-qc] Kocsis B, Frei Z, Haiman Z, Menou K (2006) Finding the electromagnetic counterparts of cosmological standard sirens. The Astrophysical Journal 637(1):27–37. https:// doi.org/10.1086/498236, URL https://doi.org/10.1086/498236 Kocsis B, Haiman Z, Menou K (2008a) Pre-Merger Localization of Gravitational-Wave Standard Sirens With LISA: Triggered Search for an Electromagnetic Counterpart. Astrophys J 684:870–888. https://doi.org/10.1086/590230. arXiv:0712.1144
- [gr-qc] Kocsis B, Frei Z, Haiman Z, Menou K (2006) Finding the electromagnetic counterparts of cosmological standard sirens. The Astrophysical Journal 637(1):27–37. https:// doi.org/10.1086/498236, URL https://doi.org/10.1086/498236 Kocsis B, Haiman Z, Menou K (2008a) Pre-Merger Localization of Gravitational-Wave Standard Sirens With LISA: Triggered Search for an Electromagnetic Counterpart. Astrophys J 684:870–888. https://doi.org/10.1086/590230. arXiv:0712.1144
- [gr-qc] Kocsis B, Frei Z, Haiman Z, Menou K (2006) Finding the electromagnetic counterparts of cosmological standard sirens. The Astrophysical Journal 637(1):27–37. https:// doi.org/10.1086/498236, URL https://doi.org/10.1086/498236 Kocsis B, Haiman Z, Menou K (2008a) Pre-Merger Localization of Gravitational-Wave Standard Sirens With LISA: Triggered Search for an Electromagnetic Counterpart. Astrophys J 684:870–888. https://doi.org/10.1086/590230. arXiv:0712.1144
- [astroph] Kocsis B, Haiman Z, Menou K (2008b) Premerger localization of gravitational wave standard sirens with lisa: Triggered search for an electromagnetic counterpart. The Astrophysical Journal 684(2):870–887. https://doi.org/10.1086/590230, URL https: //doi.org/10.1086/590230 Komossa S, Grupe D, Kraus A, Gurwell MA, Haiman Z, Liu FK, Tchekhovskoy A, Gallo LC, Berton M, Blandford R, Gómez JL, Gonzalez AG (2023) Absence of the predicted 2022 October outburst of OJ 287 and implications for binary SMBH scenarios. Mon. Not. R. Astron. Soc.https://doi.org/10.1093/mnrasl/slad016. arXiv:2302.11646 [astro-ph.HE] Konoplya R, Rezzolla L, Zhidenko A (2016) General parametrization of axisymmetric black holes in metric theories of gravity. Phys. Rev. D93(6):064015. https://doi.org/ 10.1103/PhysRevD.93.064015. arXiv:1602.02378
- [astroph] Kocsis B, Haiman Z, Menou K (2008b) Premerger localization of gravitational wave standard sirens with lisa: Triggered search for an electromagnetic counterpart. The Astrophysical Journal 684(2):870–887. https://doi.org/10.1086/590230, URL https: //doi.org/10.1086/590230 Komossa S, Grupe D, Kraus A, Gurwell MA, Haiman Z, Liu FK, Tchekhovskoy A, Gallo LC, Berton M, Blandford R, Gómez JL, Gonzalez AG (2023) Absence of the predicted 2022 October outburst of OJ 287 and implications for binary SMBH scenarios. Mon. Not. R. Astron. Soc.https://doi.org/10.1093/mnrasl/slad016. arXiv:2302.11646 [astro-ph.HE] Konoplya R, Rezzolla L, Zhidenko A (2016) General parametrization of axisymmetric black holes in metric theories of gravity. Phys. Rev. D93(6):064015. https://doi.org/ 10.1103/PhysRevD.93.064015. arXiv:1602.02378
- [astroph] Kocsis B, Haiman Z, Menou K (2008b) Premerger localization of gravitational wave standard sirens with lisa: Triggered search for an electromagnetic counterpart. The Astrophysical Journal 684(2):870–887. https://doi.org/10.1086/590230, URL https: //doi.org/10.1086/590230 Komossa S, Grupe D, Kraus A, Gurwell MA, Haiman Z, Liu FK, Tchekhovskoy A, Gallo LC, Berton M, Blandford R, Gómez JL, Gonzalez AG (2023) Absence of the predicted 2022 October outburst of OJ 287 and implications for binary SMBH scenarios. Mon. Not. R. Astron. Soc.https://doi.org/10.1093/mnrasl/slad016. arXiv:2302.11646 [astro-ph.HE] Konoplya R, Rezzolla L, Zhidenko A (2016) General parametrization of axisymmetric black holes in metric theories of gravity. Phys. Rev. D93(6):064015. https://doi.org/ 10.1103/PhysRevD.93.064015. arXiv:1602.02378
- [astroph] Kocsis B, Haiman Z, Menou K (2008b) Premerger localization of gravitational wave standard sirens with lisa: Triggered search for an electromagnetic counterpart. The Astrophysical Journal 684(2):870–887. https://doi.org/10.1086/590230, URL https: //doi.org/10.1086/590230 Komossa S, Grupe D, Kraus A, Gurwell MA, Haiman Z, Liu FK, Tchekhovskoy A, Gallo LC, Berton M, Blandford R, Gómez JL, Gonzalez AG (2023) Absence of the predicted 2022 October outburst of OJ 287 and implications for binary SMBH scenarios. Mon. Not. R. Astron. Soc.https://doi.org/10.1093/mnrasl/slad016. arXiv:2302.11646 [astro-ph.HE] Konoplya R, Rezzolla L, Zhidenko A (2016) General parametrization of axisymmetric black holes in metric theories of gravity. Phys. Rev. D93(6):064015. https://doi.org/ 10.1103/PhysRevD.93.064015. arXiv:1602.02378
- [gr-qc] Fundamental Physics Opportunities with the ngEHT 133 Konoplya R, Rezzolla L, Zhidenko A (2016) General parametrization of axisymmetric black holes in metric theories of gravity. Phys Rev D 93(6):064015. https://doi.org/ 10.1103/PhysRevD.93.064015. arXiv:1602.02378
- [gr-qc] Konoplya RA, Zhidenko A (2019) Analytical representation for metrics of scalarized Einstein-Maxwell black holes and their shadows. Phys Rev D 100(4):044015. https: //doi.org/10.1103/PhysRevD.100.044015. arXiv:1907.05551
- [gr-qc] Konoplya RA, Zinhailo AF (2020) Quasinormal modes, stability and shadows of a black hole in the 4D Einstein–Gauss–Bonnet gravity. Eur Phys J C 80(11):1049. https://doi.org/10.1140/epjc/s10052-020-08639-8. arXiv:2003.01188
- [gr-qc] Konoplya RA, Pappas T, Zhidenko A (2020) Einstein-scalar–Gauss-Bonnet black holes: Analytical approximation for the metric and applications to calculations of shadows. Phys Rev D 101(4):044054. https://doi.org/10.1103/PhysRevD.101.044054. arXiv:1907.10112
- [gr-qc] Koss MJ, Treister E, Kakkad D, Casey-Clyde JA, Kawamuro T, Williams J, Foord A, Trakhtenbrot B, Bauer FE, Privon GC, Ricci C, Mushotzky R, Barcos-Munoz L, Blecha L, Connor T, Harrison F, Liu T, Magno M, Mingarelli CMF, Muller-Sanchez F, Oh K, Shimizu TT, Smith KL, Stern D, Tello MP, Urry CM (2023) Ugc 4211: A confirmed dual active galactic nucleus in the local universe at 230 pc nuclear separation. The Astrophysical Journal Letters 942(1):L24. https://doi.org/10.3847/ 2041-8213/aca8f0, URL https://dx.doi.org/10.3847/2041-8213/aca8f0 Kovalev YY, Plavin AV, Pushkarev AB, Troitsky SV (2023) Probing neutrino production in blazars by millimeter VLBI. Galaxies 11:84. https://doi.org/10.3390/ galaxies11040084. arXiv:2307.02267 [astro-ph.HE] Kozai Y (1962) Secular perturbations of asteroids with high inclination and eccentricity. The Astronomical Journal 67:591–598. https://doi.org/10.1086/108790 Kramer M, Backer DC, Cordes JM, Lazio TJW, Stappers BW, Johnston S (2004) Strong-field tests of gravity using pulsars and black holes. New Astron Rev 48:993– 1002. https://doi.org/10.1016/j.newar.2004.09.020. arXiv:astro-ph/0409379 Kulier A, Ostriker JP, Natarajan P, Lackner CN, Cen R (2015) Understanding Black Hole Mass Assembly via Accretion and Mergers at Late Times in Cosmological Simulations. Astrophys. J.799(2):178. https://doi.org/10.1088/0004-637X/799/2/178. arXiv:1307.3684 [astro-ph.CO] Kumar R, Ghosh SG (2020) Rotating black holes in 4D Einstein-Gauss-Bonnet gravity and its shadow. JCAP 07:053. https://doi.org/10.1088/1475-7516/2020/07/053. arXiv:2003.08927
- [gr-qc] Koss MJ, Treister E, Kakkad D, Casey-Clyde JA, Kawamuro T, Williams J, Foord A, Trakhtenbrot B, Bauer FE, Privon GC, Ricci C, Mushotzky R, Barcos-Munoz L, Blecha L, Connor T, Harrison F, Liu T, Magno M, Mingarelli CMF, Muller-Sanchez F, Oh K, Shimizu TT, Smith KL, Stern D, Tello MP, Urry CM (2023) Ugc 4211: A confirmed dual active galactic nucleus in the local universe at 230 pc nuclear separation. The Astrophysical Journal Letters 942(1):L24. https://doi.org/10.3847/ 2041-8213/aca8f0, URL https://dx.doi.org/10.3847/2041-8213/aca8f0 Kovalev YY, Plavin AV, Pushkarev AB, Troitsky SV (2023) Probing neutrino production in blazars by millimeter VLBI. Galaxies 11:84. https://doi.org/10.3390/ galaxies11040084. arXiv:2307.02267 [astro-ph.HE] Kozai Y (1962) Secular perturbations of asteroids with high inclination and eccentricity. The Astronomical Journal 67:591–598. https://doi.org/10.1086/108790 Kramer M, Backer DC, Cordes JM, Lazio TJW, Stappers BW, Johnston S (2004) Strong-field tests of gravity using pulsars and black holes. New Astron Rev 48:993– 1002. https://doi.org/10.1016/j.newar.2004.09.020. arXiv:astro-ph/0409379 Kulier A, Ostriker JP, Natarajan P, Lackner CN, Cen R (2015) Understanding Black Hole Mass Assembly via Accretion and Mergers at Late Times in Cosmological Simulations. Astrophys. J.799(2):178. https://doi.org/10.1088/0004-637X/799/2/178. arXiv:1307.3684 [astro-ph.CO] Kumar R, Ghosh SG (2020) Rotating black holes in 4D Einstein-Gauss-Bonnet gravity and its shadow. JCAP 07:053. https://doi.org/10.1088/1475-7516/2020/07/053. arXiv:2003.08927
- [gr-qc] Koss MJ, Treister E, Kakkad D, Casey-Clyde JA, Kawamuro T, Williams J, Foord A, Trakhtenbrot B, Bauer FE, Privon GC, Ricci C, Mushotzky R, Barcos-Munoz L, Blecha L, Connor T, Harrison F, Liu T, Magno M, Mingarelli CMF, Muller-Sanchez F, Oh K, Shimizu TT, Smith KL, Stern D, Tello MP, Urry CM (2023) Ugc 4211: A confirmed dual active galactic nucleus in the local universe at 230 pc nuclear separation. The Astrophysical Journal Letters 942(1):L24. https://doi.org/10.3847/ 2041-8213/aca8f0, URL https://dx.doi.org/10.3847/2041-8213/aca8f0 Kovalev YY, Plavin AV, Pushkarev AB, Troitsky SV (2023) Probing neutrino production in blazars by millimeter VLBI. Galaxies 11:84. https://doi.org/10.3390/ galaxies11040084. arXiv:2307.02267 [astro-ph.HE] Kozai Y (1962) Secular perturbations of asteroids with high inclination and eccentricity. The Astronomical Journal 67:591–598. https://doi.org/10.1086/108790 Kramer M, Backer DC, Cordes JM, Lazio TJW, Stappers BW, Johnston S (2004) Strong-field tests of gravity using pulsars and black holes. New Astron Rev 48:993– 1002. https://doi.org/10.1016/j.newar.2004.09.020. arXiv:astro-ph/0409379 Kulier A, Ostriker JP, Natarajan P, Lackner CN, Cen R (2015) Understanding Black Hole Mass Assembly via Accretion and Mergers at Late Times in Cosmological Simulations. Astrophys. J.799(2):178. https://doi.org/10.1088/0004-637X/799/2/178. arXiv:1307.3684 [astro-ph.CO] Kumar R, Ghosh SG (2020) Rotating black holes in 4D Einstein-Gauss-Bonnet gravity and its shadow. JCAP 07:053. https://doi.org/10.1088/1475-7516/2020/07/053. arXiv:2003.08927
- [gr-qc] Koss MJ, Treister E, Kakkad D, Casey-Clyde JA, Kawamuro T, Williams J, Foord A, Trakhtenbrot B, Bauer FE, Privon GC, Ricci C, Mushotzky R, Barcos-Munoz L, Blecha L, Connor T, Harrison F, Liu T, Magno M, Mingarelli CMF, Muller-Sanchez F, Oh K, Shimizu TT, Smith KL, Stern D, Tello MP, Urry CM (2023) Ugc 4211: A confirmed dual active galactic nucleus in the local universe at 230 pc nuclear separation. The Astrophysical Journal Letters 942(1):L24. https://doi.org/10.3847/ 2041-8213/aca8f0, URL https://dx.doi.org/10.3847/2041-8213/aca8f0 Kovalev YY, Plavin AV, Pushkarev AB, Troitsky SV (2023) Probing neutrino production in blazars by millimeter VLBI. Galaxies 11:84. https://doi.org/10.3390/ galaxies11040084. arXiv:2307.02267 [astro-ph.HE] Kozai Y (1962) Secular perturbations of asteroids with high inclination and eccentricity. The Astronomical Journal 67:591–598. https://doi.org/10.1086/108790 Kramer M, Backer DC, Cordes JM, Lazio TJW, Stappers BW, Johnston S (2004) Strong-field tests of gravity using pulsars and black holes. New Astron Rev 48:993– 1002. https://doi.org/10.1016/j.newar.2004.09.020. arXiv:astro-ph/0409379 Kulier A, Ostriker JP, Natarajan P, Lackner CN, Cen R (2015) Understanding Black Hole Mass Assembly via Accretion and Mergers at Late Times in Cosmological Simulations. Astrophys. J.799(2):178. https://doi.org/10.1088/0004-637X/799/2/178. arXiv:1307.3684 [astro-ph.CO] Kumar R, Ghosh SG (2020) Rotating black holes in 4D Einstein-Gauss-Bonnet gravity and its shadow. JCAP 07:053. https://doi.org/10.1088/1475-7516/2020/07/053. arXiv:2003.08927
- [gr-qc] Koss MJ, Treister E, Kakkad D, Casey-Clyde JA, Kawamuro T, Williams J, Foord A, Trakhtenbrot B, Bauer FE, Privon GC, Ricci C, Mushotzky R, Barcos-Munoz L, Blecha L, Connor T, Harrison F, Liu T, Magno M, Mingarelli CMF, Muller-Sanchez F, Oh K, Shimizu TT, Smith KL, Stern D, Tello MP, Urry CM (2023) Ugc 4211: A confirmed dual active galactic nucleus in the local universe at 230 pc nuclear separation. The Astrophysical Journal Letters 942(1):L24. https://doi.org/10.3847/ 2041-8213/aca8f0, URL https://dx.doi.org/10.3847/2041-8213/aca8f0 Kovalev YY, Plavin AV, Pushkarev AB, Troitsky SV (2023) Probing neutrino production in blazars by millimeter VLBI. Galaxies 11:84. https://doi.org/10.3390/ galaxies11040084. arXiv:2307.02267 [astro-ph.HE] Kozai Y (1962) Secular perturbations of asteroids with high inclination and eccentricity. The Astronomical Journal 67:591–598. https://doi.org/10.1086/108790 Kramer M, Backer DC, Cordes JM, Lazio TJW, Stappers BW, Johnston S (2004) Strong-field tests of gravity using pulsars and black holes. New Astron Rev 48:993– 1002. https://doi.org/10.1016/j.newar.2004.09.020. arXiv:astro-ph/0409379 Kulier A, Ostriker JP, Natarajan P, Lackner CN, Cen R (2015) Understanding Black Hole Mass Assembly via Accretion and Mergers at Late Times in Cosmological Simulations. Astrophys. J.799(2):178. https://doi.org/10.1088/0004-637X/799/2/178. arXiv:1307.3684 [astro-ph.CO] Kumar R, Ghosh SG (2020) Rotating black holes in 4D Einstein-Gauss-Bonnet gravity and its shadow. JCAP 07:053. https://doi.org/10.1088/1475-7516/2020/07/053. arXiv:2003.08927
- [gr-qc] Koss MJ, Treister E, Kakkad D, Casey-Clyde JA, Kawamuro T, Williams J, Foord A, Trakhtenbrot B, Bauer FE, Privon GC, Ricci C, Mushotzky R, Barcos-Munoz L, Blecha L, Connor T, Harrison F, Liu T, Magno M, Mingarelli CMF, Muller-Sanchez F, Oh K, Shimizu TT, Smith KL, Stern D, Tello MP, Urry CM (2023) Ugc 4211: A confirmed dual active galactic nucleus in the local universe at 230 pc nuclear separation. The Astrophysical Journal Letters 942(1):L24. https://doi.org/10.3847/ 2041-8213/aca8f0, URL https://dx.doi.org/10.3847/2041-8213/aca8f0 Kovalev YY, Plavin AV, Pushkarev AB, Troitsky SV (2023) Probing neutrino production in blazars by millimeter VLBI. Galaxies 11:84. https://doi.org/10.3390/ galaxies11040084. arXiv:2307.02267 [astro-ph.HE] Kozai Y (1962) Secular perturbations of asteroids with high inclination and eccentricity. The Astronomical Journal 67:591–598. https://doi.org/10.1086/108790 Kramer M, Backer DC, Cordes JM, Lazio TJW, Stappers BW, Johnston S (2004) Strong-field tests of gravity using pulsars and black holes. New Astron Rev 48:993– 1002. https://doi.org/10.1016/j.newar.2004.09.020. arXiv:astro-ph/0409379 Kulier A, Ostriker JP, Natarajan P, Lackner CN, Cen R (2015) Understanding Black Hole Mass Assembly via Accretion and Mergers at Late Times in Cosmological Simulations. Astrophys. J.799(2):178. https://doi.org/10.1088/0004-637X/799/2/178. arXiv:1307.3684 [astro-ph.CO] Kumar R, Ghosh SG (2020) Rotating black holes in 4D Einstein-Gauss-Bonnet gravity and its shadow. JCAP 07:053. https://doi.org/10.1088/1475-7516/2020/07/053. arXiv:2003.08927
- [gr-qc] Kumar R, Ghosh SG (2021) Photon ring structure of rotating regular black holes and no-horizon spacetimes. Class Quant Grav 38(8):8. https://doi.org/10.1088/ 1361-6382/abdd48. arXiv:2004.07501
- [gr-qc] Kumar R, Ghosh SG, Wang A (2019) Shadow cast and deflection of light by charged rotating regular black holes. Phys Rev D 100(12):124024. https://doi.org/10.1103/ PhysRevD.100.124024. arXiv:1912.05154
- [gr-qc] Kumar R, Islam SU, Ghosh SG (2020a) Gravitational lensing by charged black hole in regularized 4D Einstein–Gauss–Bonnet gravity. Eur Phys J C 80(12):1128. https: //doi.org/10.1140/epjc/s10052-020-08606-3. arXiv:2004.12970
- [gr-qc] Kumar R, Kumar A, Ghosh SG (2020b) Testing Rotating Regular Metrics as Candidates for Astrophysical Black Holes. Astrophys J 896(1):89. https://doi.org/10. 3847/1538-4357/ab8c4a. arXiv:2006.09869
- [gr-qc] Kumar R, Singh BP, Ghosh SG (2020c) Shadow and deflection angle of rotating black hole in asymptotically safe gravity. Annals Phys 420:168252. https://doi.org/10. 134 The ngEHT Fundamental Physics SWG 1016/j.aop.2020.168252. arXiv:1904.07652
- [gr-qc] Kuo CY, et al. (2014) Measuring Mass Accretion Rate onto the Supermassive Black Hole in M87 Using Faraday Rotation Measure with the Submillimeter Array. Astrophys J Lett 783:L33. https://doi.org/10.1088/2041-8205/783/2/L33. arXiv:1402.5238 [astro-ph.GA] Lacroix T (2018) Dynamical constraints on a dark matter spike at the Galactic Centre from stellar orbits. Astron Astrophys 619:A46. https://doi.org/10.1051/0004-6361/ 201832652. arXiv:1801.01308 [astro-ph.GA] Lalakos A, Gottlieb O, Kaaz N, Chatterjee K, Liska M, Christie IM, Tchekhovskoy A, Zhuravleva I, Nokhrina E (2022) Bridging the Bondi and Event Horizon Scales: 3D GRMHD Simulations Reveal X-shaped Radio Galaxy Morphology. The Astrophysical Journal Letters 936(1):L5. https://doi.org/10.3847/ 2041-8213/AC7BED, URL https://iopscience.iop.org/article/10.3847/2041-8213/ ac7bed, arXiv: 2202.08281 Publisher: IOP Publishing Lang RN, Hughes SA (2008) Localizing coalescing massive black hole binaries with gravitational waves. The Astrophysical Journal 677(2):1184–1200. https://doi.org/ 10.1086/528953, URL https://doi.org/10.1086/528953 Lee D, Gammie CF (2021) Disks as Inhomogeneous, Anisotropic Gaussian Random Fields. Astrophys J 906(1):39. https://doi.org/10.3847/1538-4357/abc8f3. arXiv:2011.07151 [astro-ph.IM] Lehto HJ, Valtonen MJ (1996) OJ 287 Outburst Structure and a Binary Black Hole Model. Astrophys. J.460:207. https://doi.org/10.1086/176962 Lense J, Thirring H (1918) Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:156 Levis A, Srinivasan PP, Chael AA, Ng R, Bouman KL (2022) Gravitationally lensed black hole emission tomography. arXiv https://doi.org/10.48550/ARXIV. 2204.03715, URL https://arxiv.org/abs/2204.03715
- [gr-qc] Kuo CY, et al. (2014) Measuring Mass Accretion Rate onto the Supermassive Black Hole in M87 Using Faraday Rotation Measure with the Submillimeter Array. Astrophys J Lett 783:L33. https://doi.org/10.1088/2041-8205/783/2/L33. arXiv:1402.5238 [astro-ph.GA] Lacroix T (2018) Dynamical constraints on a dark matter spike at the Galactic Centre from stellar orbits. Astron Astrophys 619:A46. https://doi.org/10.1051/0004-6361/ 201832652. arXiv:1801.01308 [astro-ph.GA] Lalakos A, Gottlieb O, Kaaz N, Chatterjee K, Liska M, Christie IM, Tchekhovskoy A, Zhuravleva I, Nokhrina E (2022) Bridging the Bondi and Event Horizon Scales: 3D GRMHD Simulations Reveal X-shaped Radio Galaxy Morphology. The Astrophysical Journal Letters 936(1):L5. https://doi.org/10.3847/ 2041-8213/AC7BED, URL https://iopscience.iop.org/article/10.3847/2041-8213/ ac7bed, arXiv: 2202.08281 Publisher: IOP Publishing Lang RN, Hughes SA (2008) Localizing coalescing massive black hole binaries with gravitational waves. The Astrophysical Journal 677(2):1184–1200. https://doi.org/ 10.1086/528953, URL https://doi.org/10.1086/528953 Lee D, Gammie CF (2021) Disks as Inhomogeneous, Anisotropic Gaussian Random Fields. Astrophys J 906(1):39. https://doi.org/10.3847/1538-4357/abc8f3. arXiv:2011.07151 [astro-ph.IM] Lehto HJ, Valtonen MJ (1996) OJ 287 Outburst Structure and a Binary Black Hole Model. Astrophys. J.460:207. https://doi.org/10.1086/176962 Lense J, Thirring H (1918) Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:156 Levis A, Srinivasan PP, Chael AA, Ng R, Bouman KL (2022) Gravitationally lensed black hole emission tomography. arXiv https://doi.org/10.48550/ARXIV. 2204.03715, URL https://arxiv.org/abs/2204.03715
- [gr-qc] Kuo CY, et al. (2014) Measuring Mass Accretion Rate onto the Supermassive Black Hole in M87 Using Faraday Rotation Measure with the Submillimeter Array. Astrophys J Lett 783:L33. https://doi.org/10.1088/2041-8205/783/2/L33. arXiv:1402.5238 [astro-ph.GA] Lacroix T (2018) Dynamical constraints on a dark matter spike at the Galactic Centre from stellar orbits. Astron Astrophys 619:A46. https://doi.org/10.1051/0004-6361/ 201832652. arXiv:1801.01308 [astro-ph.GA] Lalakos A, Gottlieb O, Kaaz N, Chatterjee K, Liska M, Christie IM, Tchekhovskoy A, Zhuravleva I, Nokhrina E (2022) Bridging the Bondi and Event Horizon Scales: 3D GRMHD Simulations Reveal X-shaped Radio Galaxy Morphology. The Astrophysical Journal Letters 936(1):L5. https://doi.org/10.3847/ 2041-8213/AC7BED, URL https://iopscience.iop.org/article/10.3847/2041-8213/ ac7bed, arXiv: 2202.08281 Publisher: IOP Publishing Lang RN, Hughes SA (2008) Localizing coalescing massive black hole binaries with gravitational waves. The Astrophysical Journal 677(2):1184–1200. https://doi.org/ 10.1086/528953, URL https://doi.org/10.1086/528953 Lee D, Gammie CF (2021) Disks as Inhomogeneous, Anisotropic Gaussian Random Fields. Astrophys J 906(1):39. https://doi.org/10.3847/1538-4357/abc8f3. arXiv:2011.07151 [astro-ph.IM] Lehto HJ, Valtonen MJ (1996) OJ 287 Outburst Structure and a Binary Black Hole Model. Astrophys. J.460:207. https://doi.org/10.1086/176962 Lense J, Thirring H (1918) Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:156 Levis A, Srinivasan PP, Chael AA, Ng R, Bouman KL (2022) Gravitationally lensed black hole emission tomography. arXiv https://doi.org/10.48550/ARXIV. 2204.03715, URL https://arxiv.org/abs/2204.03715
- [gr-qc] Kuo CY, et al. (2014) Measuring Mass Accretion Rate onto the Supermassive Black Hole in M87 Using Faraday Rotation Measure with the Submillimeter Array. Astrophys J Lett 783:L33. https://doi.org/10.1088/2041-8205/783/2/L33. arXiv:1402.5238 [astro-ph.GA] Lacroix T (2018) Dynamical constraints on a dark matter spike at the Galactic Centre from stellar orbits. Astron Astrophys 619:A46. https://doi.org/10.1051/0004-6361/ 201832652. arXiv:1801.01308 [astro-ph.GA] Lalakos A, Gottlieb O, Kaaz N, Chatterjee K, Liska M, Christie IM, Tchekhovskoy A, Zhuravleva I, Nokhrina E (2022) Bridging the Bondi and Event Horizon Scales: 3D GRMHD Simulations Reveal X-shaped Radio Galaxy Morphology. The Astrophysical Journal Letters 936(1):L5. https://doi.org/10.3847/ 2041-8213/AC7BED, URL https://iopscience.iop.org/article/10.3847/2041-8213/ ac7bed, arXiv: 2202.08281 Publisher: IOP Publishing Lang RN, Hughes SA (2008) Localizing coalescing massive black hole binaries with gravitational waves. The Astrophysical Journal 677(2):1184–1200. https://doi.org/ 10.1086/528953, URL https://doi.org/10.1086/528953 Lee D, Gammie CF (2021) Disks as Inhomogeneous, Anisotropic Gaussian Random Fields. Astrophys J 906(1):39. https://doi.org/10.3847/1538-4357/abc8f3. arXiv:2011.07151 [astro-ph.IM] Lehto HJ, Valtonen MJ (1996) OJ 287 Outburst Structure and a Binary Black Hole Model. Astrophys. J.460:207. https://doi.org/10.1086/176962 Lense J, Thirring H (1918) Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:156 Levis A, Srinivasan PP, Chael AA, Ng R, Bouman KL (2022) Gravitationally lensed black hole emission tomography. arXiv https://doi.org/10.48550/ARXIV. 2204.03715, URL https://arxiv.org/abs/2204.03715
- [gr-qc] Kuo CY, et al. (2014) Measuring Mass Accretion Rate onto the Supermassive Black Hole in M87 Using Faraday Rotation Measure with the Submillimeter Array. Astrophys J Lett 783:L33. https://doi.org/10.1088/2041-8205/783/2/L33. arXiv:1402.5238 [astro-ph.GA] Lacroix T (2018) Dynamical constraints on a dark matter spike at the Galactic Centre from stellar orbits. Astron Astrophys 619:A46. https://doi.org/10.1051/0004-6361/ 201832652. arXiv:1801.01308 [astro-ph.GA] Lalakos A, Gottlieb O, Kaaz N, Chatterjee K, Liska M, Christie IM, Tchekhovskoy A, Zhuravleva I, Nokhrina E (2022) Bridging the Bondi and Event Horizon Scales: 3D GRMHD Simulations Reveal X-shaped Radio Galaxy Morphology. The Astrophysical Journal Letters 936(1):L5. https://doi.org/10.3847/ 2041-8213/AC7BED, URL https://iopscience.iop.org/article/10.3847/2041-8213/ ac7bed, arXiv: 2202.08281 Publisher: IOP Publishing Lang RN, Hughes SA (2008) Localizing coalescing massive black hole binaries with gravitational waves. The Astrophysical Journal 677(2):1184–1200. https://doi.org/ 10.1086/528953, URL https://doi.org/10.1086/528953 Lee D, Gammie CF (2021) Disks as Inhomogeneous, Anisotropic Gaussian Random Fields. Astrophys J 906(1):39. https://doi.org/10.3847/1538-4357/abc8f3. arXiv:2011.07151 [astro-ph.IM] Lehto HJ, Valtonen MJ (1996) OJ 287 Outburst Structure and a Binary Black Hole Model. Astrophys. J.460:207. https://doi.org/10.1086/176962 Lense J, Thirring H (1918) Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:156 Levis A, Srinivasan PP, Chael AA, Ng R, Bouman KL (2022) Gravitationally lensed black hole emission tomography. arXiv https://doi.org/10.48550/ARXIV. 2204.03715, URL https://arxiv.org/abs/2204.03715
- [gr-qc] Kuo CY, et al. (2014) Measuring Mass Accretion Rate onto the Supermassive Black Hole in M87 Using Faraday Rotation Measure with the Submillimeter Array. Astrophys J Lett 783:L33. https://doi.org/10.1088/2041-8205/783/2/L33. arXiv:1402.5238 [astro-ph.GA] Lacroix T (2018) Dynamical constraints on a dark matter spike at the Galactic Centre from stellar orbits. Astron Astrophys 619:A46. https://doi.org/10.1051/0004-6361/ 201832652. arXiv:1801.01308 [astro-ph.GA] Lalakos A, Gottlieb O, Kaaz N, Chatterjee K, Liska M, Christie IM, Tchekhovskoy A, Zhuravleva I, Nokhrina E (2022) Bridging the Bondi and Event Horizon Scales: 3D GRMHD Simulations Reveal X-shaped Radio Galaxy Morphology. The Astrophysical Journal Letters 936(1):L5. https://doi.org/10.3847/ 2041-8213/AC7BED, URL https://iopscience.iop.org/article/10.3847/2041-8213/ ac7bed, arXiv: 2202.08281 Publisher: IOP Publishing Lang RN, Hughes SA (2008) Localizing coalescing massive black hole binaries with gravitational waves. The Astrophysical Journal 677(2):1184–1200. https://doi.org/ 10.1086/528953, URL https://doi.org/10.1086/528953 Lee D, Gammie CF (2021) Disks as Inhomogeneous, Anisotropic Gaussian Random Fields. Astrophys J 906(1):39. https://doi.org/10.3847/1538-4357/abc8f3. arXiv:2011.07151 [astro-ph.IM] Lehto HJ, Valtonen MJ (1996) OJ 287 Outburst Structure and a Binary Black Hole Model. Astrophys. J.460:207. https://doi.org/10.1086/176962 Lense J, Thirring H (1918) Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:156 Levis A, Srinivasan PP, Chael AA, Ng R, Bouman KL (2022) Gravitationally lensed black hole emission tomography. arXiv https://doi.org/10.48550/ARXIV. 2204.03715, URL https://arxiv.org/abs/2204.03715
- [gr-qc] Kuo CY, et al. (2014) Measuring Mass Accretion Rate onto the Supermassive Black Hole in M87 Using Faraday Rotation Measure with the Submillimeter Array. Astrophys J Lett 783:L33. https://doi.org/10.1088/2041-8205/783/2/L33. arXiv:1402.5238 [astro-ph.GA] Lacroix T (2018) Dynamical constraints on a dark matter spike at the Galactic Centre from stellar orbits. Astron Astrophys 619:A46. https://doi.org/10.1051/0004-6361/ 201832652. arXiv:1801.01308 [astro-ph.GA] Lalakos A, Gottlieb O, Kaaz N, Chatterjee K, Liska M, Christie IM, Tchekhovskoy A, Zhuravleva I, Nokhrina E (2022) Bridging the Bondi and Event Horizon Scales: 3D GRMHD Simulations Reveal X-shaped Radio Galaxy Morphology. The Astrophysical Journal Letters 936(1):L5. https://doi.org/10.3847/ 2041-8213/AC7BED, URL https://iopscience.iop.org/article/10.3847/2041-8213/ ac7bed, arXiv: 2202.08281 Publisher: IOP Publishing Lang RN, Hughes SA (2008) Localizing coalescing massive black hole binaries with gravitational waves. The Astrophysical Journal 677(2):1184–1200. https://doi.org/ 10.1086/528953, URL https://doi.org/10.1086/528953 Lee D, Gammie CF (2021) Disks as Inhomogeneous, Anisotropic Gaussian Random Fields. Astrophys J 906(1):39. https://doi.org/10.3847/1538-4357/abc8f3. arXiv:2011.07151 [astro-ph.IM] Lehto HJ, Valtonen MJ (1996) OJ 287 Outburst Structure and a Binary Black Hole Model. Astrophys. J.460:207. https://doi.org/10.1086/176962 Lense J, Thirring H (1918) Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:156 Levis A, Srinivasan PP, Chael AA, Ng R, Bouman KL (2022) Gravitationally lensed black hole emission tomography. arXiv https://doi.org/10.48550/ARXIV. 2204.03715, URL https://arxiv.org/abs/2204.03715
- [gr-qc] Kuo CY, et al. (2014) Measuring Mass Accretion Rate onto the Supermassive Black Hole in M87 Using Faraday Rotation Measure with the Submillimeter Array. Astrophys J Lett 783:L33. https://doi.org/10.1088/2041-8205/783/2/L33. arXiv:1402.5238 [astro-ph.GA] Lacroix T (2018) Dynamical constraints on a dark matter spike at the Galactic Centre from stellar orbits. Astron Astrophys 619:A46. https://doi.org/10.1051/0004-6361/ 201832652. arXiv:1801.01308 [astro-ph.GA] Lalakos A, Gottlieb O, Kaaz N, Chatterjee K, Liska M, Christie IM, Tchekhovskoy A, Zhuravleva I, Nokhrina E (2022) Bridging the Bondi and Event Horizon Scales: 3D GRMHD Simulations Reveal X-shaped Radio Galaxy Morphology. The Astrophysical Journal Letters 936(1):L5. https://doi.org/10.3847/ 2041-8213/AC7BED, URL https://iopscience.iop.org/article/10.3847/2041-8213/ ac7bed, arXiv: 2202.08281 Publisher: IOP Publishing Lang RN, Hughes SA (2008) Localizing coalescing massive black hole binaries with gravitational waves. The Astrophysical Journal 677(2):1184–1200. https://doi.org/ 10.1086/528953, URL https://doi.org/10.1086/528953 Lee D, Gammie CF (2021) Disks as Inhomogeneous, Anisotropic Gaussian Random Fields. Astrophys J 906(1):39. https://doi.org/10.3847/1538-4357/abc8f3. arXiv:2011.07151 [astro-ph.IM] Lehto HJ, Valtonen MJ (1996) OJ 287 Outburst Structure and a Binary Black Hole Model. Astrophys. J.460:207. https://doi.org/10.1086/176962 Lense J, Thirring H (1918) Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:156 Levis A, Srinivasan PP, Chael AA, Ng R, Bouman KL (2022) Gravitationally lensed black hole emission tomography. arXiv https://doi.org/10.48550/ARXIV. 2204.03715, URL https://arxiv.org/abs/2204.03715
- [gr-qc] Kuo CY, et al. (2014) Measuring Mass Accretion Rate onto the Supermassive Black Hole in M87 Using Faraday Rotation Measure with the Submillimeter Array. Astrophys J Lett 783:L33. https://doi.org/10.1088/2041-8205/783/2/L33. arXiv:1402.5238 [astro-ph.GA] Lacroix T (2018) Dynamical constraints on a dark matter spike at the Galactic Centre from stellar orbits. Astron Astrophys 619:A46. https://doi.org/10.1051/0004-6361/ 201832652. arXiv:1801.01308 [astro-ph.GA] Lalakos A, Gottlieb O, Kaaz N, Chatterjee K, Liska M, Christie IM, Tchekhovskoy A, Zhuravleva I, Nokhrina E (2022) Bridging the Bondi and Event Horizon Scales: 3D GRMHD Simulations Reveal X-shaped Radio Galaxy Morphology. The Astrophysical Journal Letters 936(1):L5. https://doi.org/10.3847/ 2041-8213/AC7BED, URL https://iopscience.iop.org/article/10.3847/2041-8213/ ac7bed, arXiv: 2202.08281 Publisher: IOP Publishing Lang RN, Hughes SA (2008) Localizing coalescing massive black hole binaries with gravitational waves. The Astrophysical Journal 677(2):1184–1200. https://doi.org/ 10.1086/528953, URL https://doi.org/10.1086/528953 Lee D, Gammie CF (2021) Disks as Inhomogeneous, Anisotropic Gaussian Random Fields. Astrophys J 906(1):39. https://doi.org/10.3847/1538-4357/abc8f3. arXiv:2011.07151 [astro-ph.IM] Lehto HJ, Valtonen MJ (1996) OJ 287 Outburst Structure and a Binary Black Hole Model. Astrophys. J.460:207. https://doi.org/10.1086/176962 Lense J, Thirring H (1918) Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:156 Levis A, Srinivasan PP, Chael AA, Ng R, Bouman KL (2022) Gravitationally lensed black hole emission tomography. arXiv https://doi.org/10.48550/ARXIV. 2204.03715, URL https://arxiv.org/abs/2204.03715
- [gr-qc] Li YD, Modesto L, Rachwał L (2015) Exact solutions and spacetime singularities in nonlocal gravity. JHEP 12:173. https://doi.org/10.1007/JHEP12(2015)173. arXiv:1506.08619
- [hep-th] Liberati S, Mattingly D (2016) Lorentz breaking effective field theory models for matter and gravity: theory and observational constraints, Springer, pp 367–417. https://doi. org/10.1007/978-3-319-20224-2_11. arXiv:1208.1071
- [gr-qc] Lico R, Casadio C, Jorstad SG, Gómez JL, Marscher AP, Traianou E, Kim JY, Zhao GY, Fuentes A, Cho I, Krichbaum TP, Hervet O, O’Brien S, Boccardi B, Myserlis I, Agudo I, Alberdi A, Weaver ZR, Zensus JA (2022) New jet feature in the parsec-scale jet of the blazar OJ 287 connected to the 2017 teraelectronvolt flaring activity. Astron. Astrophys.658:L10. https://doi.org/10.1051/0004-6361/202142948. arXiv:2202.02523 [astro-ph.HE] Lidov ML (1962) The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planetary and Space Science 9(10):719–759. https://doi.org/10.1016/0032-0633(62)90129-0 Liebling SL, Palenzuela C (2023) Dynamical Boson Stars. Living Rev Rel 26:1. https: //doi.org/10.1007/s41114-023-00043-4. arXiv:1202.5809
- [gr-qc] Lico R, Casadio C, Jorstad SG, Gómez JL, Marscher AP, Traianou E, Kim JY, Zhao GY, Fuentes A, Cho I, Krichbaum TP, Hervet O, O’Brien S, Boccardi B, Myserlis I, Agudo I, Alberdi A, Weaver ZR, Zensus JA (2022) New jet feature in the parsec-scale jet of the blazar OJ 287 connected to the 2017 teraelectronvolt flaring activity. Astron. Astrophys.658:L10. https://doi.org/10.1051/0004-6361/202142948. arXiv:2202.02523 [astro-ph.HE] Lidov ML (1962) The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planetary and Space Science 9(10):719–759. https://doi.org/10.1016/0032-0633(62)90129-0 Liebling SL, Palenzuela C (2023) Dynamical Boson Stars. Living Rev Rel 26:1. https: //doi.org/10.1007/s41114-023-00043-4. arXiv:1202.5809
- [gr-qc] Lico R, Casadio C, Jorstad SG, Gómez JL, Marscher AP, Traianou E, Kim JY, Zhao GY, Fuentes A, Cho I, Krichbaum TP, Hervet O, O’Brien S, Boccardi B, Myserlis I, Agudo I, Alberdi A, Weaver ZR, Zensus JA (2022) New jet feature in the parsec-scale jet of the blazar OJ 287 connected to the 2017 teraelectronvolt flaring activity. Astron. Astrophys.658:L10. https://doi.org/10.1051/0004-6361/202142948. arXiv:2202.02523 [astro-ph.HE] Lidov ML (1962) The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planetary and Space Science 9(10):719–759. https://doi.org/10.1016/0032-0633(62)90129-0 Liebling SL, Palenzuela C (2023) Dynamical Boson Stars. Living Rev Rel 26:1. https: //doi.org/10.1007/s41114-023-00043-4. arXiv:1202.5809
- [gr-qc] Fundamental Physics Opportunities with the ngEHT 135 Lima HCD Junior, Crispino LCB, Cunha PVP, Herdeiro CAR (2021) Can different black holes cast the same shadow? Phys Rev D 103(8):084040. https://doi.org/10. 1103/PhysRevD.103.084040. arXiv:2102.07034
- [gr-qc] Linial I, Sari R (2022) Stellar Distributions around a Supermassive Black Hole: Strongsegregation Regime Revisited. Astrophys J 940(2):101. https://doi.org/10.3847/ 1538-4357/ac9bfd. arXiv:2206.14817 [astro-ph.GA] Liu C, Zhu T, Wu Q, Jusufi K, Jamil M, Azreg-Aïnou M, Wang A (2020) Shadow and quasinormal modes of a rotating loop quantum black hole. Phys Rev D 101(8):084001. https://doi.org/10.1103/PhysRevD.101.084001, [Erratum: Phys.Rev.D 103, 089902 (2021)]. arXiv:2003.00477
- [gr-qc] Linial I, Sari R (2022) Stellar Distributions around a Supermassive Black Hole: Strongsegregation Regime Revisited. Astrophys J 940(2):101. https://doi.org/10.3847/ 1538-4357/ac9bfd. arXiv:2206.14817 [astro-ph.GA] Liu C, Zhu T, Wu Q, Jusufi K, Jamil M, Azreg-Aïnou M, Wang A (2020) Shadow and quasinormal modes of a rotating loop quantum black hole. Phys Rev D 101(8):084001. https://doi.org/10.1103/PhysRevD.101.084001, [Erratum: Phys.Rev.D 103, 089902 (2021)]. arXiv:2003.00477
- [gr-qc] Linial I, Sari R (2022) Stellar Distributions around a Supermassive Black Hole: Strongsegregation Regime Revisited. Astrophys J 940(2):101. https://doi.org/10.3847/ 1538-4357/ac9bfd. arXiv:2206.14817 [astro-ph.GA] Liu C, Zhu T, Wu Q, Jusufi K, Jamil M, Azreg-Aïnou M, Wang A (2020) Shadow and quasinormal modes of a rotating loop quantum black hole. Phys Rev D 101(8):084001. https://doi.org/10.1103/PhysRevD.101.084001, [Erratum: Phys.Rev.D 103, 089902 (2021)]. arXiv:2003.00477
- [gr-qc] Liu C, Zhu T, Wu Q (2021) Thin Accretion Disk around a four-dimensional EinsteinGauss-Bonnet Black Hole. Chin Phys C 45(1):015105. https://doi.org/10.1088/ 1674-1137/abc16c. arXiv:2004.01662
- [gr-qc] Liu K, Wex N, Kramer M, Cordes JM, Lazio TJW (2012) Prospects for Probing the Spacetime of Sgr A* with Pulsars. Astrophys J 747:1. https://doi.org/10.1088/ 0004-637X/747/1/1. arXiv:1112.2151 [astro-ph.HE] Liu X, Hou M, Li Z, Nyland K, Guo H, Kong M, Shen Y, Wrobel JM, Peng S (2019) A Trio of Massive Black Holes Caught in the Act of Merging. Astrophys. J.887(1):90. https://doi.org/10.3847/1538-4357/ab54c3. arXiv:1907.10639 [astro-ph.GA] Liu X, Chen S, Jing J (2022) Polarization distribution in the image of a synchrotron emitting ring around a regular black hole. Science China Physics, Mechanics, and Astronomy 65(12):120411. https://doi.org/10.1007/s11433-022-1946-2. arXiv:2205.00391
- [gr-qc] Liu K, Wex N, Kramer M, Cordes JM, Lazio TJW (2012) Prospects for Probing the Spacetime of Sgr A* with Pulsars. Astrophys J 747:1. https://doi.org/10.1088/ 0004-637X/747/1/1. arXiv:1112.2151 [astro-ph.HE] Liu X, Hou M, Li Z, Nyland K, Guo H, Kong M, Shen Y, Wrobel JM, Peng S (2019) A Trio of Massive Black Holes Caught in the Act of Merging. Astrophys. J.887(1):90. https://doi.org/10.3847/1538-4357/ab54c3. arXiv:1907.10639 [astro-ph.GA] Liu X, Chen S, Jing J (2022) Polarization distribution in the image of a synchrotron emitting ring around a regular black hole. Science China Physics, Mechanics, and Astronomy 65(12):120411. https://doi.org/10.1007/s11433-022-1946-2. arXiv:2205.00391
- [gr-qc] Liu K, Wex N, Kramer M, Cordes JM, Lazio TJW (2012) Prospects for Probing the Spacetime of Sgr A* with Pulsars. Astrophys J 747:1. https://doi.org/10.1088/ 0004-637X/747/1/1. arXiv:1112.2151 [astro-ph.HE] Liu X, Hou M, Li Z, Nyland K, Guo H, Kong M, Shen Y, Wrobel JM, Peng S (2019) A Trio of Massive Black Holes Caught in the Act of Merging. Astrophys. J.887(1):90. https://doi.org/10.3847/1538-4357/ab54c3. arXiv:1907.10639 [astro-ph.GA] Liu X, Chen S, Jing J (2022) Polarization distribution in the image of a synchrotron emitting ring around a regular black hole. Science China Physics, Mechanics, and Astronomy 65(12):120411. https://doi.org/10.1007/s11433-022-1946-2. arXiv:2205.00391
- [gr-qc] Lockhart W, Gralla SE (2022) How narrow is the M87* ring - II. A new geometric model. Mon. Not. R. Astron. Soc.517(2):2462–2470. https://doi.org/10.1093/mnras/ stac2743. arXiv:2208.09989 [astro-ph.HE] Loll R (2020) Quantum Gravity from Causal Dynamical Triangulations: A Review. Class Quant Grav 37(1):013002. https://doi.org/10.1088/1361-6382/ab57c7. arXiv:1905.08669
- [gr-qc] Lockhart W, Gralla SE (2022) How narrow is the M87* ring - II. A new geometric model. Mon. Not. R. Astron. Soc.517(2):2462–2470. https://doi.org/10.1093/mnras/ stac2743. arXiv:2208.09989 [astro-ph.HE] Loll R (2020) Quantum Gravity from Causal Dynamical Triangulations: A Review. Class Quant Grav 37(1):013002. https://doi.org/10.1088/1361-6382/ab57c7. arXiv:1905.08669
- [hep-th] Long F, Wang J, Chen S, Jing J (2019) Shadow of a rotating squashed Kaluza-Klein black hole. JHEP 10:269. https://doi.org/10.1007/JHEP10(2019)269. arXiv:1906.04456
- [gr-qc] Lovelock D (1971) The Einstein tensor and its generalizations. J Math Phys 12:498– 501. https://doi.org/10.1063/1.1665613 Lu H, Perkins A, Pope CN, Stelle KS (2015) Black Holes in Higher-Derivative Gravity. Phys Rev Lett 114(17):171601. https://doi.org/10.1103/PhysRevLett.114.171601. arXiv:1502.01028
- [gr-qc] Lovelock D (1971) The Einstein tensor and its generalizations. J Math Phys 12:498– 501. https://doi.org/10.1063/1.1665613 Lu H, Perkins A, Pope CN, Stelle KS (2015) Black Holes in Higher-Derivative Gravity. Phys Rev Lett 114(17):171601. https://doi.org/10.1103/PhysRevLett.114.171601. arXiv:1502.01028
- [hep-th] Lu JR, Ghez AM, Hornstein SD, Morris MR, Becklin EE, Matthews K (2009) A Disk of Young Stars at the Galactic Center as Determined by Individual Stellar Orbits. Astrophys J 690:1463–1487. https://doi.org/10.1088/0004-637X/690/2/1463. arXiv:0808.3818
- [astro-ph] Lu W, Kumar P, Narayan R (2017) Stellar disruption events support the existence of the black hole event horizon. Mon Not Roy Astron Soc 468(1):910–919. https: //doi.org/10.1093/mnras/stx542. arXiv:1703.00023 [astro-ph.HE] Luminet JP (1979) Image of a spherical black hole with thin accretion disk. Astron. Astrophys.75:228–235 Luo J, et al (2016) TianQin: a space-borne gravitational wave detector. Classical and Quantum Gravity 33(3):035010. https://doi.org/10.1088/0264-9381/33/3/035010, URL https://doi.org/10.1088/0264-9381/33/3/035010 136 The ngEHT Fundamental Physics SWG Ly C, Walker RC, Junor W (2007) High-Frequency VLBI Imaging of the Jet Base of M87. Astrophys. J.660(1):200–205. https://doi.org/10.1086/512846. arXiv:astroph/0701511
- [astro-ph] Lu W, Kumar P, Narayan R (2017) Stellar disruption events support the existence of the black hole event horizon. Mon Not Roy Astron Soc 468(1):910–919. https: //doi.org/10.1093/mnras/stx542. arXiv:1703.00023 [astro-ph.HE] Luminet JP (1979) Image of a spherical black hole with thin accretion disk. Astron. Astrophys.75:228–235 Luo J, et al (2016) TianQin: a space-borne gravitational wave detector. Classical and Quantum Gravity 33(3):035010. https://doi.org/10.1088/0264-9381/33/3/035010, URL https://doi.org/10.1088/0264-9381/33/3/035010 136 The ngEHT Fundamental Physics SWG Ly C, Walker RC, Junor W (2007) High-Frequency VLBI Imaging of the Jet Base of M87. Astrophys. J.660(1):200–205. https://doi.org/10.1086/512846. arXiv:astroph/0701511
- [astro-ph] Lu W, Kumar P, Narayan R (2017) Stellar disruption events support the existence of the black hole event horizon. Mon Not Roy Astron Soc 468(1):910–919. https: //doi.org/10.1093/mnras/stx542. arXiv:1703.00023 [astro-ph.HE] Luminet JP (1979) Image of a spherical black hole with thin accretion disk. Astron. Astrophys.75:228–235 Luo J, et al (2016) TianQin: a space-borne gravitational wave detector. Classical and Quantum Gravity 33(3):035010. https://doi.org/10.1088/0264-9381/33/3/035010, URL https://doi.org/10.1088/0264-9381/33/3/035010 136 The ngEHT Fundamental Physics SWG Ly C, Walker RC, Junor W (2007) High-Frequency VLBI Imaging of the Jet Base of M87. Astrophys. J.660(1):200–205. https://doi.org/10.1086/512846. arXiv:astroph/0701511
- [astro-ph] Lu W, Kumar P, Narayan R (2017) Stellar disruption events support the existence of the black hole event horizon. Mon Not Roy Astron Soc 468(1):910–919. https: //doi.org/10.1093/mnras/stx542. arXiv:1703.00023 [astro-ph.HE] Luminet JP (1979) Image of a spherical black hole with thin accretion disk. Astron. Astrophys.75:228–235 Luo J, et al (2016) TianQin: a space-borne gravitational wave detector. Classical and Quantum Gravity 33(3):035010. https://doi.org/10.1088/0264-9381/33/3/035010, URL https://doi.org/10.1088/0264-9381/33/3/035010 136 The ngEHT Fundamental Physics SWG Ly C, Walker RC, Junor W (2007) High-Frequency VLBI Imaging of the Jet Base of M87. Astrophys. J.660(1):200–205. https://doi.org/10.1086/512846. arXiv:astroph/0701511
- [astro-ph] Lu W, Kumar P, Narayan R (2017) Stellar disruption events support the existence of the black hole event horizon. Mon Not Roy Astron Soc 468(1):910–919. https: //doi.org/10.1093/mnras/stx542. arXiv:1703.00023 [astro-ph.HE] Luminet JP (1979) Image of a spherical black hole with thin accretion disk. Astron. Astrophys.75:228–235 Luo J, et al (2016) TianQin: a space-borne gravitational wave detector. Classical and Quantum Gravity 33(3):035010. https://doi.org/10.1088/0264-9381/33/3/035010, URL https://doi.org/10.1088/0264-9381/33/3/035010 136 The ngEHT Fundamental Physics SWG Ly C, Walker RC, Junor W (2007) High-Frequency VLBI Imaging of the Jet Base of M87. Astrophys. J.660(1):200–205. https://doi.org/10.1086/512846. arXiv:astroph/0701511
- [astro-ph] Mangiagli A, Klein A, Bonetti M, Katz ML, Sesana A, Volonteri M, Colpi M, Marsat S, Babak S (2020) On the inspiral of coalescing massive black hole binaries with LISA in the era of Multi-Messenger Astrophysics. Phys Rev D 102:084056. https: //doi.org/10.1103/PhysRevD.102.084056. arXiv:2006.12513 [astro-ph.HE] Marolf D, Michel B, Puhm A (2017) A rough end for smooth microstate geometries. JHEP 05:021. https://doi.org/10.1007/JHEP05(2017)021. arXiv:1612.05235
- [astro-ph] Mangiagli A, Klein A, Bonetti M, Katz ML, Sesana A, Volonteri M, Colpi M, Marsat S, Babak S (2020) On the inspiral of coalescing massive black hole binaries with LISA in the era of Multi-Messenger Astrophysics. Phys Rev D 102:084056. https: //doi.org/10.1103/PhysRevD.102.084056. arXiv:2006.12513 [astro-ph.HE] Marolf D, Michel B, Puhm A (2017) A rough end for smooth microstate geometries. JHEP 05:021. https://doi.org/10.1007/JHEP05(2017)021. arXiv:1612.05235
- [hep-th] Marsh DJE (2016) Axion Cosmology. Phys Rept 643:1–79. https://doi.org/10.1016/j. physrep.2016.06.005. arXiv:1510.07633 [astro-ph.CO] Mathur SD (2005) The Fuzzball proposal for black holes: An Elementary review. Fortsch Phys 53:793–827. https://doi.org/10.1002/prop.200410203. arXiv:hepth/0502050 Matsumoto T, Chan CH, Piran T (2020) The origin of hotspots around Sgr A*: orbital or pattern motion? Mon. Not. R. Astron. Soc.497(2):2385–2392. https://doi.org/10. 1093/mnras/staa2095. arXiv:2004.13029 [astro-ph.HE] Mayer L, Kazantzidis S, Madau P, Colpi M, Quinn TR, Wadsley J (2007) Rapid Formation of Supermassive Black Hole Binaries in Galaxy Mergers with Gas. Science 316:1874–1877. https://doi.org/10.1126/science.1141858. arXiv:0706.1562
- [hep-th] Marsh DJE (2016) Axion Cosmology. Phys Rept 643:1–79. https://doi.org/10.1016/j. physrep.2016.06.005. arXiv:1510.07633 [astro-ph.CO] Mathur SD (2005) The Fuzzball proposal for black holes: An Elementary review. Fortsch Phys 53:793–827. https://doi.org/10.1002/prop.200410203. arXiv:hepth/0502050 Matsumoto T, Chan CH, Piran T (2020) The origin of hotspots around Sgr A*: orbital or pattern motion? Mon. Not. R. Astron. Soc.497(2):2385–2392. https://doi.org/10. 1093/mnras/staa2095. arXiv:2004.13029 [astro-ph.HE] Mayer L, Kazantzidis S, Madau P, Colpi M, Quinn TR, Wadsley J (2007) Rapid Formation of Supermassive Black Hole Binaries in Galaxy Mergers with Gas. Science 316:1874–1877. https://doi.org/10.1126/science.1141858. arXiv:0706.1562
- [hep-th] Marsh DJE (2016) Axion Cosmology. Phys Rept 643:1–79. https://doi.org/10.1016/j. physrep.2016.06.005. arXiv:1510.07633 [astro-ph.CO] Mathur SD (2005) The Fuzzball proposal for black holes: An Elementary review. Fortsch Phys 53:793–827. https://doi.org/10.1002/prop.200410203. arXiv:hepth/0502050 Matsumoto T, Chan CH, Piran T (2020) The origin of hotspots around Sgr A*: orbital or pattern motion? Mon. Not. R. Astron. Soc.497(2):2385–2392. https://doi.org/10. 1093/mnras/staa2095. arXiv:2004.13029 [astro-ph.HE] Mayer L, Kazantzidis S, Madau P, Colpi M, Quinn TR, Wadsley J (2007) Rapid Formation of Supermassive Black Hole Binaries in Galaxy Mergers with Gas. Science 316:1874–1877. https://doi.org/10.1126/science.1141858. arXiv:0706.1562
- [hep-th] Marsh DJE (2016) Axion Cosmology. Phys Rept 643:1–79. https://doi.org/10.1016/j. physrep.2016.06.005. arXiv:1510.07633 [astro-ph.CO] Mathur SD (2005) The Fuzzball proposal for black holes: An Elementary review. Fortsch Phys 53:793–827. https://doi.org/10.1002/prop.200410203. arXiv:hepth/0502050 Matsumoto T, Chan CH, Piran T (2020) The origin of hotspots around Sgr A*: orbital or pattern motion? Mon. Not. R. Astron. Soc.497(2):2385–2392. https://doi.org/10. 1093/mnras/staa2095. arXiv:2004.13029 [astro-ph.HE] Mayer L, Kazantzidis S, Madau P, Colpi M, Quinn TR, Wadsley J (2007) Rapid Formation of Supermassive Black Hole Binaries in Galaxy Mergers with Gas. Science 316:1874–1877. https://doi.org/10.1126/science.1141858. arXiv:0706.1562
- [astro-ph] Mayerson DR (2020) Fuzzballs and Observations. Gen Rel Grav 52(12):115. https: //doi.org/10.1007/s10714-020-02769-w. arXiv:2010.09736
- [hep-th] Mazur PO, Mottola E (2001) Gravitational condensate stars: An alternative to black holes. arXiv e-prints arXiv:gr-qc/0109035 Mazur PO, Mottola E (2004) Gravitational vacuum condensate stars. Proc Nat Acad Sci 101:9545–9550. https://doi.org/10.1073/pnas.0402717101. arXiv:gr-qc/0407075 Mazza J, Franzin E, Liberati S (2021) A novel family of rotating black hole mimickers. JCAP 04:082. https://doi.org/10.1088/1475-7516/2021/04/082. arXiv:2102.01105
- [hep-th] Mazur PO, Mottola E (2001) Gravitational condensate stars: An alternative to black holes. arXiv e-prints arXiv:gr-qc/0109035 Mazur PO, Mottola E (2004) Gravitational vacuum condensate stars. Proc Nat Acad Sci 101:9545–9550. https://doi.org/10.1073/pnas.0402717101. arXiv:gr-qc/0407075 Mazza J, Franzin E, Liberati S (2021) A novel family of rotating black hole mimickers. JCAP 04:082. https://doi.org/10.1088/1475-7516/2021/04/082. arXiv:2102.01105
- [hep-th] Mazur PO, Mottola E (2001) Gravitational condensate stars: An alternative to black holes. arXiv e-prints arXiv:gr-qc/0109035 Mazur PO, Mottola E (2004) Gravitational vacuum condensate stars. Proc Nat Acad Sci 101:9545–9550. https://doi.org/10.1073/pnas.0402717101. arXiv:gr-qc/0407075 Mazza J, Franzin E, Liberati S (2021) A novel family of rotating black hole mimickers. JCAP 04:082. https://doi.org/10.1088/1475-7516/2021/04/082. arXiv:2102.01105
- [gr-qc] Medeiros L, Psaltis D, Özel F (2020) A Parametric Model for the Shapes of Black Hole Shadows in Non-Kerr Spacetimes. Astrophys. J.896(1):7. https://doi.org/10.3847/ 1538-4357/ab8bd1. arXiv:1907.12575 [astro-ph.HE] Meliani Z, Grandclément P, Casse F, Vincent FH, Straub O, Dauvergne F (2016) GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes. Classical and Quantum Gravity 33(15):155010. https://doi.org/10. 1088/0264-9381/33/15/155010, URL http://stacks.iop.org/0264-9381/33/i=15/a= 155010?key=crossref.29dc10715e8c2c21f6f281c0c416fe01, publisher: IOP Publishing Meliani Z, Casse F, Grandclément P, Gourgoulhon E, Dauvergne F (2017a) On tidal disruption of clouds and disk formation near boson stars. Classical and Quantum Gravity 34(22):225003. https://doi.org/10.1088/1361-6382/aa8fb5, URL http://stacks.iop.org/0264-9381/34/i=22/a=225003?key=crossref. a3b6c61cdc459d2c434c6349a6a707d3, publisher: IOP Publishing Meliani Z, Mizuno Y, Olivares H, Porth O, Rezzolla L, Younsi Z (2017b) Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer. Astronomy & Astrophysics 598:A38. https://doi.org/10.1051/0004-6361/201629191, URL http: //www.aanda.org/10.1051/0004-6361/201629191, publisher: EDP Sciences Merritt D (2013) Dynamics and Evolution of Galactic Nuclei, vol 23. Princeton University Press. URL http://www.jstor.org/stable/j.ctv1nxcw93 Fundamental Physics Opportunities with the ngEHT 137 Merritt D, Milosavljević M (2005) Massive Black Hole Binary Evolution. Living Reviews in Relativity 8:8. https://doi.org/10.12942/lrr-2005-8. arXiv:astro-ph/0410364
- [gr-qc] Medeiros L, Psaltis D, Özel F (2020) A Parametric Model for the Shapes of Black Hole Shadows in Non-Kerr Spacetimes. Astrophys. J.896(1):7. https://doi.org/10.3847/ 1538-4357/ab8bd1. arXiv:1907.12575 [astro-ph.HE] Meliani Z, Grandclément P, Casse F, Vincent FH, Straub O, Dauvergne F (2016) GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes. Classical and Quantum Gravity 33(15):155010. https://doi.org/10. 1088/0264-9381/33/15/155010, URL http://stacks.iop.org/0264-9381/33/i=15/a= 155010?key=crossref.29dc10715e8c2c21f6f281c0c416fe01, publisher: IOP Publishing Meliani Z, Casse F, Grandclément P, Gourgoulhon E, Dauvergne F (2017a) On tidal disruption of clouds and disk formation near boson stars. Classical and Quantum Gravity 34(22):225003. https://doi.org/10.1088/1361-6382/aa8fb5, URL http://stacks.iop.org/0264-9381/34/i=22/a=225003?key=crossref. a3b6c61cdc459d2c434c6349a6a707d3, publisher: IOP Publishing Meliani Z, Mizuno Y, Olivares H, Porth O, Rezzolla L, Younsi Z (2017b) Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer. Astronomy & Astrophysics 598:A38. https://doi.org/10.1051/0004-6361/201629191, URL http: //www.aanda.org/10.1051/0004-6361/201629191, publisher: EDP Sciences Merritt D (2013) Dynamics and Evolution of Galactic Nuclei, vol 23. Princeton University Press. URL http://www.jstor.org/stable/j.ctv1nxcw93 Fundamental Physics Opportunities with the ngEHT 137 Merritt D, Milosavljević M (2005) Massive Black Hole Binary Evolution. Living Reviews in Relativity 8:8. https://doi.org/10.12942/lrr-2005-8. arXiv:astro-ph/0410364
- [gr-qc] Medeiros L, Psaltis D, Özel F (2020) A Parametric Model for the Shapes of Black Hole Shadows in Non-Kerr Spacetimes. Astrophys. J.896(1):7. https://doi.org/10.3847/ 1538-4357/ab8bd1. arXiv:1907.12575 [astro-ph.HE] Meliani Z, Grandclément P, Casse F, Vincent FH, Straub O, Dauvergne F (2016) GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes. Classical and Quantum Gravity 33(15):155010. https://doi.org/10. 1088/0264-9381/33/15/155010, URL http://stacks.iop.org/0264-9381/33/i=15/a= 155010?key=crossref.29dc10715e8c2c21f6f281c0c416fe01, publisher: IOP Publishing Meliani Z, Casse F, Grandclément P, Gourgoulhon E, Dauvergne F (2017a) On tidal disruption of clouds and disk formation near boson stars. Classical and Quantum Gravity 34(22):225003. https://doi.org/10.1088/1361-6382/aa8fb5, URL http://stacks.iop.org/0264-9381/34/i=22/a=225003?key=crossref. a3b6c61cdc459d2c434c6349a6a707d3, publisher: IOP Publishing Meliani Z, Mizuno Y, Olivares H, Porth O, Rezzolla L, Younsi Z (2017b) Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer. Astronomy & Astrophysics 598:A38. https://doi.org/10.1051/0004-6361/201629191, URL http: //www.aanda.org/10.1051/0004-6361/201629191, publisher: EDP Sciences Merritt D (2013) Dynamics and Evolution of Galactic Nuclei, vol 23. Princeton University Press. URL http://www.jstor.org/stable/j.ctv1nxcw93 Fundamental Physics Opportunities with the ngEHT 137 Merritt D, Milosavljević M (2005) Massive Black Hole Binary Evolution. Living Reviews in Relativity 8:8. https://doi.org/10.12942/lrr-2005-8. arXiv:astro-ph/0410364
- [gr-qc] Medeiros L, Psaltis D, Özel F (2020) A Parametric Model for the Shapes of Black Hole Shadows in Non-Kerr Spacetimes. Astrophys. J.896(1):7. https://doi.org/10.3847/ 1538-4357/ab8bd1. arXiv:1907.12575 [astro-ph.HE] Meliani Z, Grandclément P, Casse F, Vincent FH, Straub O, Dauvergne F (2016) GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes. Classical and Quantum Gravity 33(15):155010. https://doi.org/10. 1088/0264-9381/33/15/155010, URL http://stacks.iop.org/0264-9381/33/i=15/a= 155010?key=crossref.29dc10715e8c2c21f6f281c0c416fe01, publisher: IOP Publishing Meliani Z, Casse F, Grandclément P, Gourgoulhon E, Dauvergne F (2017a) On tidal disruption of clouds and disk formation near boson stars. Classical and Quantum Gravity 34(22):225003. https://doi.org/10.1088/1361-6382/aa8fb5, URL http://stacks.iop.org/0264-9381/34/i=22/a=225003?key=crossref. a3b6c61cdc459d2c434c6349a6a707d3, publisher: IOP Publishing Meliani Z, Mizuno Y, Olivares H, Porth O, Rezzolla L, Younsi Z (2017b) Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer. Astronomy & Astrophysics 598:A38. https://doi.org/10.1051/0004-6361/201629191, URL http: //www.aanda.org/10.1051/0004-6361/201629191, publisher: EDP Sciences Merritt D (2013) Dynamics and Evolution of Galactic Nuclei, vol 23. Princeton University Press. URL http://www.jstor.org/stable/j.ctv1nxcw93 Fundamental Physics Opportunities with the ngEHT 137 Merritt D, Milosavljević M (2005) Massive Black Hole Binary Evolution. Living Reviews in Relativity 8:8. https://doi.org/10.12942/lrr-2005-8. arXiv:astro-ph/0410364
- [gr-qc] Medeiros L, Psaltis D, Özel F (2020) A Parametric Model for the Shapes of Black Hole Shadows in Non-Kerr Spacetimes. Astrophys. J.896(1):7. https://doi.org/10.3847/ 1538-4357/ab8bd1. arXiv:1907.12575 [astro-ph.HE] Meliani Z, Grandclément P, Casse F, Vincent FH, Straub O, Dauvergne F (2016) GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes. Classical and Quantum Gravity 33(15):155010. https://doi.org/10. 1088/0264-9381/33/15/155010, URL http://stacks.iop.org/0264-9381/33/i=15/a= 155010?key=crossref.29dc10715e8c2c21f6f281c0c416fe01, publisher: IOP Publishing Meliani Z, Casse F, Grandclément P, Gourgoulhon E, Dauvergne F (2017a) On tidal disruption of clouds and disk formation near boson stars. Classical and Quantum Gravity 34(22):225003. https://doi.org/10.1088/1361-6382/aa8fb5, URL http://stacks.iop.org/0264-9381/34/i=22/a=225003?key=crossref. a3b6c61cdc459d2c434c6349a6a707d3, publisher: IOP Publishing Meliani Z, Mizuno Y, Olivares H, Porth O, Rezzolla L, Younsi Z (2017b) Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer. Astronomy & Astrophysics 598:A38. https://doi.org/10.1051/0004-6361/201629191, URL http: //www.aanda.org/10.1051/0004-6361/201629191, publisher: EDP Sciences Merritt D (2013) Dynamics and Evolution of Galactic Nuclei, vol 23. Princeton University Press. URL http://www.jstor.org/stable/j.ctv1nxcw93 Fundamental Physics Opportunities with the ngEHT 137 Merritt D, Milosavljević M (2005) Massive Black Hole Binary Evolution. Living Reviews in Relativity 8:8. https://doi.org/10.12942/lrr-2005-8. arXiv:astro-ph/0410364
- [gr-qc] Medeiros L, Psaltis D, Özel F (2020) A Parametric Model for the Shapes of Black Hole Shadows in Non-Kerr Spacetimes. Astrophys. J.896(1):7. https://doi.org/10.3847/ 1538-4357/ab8bd1. arXiv:1907.12575 [astro-ph.HE] Meliani Z, Grandclément P, Casse F, Vincent FH, Straub O, Dauvergne F (2016) GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes. Classical and Quantum Gravity 33(15):155010. https://doi.org/10. 1088/0264-9381/33/15/155010, URL http://stacks.iop.org/0264-9381/33/i=15/a= 155010?key=crossref.29dc10715e8c2c21f6f281c0c416fe01, publisher: IOP Publishing Meliani Z, Casse F, Grandclément P, Gourgoulhon E, Dauvergne F (2017a) On tidal disruption of clouds and disk formation near boson stars. Classical and Quantum Gravity 34(22):225003. https://doi.org/10.1088/1361-6382/aa8fb5, URL http://stacks.iop.org/0264-9381/34/i=22/a=225003?key=crossref. a3b6c61cdc459d2c434c6349a6a707d3, publisher: IOP Publishing Meliani Z, Mizuno Y, Olivares H, Porth O, Rezzolla L, Younsi Z (2017b) Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer. Astronomy & Astrophysics 598:A38. https://doi.org/10.1051/0004-6361/201629191, URL http: //www.aanda.org/10.1051/0004-6361/201629191, publisher: EDP Sciences Merritt D (2013) Dynamics and Evolution of Galactic Nuclei, vol 23. Princeton University Press. URL http://www.jstor.org/stable/j.ctv1nxcw93 Fundamental Physics Opportunities with the ngEHT 137 Merritt D, Milosavljević M (2005) Massive Black Hole Binary Evolution. Living Reviews in Relativity 8:8. https://doi.org/10.12942/lrr-2005-8. arXiv:astro-ph/0410364
- [astro-ph] Merritt D, Alexander T, Mikkola S, Will CM (2010) Testing Properties of the Galactic Center Black Hole Using Stellar Orbits. Phys Rev D 81:062002. https://doi.org/10. 1103/PhysRevD.81.062002. arXiv:0911.4718 [astro-ph.GA] Mertens F, Lobanov AP, Walker RC, Hardee PE (2016) Kinematics of the jet in M 87 on scales of 100-1000 Schwarzschild radii. Astron. Astrophys.595:A54. https://doi. org/10.1051/0004-6361/201628829 Meyer L, Ghez AM, Schödel R, Yelda S, Boehle A, Lu JR, Do T, Morris MR, Becklin EE, Matthews K (2012) The Shortest-Known-Period Star Orbiting Our Galaxy’s Supermassive Black Hole. Science 338(6103):84. https://doi.org/10.1126/ science.1225506. arXiv:1210.1294 [astro-ph.GA] Middleton H, Sesana A, Chen S, Vecchio A, Del Pozzo W, Rosado PA (2021) Massive black hole binary systems and the NANOGrav 12.5 yr results. Mon Not Roy Astron Soc 502(1):L99–L103. https://doi.org/10.1093/mnrasl/slab008. arXiv:2011.01246 [astro-ph.HE] Milosavljević M, Merritt D (2003) Long-Term Evolution of Massive Black Hole Binaries. Astrophys. J.596(2):860–878. https://doi.org/10.1086/378086. arXiv:astroph/0212459
- [astro-ph] Merritt D, Alexander T, Mikkola S, Will CM (2010) Testing Properties of the Galactic Center Black Hole Using Stellar Orbits. Phys Rev D 81:062002. https://doi.org/10. 1103/PhysRevD.81.062002. arXiv:0911.4718 [astro-ph.GA] Mertens F, Lobanov AP, Walker RC, Hardee PE (2016) Kinematics of the jet in M 87 on scales of 100-1000 Schwarzschild radii. Astron. Astrophys.595:A54. https://doi. org/10.1051/0004-6361/201628829 Meyer L, Ghez AM, Schödel R, Yelda S, Boehle A, Lu JR, Do T, Morris MR, Becklin EE, Matthews K (2012) The Shortest-Known-Period Star Orbiting Our Galaxy’s Supermassive Black Hole. Science 338(6103):84. https://doi.org/10.1126/ science.1225506. arXiv:1210.1294 [astro-ph.GA] Middleton H, Sesana A, Chen S, Vecchio A, Del Pozzo W, Rosado PA (2021) Massive black hole binary systems and the NANOGrav 12.5 yr results. Mon Not Roy Astron Soc 502(1):L99–L103. https://doi.org/10.1093/mnrasl/slab008. arXiv:2011.01246 [astro-ph.HE] Milosavljević M, Merritt D (2003) Long-Term Evolution of Massive Black Hole Binaries. Astrophys. J.596(2):860–878. https://doi.org/10.1086/378086. arXiv:astroph/0212459
- [astro-ph] Merritt D, Alexander T, Mikkola S, Will CM (2010) Testing Properties of the Galactic Center Black Hole Using Stellar Orbits. Phys Rev D 81:062002. https://doi.org/10. 1103/PhysRevD.81.062002. arXiv:0911.4718 [astro-ph.GA] Mertens F, Lobanov AP, Walker RC, Hardee PE (2016) Kinematics of the jet in M 87 on scales of 100-1000 Schwarzschild radii. Astron. Astrophys.595:A54. https://doi. org/10.1051/0004-6361/201628829 Meyer L, Ghez AM, Schödel R, Yelda S, Boehle A, Lu JR, Do T, Morris MR, Becklin EE, Matthews K (2012) The Shortest-Known-Period Star Orbiting Our Galaxy’s Supermassive Black Hole. Science 338(6103):84. https://doi.org/10.1126/ science.1225506. arXiv:1210.1294 [astro-ph.GA] Middleton H, Sesana A, Chen S, Vecchio A, Del Pozzo W, Rosado PA (2021) Massive black hole binary systems and the NANOGrav 12.5 yr results. Mon Not Roy Astron Soc 502(1):L99–L103. https://doi.org/10.1093/mnrasl/slab008. arXiv:2011.01246 [astro-ph.HE] Milosavljević M, Merritt D (2003) Long-Term Evolution of Massive Black Hole Binaries. Astrophys. J.596(2):860–878. https://doi.org/10.1086/378086. arXiv:astroph/0212459
- [astro-ph] Merritt D, Alexander T, Mikkola S, Will CM (2010) Testing Properties of the Galactic Center Black Hole Using Stellar Orbits. Phys Rev D 81:062002. https://doi.org/10. 1103/PhysRevD.81.062002. arXiv:0911.4718 [astro-ph.GA] Mertens F, Lobanov AP, Walker RC, Hardee PE (2016) Kinematics of the jet in M 87 on scales of 100-1000 Schwarzschild radii. Astron. Astrophys.595:A54. https://doi. org/10.1051/0004-6361/201628829 Meyer L, Ghez AM, Schödel R, Yelda S, Boehle A, Lu JR, Do T, Morris MR, Becklin EE, Matthews K (2012) The Shortest-Known-Period Star Orbiting Our Galaxy’s Supermassive Black Hole. Science 338(6103):84. https://doi.org/10.1126/ science.1225506. arXiv:1210.1294 [astro-ph.GA] Middleton H, Sesana A, Chen S, Vecchio A, Del Pozzo W, Rosado PA (2021) Massive black hole binary systems and the NANOGrav 12.5 yr results. Mon Not Roy Astron Soc 502(1):L99–L103. https://doi.org/10.1093/mnrasl/slab008. arXiv:2011.01246 [astro-ph.HE] Milosavljević M, Merritt D (2003) Long-Term Evolution of Massive Black Hole Binaries. Astrophys. J.596(2):860–878. https://doi.org/10.1086/378086. arXiv:astroph/0212459
- [astro-ph] Mingarelli CMF (2019) Probing supermassive black hole binaries with pulsar timing. Nature Astronomy 3:8–10. https://doi.org/10.1038/s41550-018-0666-y. arXiv:1901.06785
- [gr-qc] Miyoshi M, Shen ZQ, Oyama T, Takahashi R, Kato Y (2011) Oscillation Phenomena in the Disk around the Massive Black Hole Sagittarius A∗ . Publ. Astron. Soc. Jpn63:1093–1116. https://doi.org/10.1093/pasj/63.5.1093 Mizuno Y, Younsi Z, Fromm CM, Porth O, De Laurentis M, Olivares H, Falcke H, Kramer M, Rezzolla L (2018a) The Current Ability to Test Theories of Gravity with Black Hole Shadows. Nature Astron 2(7):585–590. https://doi.org/10.1038/ s41550-018-0449-5. arXiv:1804.05812 [astro-ph.GA] Mizuno Y, Younsi Z, Fromm CM, Porth O, De Laurentis M, Olivares H, Falcke H, Kramer M, Rezzolla L (2018b) The current ability to test theories of gravity with black hole shadows. Nat Astron 2(7):585–590. https://doi.org/10.1038/ s41550-018-0449-5, URL http://www.nature.com/articles/s41550-018-0449-5 Modesto L (2004) Disappearance of black hole singularity in quantum gravity. Phys Rev D 70:124009. https://doi.org/10.1103/PhysRevD.70.124009. arXiv:gr-qc/0407097 Modesto L (2006) Loop quantum black hole. Class Quant Grav 23:5587–5602. https: //doi.org/10.1088/0264-9381/23/18/006. arXiv:gr-qc/0509078 Modesto L (2012) Super-renormalizable Quantum Gravity. Phys Rev D 86:044005. https://doi.org/10.1103/PhysRevD.86.044005. arXiv:1107.2403
- [gr-qc] Miyoshi M, Shen ZQ, Oyama T, Takahashi R, Kato Y (2011) Oscillation Phenomena in the Disk around the Massive Black Hole Sagittarius A∗ . Publ. Astron. Soc. Jpn63:1093–1116. https://doi.org/10.1093/pasj/63.5.1093 Mizuno Y, Younsi Z, Fromm CM, Porth O, De Laurentis M, Olivares H, Falcke H, Kramer M, Rezzolla L (2018a) The Current Ability to Test Theories of Gravity with Black Hole Shadows. Nature Astron 2(7):585–590. https://doi.org/10.1038/ s41550-018-0449-5. arXiv:1804.05812 [astro-ph.GA] Mizuno Y, Younsi Z, Fromm CM, Porth O, De Laurentis M, Olivares H, Falcke H, Kramer M, Rezzolla L (2018b) The current ability to test theories of gravity with black hole shadows. Nat Astron 2(7):585–590. https://doi.org/10.1038/ s41550-018-0449-5, URL http://www.nature.com/articles/s41550-018-0449-5 Modesto L (2004) Disappearance of black hole singularity in quantum gravity. Phys Rev D 70:124009. https://doi.org/10.1103/PhysRevD.70.124009. arXiv:gr-qc/0407097 Modesto L (2006) Loop quantum black hole. Class Quant Grav 23:5587–5602. https: //doi.org/10.1088/0264-9381/23/18/006. arXiv:gr-qc/0509078 Modesto L (2012) Super-renormalizable Quantum Gravity. Phys Rev D 86:044005. https://doi.org/10.1103/PhysRevD.86.044005. arXiv:1107.2403
- [gr-qc] Miyoshi M, Shen ZQ, Oyama T, Takahashi R, Kato Y (2011) Oscillation Phenomena in the Disk around the Massive Black Hole Sagittarius A∗ . Publ. Astron. Soc. Jpn63:1093–1116. https://doi.org/10.1093/pasj/63.5.1093 Mizuno Y, Younsi Z, Fromm CM, Porth O, De Laurentis M, Olivares H, Falcke H, Kramer M, Rezzolla L (2018a) The Current Ability to Test Theories of Gravity with Black Hole Shadows. Nature Astron 2(7):585–590. https://doi.org/10.1038/ s41550-018-0449-5. arXiv:1804.05812 [astro-ph.GA] Mizuno Y, Younsi Z, Fromm CM, Porth O, De Laurentis M, Olivares H, Falcke H, Kramer M, Rezzolla L (2018b) The current ability to test theories of gravity with black hole shadows. Nat Astron 2(7):585–590. https://doi.org/10.1038/ s41550-018-0449-5, URL http://www.nature.com/articles/s41550-018-0449-5 Modesto L (2004) Disappearance of black hole singularity in quantum gravity. Phys Rev D 70:124009. https://doi.org/10.1103/PhysRevD.70.124009. arXiv:gr-qc/0407097 Modesto L (2006) Loop quantum black hole. Class Quant Grav 23:5587–5602. https: //doi.org/10.1088/0264-9381/23/18/006. arXiv:gr-qc/0509078 Modesto L (2012) Super-renormalizable Quantum Gravity. Phys Rev D 86:044005. https://doi.org/10.1103/PhysRevD.86.044005. arXiv:1107.2403
- [gr-qc] Miyoshi M, Shen ZQ, Oyama T, Takahashi R, Kato Y (2011) Oscillation Phenomena in the Disk around the Massive Black Hole Sagittarius A∗ . Publ. Astron. Soc. Jpn63:1093–1116. https://doi.org/10.1093/pasj/63.5.1093 Mizuno Y, Younsi Z, Fromm CM, Porth O, De Laurentis M, Olivares H, Falcke H, Kramer M, Rezzolla L (2018a) The Current Ability to Test Theories of Gravity with Black Hole Shadows. Nature Astron 2(7):585–590. https://doi.org/10.1038/ s41550-018-0449-5. arXiv:1804.05812 [astro-ph.GA] Mizuno Y, Younsi Z, Fromm CM, Porth O, De Laurentis M, Olivares H, Falcke H, Kramer M, Rezzolla L (2018b) The current ability to test theories of gravity with black hole shadows. Nat Astron 2(7):585–590. https://doi.org/10.1038/ s41550-018-0449-5, URL http://www.nature.com/articles/s41550-018-0449-5 Modesto L (2004) Disappearance of black hole singularity in quantum gravity. Phys Rev D 70:124009. https://doi.org/10.1103/PhysRevD.70.124009. arXiv:gr-qc/0407097 Modesto L (2006) Loop quantum black hole. Class Quant Grav 23:5587–5602. https: //doi.org/10.1088/0264-9381/23/18/006. arXiv:gr-qc/0509078 Modesto L (2012) Super-renormalizable Quantum Gravity. Phys Rev D 86:044005. https://doi.org/10.1103/PhysRevD.86.044005. arXiv:1107.2403
- [gr-qc] Miyoshi M, Shen ZQ, Oyama T, Takahashi R, Kato Y (2011) Oscillation Phenomena in the Disk around the Massive Black Hole Sagittarius A∗ . Publ. Astron. Soc. Jpn63:1093–1116. https://doi.org/10.1093/pasj/63.5.1093 Mizuno Y, Younsi Z, Fromm CM, Porth O, De Laurentis M, Olivares H, Falcke H, Kramer M, Rezzolla L (2018a) The Current Ability to Test Theories of Gravity with Black Hole Shadows. Nature Astron 2(7):585–590. https://doi.org/10.1038/ s41550-018-0449-5. arXiv:1804.05812 [astro-ph.GA] Mizuno Y, Younsi Z, Fromm CM, Porth O, De Laurentis M, Olivares H, Falcke H, Kramer M, Rezzolla L (2018b) The current ability to test theories of gravity with black hole shadows. Nat Astron 2(7):585–590. https://doi.org/10.1038/ s41550-018-0449-5, URL http://www.nature.com/articles/s41550-018-0449-5 Modesto L (2004) Disappearance of black hole singularity in quantum gravity. Phys Rev D 70:124009. https://doi.org/10.1103/PhysRevD.70.124009. arXiv:gr-qc/0407097 Modesto L (2006) Loop quantum black hole. Class Quant Grav 23:5587–5602. https: //doi.org/10.1088/0264-9381/23/18/006. arXiv:gr-qc/0509078 Modesto L (2012) Super-renormalizable Quantum Gravity. Phys Rev D 86:044005. https://doi.org/10.1103/PhysRevD.86.044005. arXiv:1107.2403
- [hep-th] Modesto L, Nicolini P (2010) Charged rotating noncommutative black holes. Phys Rev D 82:104035. https://doi.org/10.1103/PhysRevD.82.104035. arXiv:1005.5605
- [gr-qc] Moffat JW (2015) Modified Gravity Black Holes and their Observable Shadows. Eur Phys J C 75(3):130. https://doi.org/10.1140/epjc/s10052-015-3352-6. arXiv:1502.01677
- [gr-qc] Moriyama K, Mineshige S (2015) New method for black-hole spin measurement based on flux variation from an infalling gas ring. Publ. Astron. Soc. Jpn67(6):106. https: //doi.org/10.1093/pasj/psv074. arXiv:1508.03334 [astro-ph.HE] 138 The ngEHT Fundamental Physics SWG Moriyama K, Mineshige S, Honma M, Akiyama K (2019) Black Hole Spin Measurement Based on Time-domain VLBI Observations of Infalling Gas Clouds. Astrophys. J.887(2):227. https://doi.org/10.3847/1538-4357/ab505b. arXiv:1910.10713 [astro-ph.HE] Morris MS, Thorne KS (1988) Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am J Phys 56:395–412. https://doi. org/10.1119/1.15620 Mościbrodzka M, Gammie CF (2018) IPOLE - semi-analytic scheme for relativistic polarized radiative transport. Mon. Not. R. Astron. Soc.475:43–54. https://doi.org/ 10.1093/mnras/stx3162. arXiv:1712.03057 [astro-ph.HE] Mościbrodzka M, Falcke H, Shiokawa H (2016) General relativistic magnetohydrodynamical simulations of the jet in M 87. Astron. Astrophys.586:A38. https://doi.org/ 10.1051/0004-6361/201526630. arXiv:1510.07243 [astro-ph.HE] Mościbrodzka M, Janiuk A, De Laurentis M (2021) Unraveling circular polarimetric images of magnetically arrested accretion flows near event horizon of a black hole. Mon. Not. R. Astron. Soc.508(3):4282–4296. https://doi.org/10.1093/mnras/ stab2790. arXiv:2103.00267 [astro-ph.HE] Motohashi H, Minamitsuji M (2019) Exact black hole solutions in shift-symmetric quadratic degenerate higher-order scalar-tensor theories. Phys Rev D 99(6):064040. https://doi.org/10.1103/PhysRevD.99.064040. arXiv:1901.04658
- [gr-qc] Moriyama K, Mineshige S (2015) New method for black-hole spin measurement based on flux variation from an infalling gas ring. Publ. Astron. Soc. Jpn67(6):106. https: //doi.org/10.1093/pasj/psv074. arXiv:1508.03334 [astro-ph.HE] 138 The ngEHT Fundamental Physics SWG Moriyama K, Mineshige S, Honma M, Akiyama K (2019) Black Hole Spin Measurement Based on Time-domain VLBI Observations of Infalling Gas Clouds. Astrophys. J.887(2):227. https://doi.org/10.3847/1538-4357/ab505b. arXiv:1910.10713 [astro-ph.HE] Morris MS, Thorne KS (1988) Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am J Phys 56:395–412. https://doi. org/10.1119/1.15620 Mościbrodzka M, Gammie CF (2018) IPOLE - semi-analytic scheme for relativistic polarized radiative transport. Mon. Not. R. Astron. Soc.475:43–54. https://doi.org/ 10.1093/mnras/stx3162. arXiv:1712.03057 [astro-ph.HE] Mościbrodzka M, Falcke H, Shiokawa H (2016) General relativistic magnetohydrodynamical simulations of the jet in M 87. Astron. Astrophys.586:A38. https://doi.org/ 10.1051/0004-6361/201526630. arXiv:1510.07243 [astro-ph.HE] Mościbrodzka M, Janiuk A, De Laurentis M (2021) Unraveling circular polarimetric images of magnetically arrested accretion flows near event horizon of a black hole. Mon. Not. R. Astron. Soc.508(3):4282–4296. https://doi.org/10.1093/mnras/ stab2790. arXiv:2103.00267 [astro-ph.HE] Motohashi H, Minamitsuji M (2019) Exact black hole solutions in shift-symmetric quadratic degenerate higher-order scalar-tensor theories. Phys Rev D 99(6):064040. https://doi.org/10.1103/PhysRevD.99.064040. arXiv:1901.04658
- [gr-qc] Moriyama K, Mineshige S (2015) New method for black-hole spin measurement based on flux variation from an infalling gas ring. Publ. Astron. Soc. Jpn67(6):106. https: //doi.org/10.1093/pasj/psv074. arXiv:1508.03334 [astro-ph.HE] 138 The ngEHT Fundamental Physics SWG Moriyama K, Mineshige S, Honma M, Akiyama K (2019) Black Hole Spin Measurement Based on Time-domain VLBI Observations of Infalling Gas Clouds. Astrophys. J.887(2):227. https://doi.org/10.3847/1538-4357/ab505b. arXiv:1910.10713 [astro-ph.HE] Morris MS, Thorne KS (1988) Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am J Phys 56:395–412. https://doi. org/10.1119/1.15620 Mościbrodzka M, Gammie CF (2018) IPOLE - semi-analytic scheme for relativistic polarized radiative transport. Mon. Not. R. Astron. Soc.475:43–54. https://doi.org/ 10.1093/mnras/stx3162. arXiv:1712.03057 [astro-ph.HE] Mościbrodzka M, Falcke H, Shiokawa H (2016) General relativistic magnetohydrodynamical simulations of the jet in M 87. Astron. Astrophys.586:A38. https://doi.org/ 10.1051/0004-6361/201526630. arXiv:1510.07243 [astro-ph.HE] Mościbrodzka M, Janiuk A, De Laurentis M (2021) Unraveling circular polarimetric images of magnetically arrested accretion flows near event horizon of a black hole. Mon. Not. R. Astron. Soc.508(3):4282–4296. https://doi.org/10.1093/mnras/ stab2790. arXiv:2103.00267 [astro-ph.HE] Motohashi H, Minamitsuji M (2019) Exact black hole solutions in shift-symmetric quadratic degenerate higher-order scalar-tensor theories. Phys Rev D 99(6):064040. https://doi.org/10.1103/PhysRevD.99.064040. arXiv:1901.04658
- [gr-qc] Moriyama K, Mineshige S (2015) New method for black-hole spin measurement based on flux variation from an infalling gas ring. Publ. Astron. Soc. Jpn67(6):106. https: //doi.org/10.1093/pasj/psv074. arXiv:1508.03334 [astro-ph.HE] 138 The ngEHT Fundamental Physics SWG Moriyama K, Mineshige S, Honma M, Akiyama K (2019) Black Hole Spin Measurement Based on Time-domain VLBI Observations of Infalling Gas Clouds. Astrophys. J.887(2):227. https://doi.org/10.3847/1538-4357/ab505b. arXiv:1910.10713 [astro-ph.HE] Morris MS, Thorne KS (1988) Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am J Phys 56:395–412. https://doi. org/10.1119/1.15620 Mościbrodzka M, Gammie CF (2018) IPOLE - semi-analytic scheme for relativistic polarized radiative transport. Mon. Not. R. Astron. Soc.475:43–54. https://doi.org/ 10.1093/mnras/stx3162. arXiv:1712.03057 [astro-ph.HE] Mościbrodzka M, Falcke H, Shiokawa H (2016) General relativistic magnetohydrodynamical simulations of the jet in M 87. Astron. Astrophys.586:A38. https://doi.org/ 10.1051/0004-6361/201526630. arXiv:1510.07243 [astro-ph.HE] Mościbrodzka M, Janiuk A, De Laurentis M (2021) Unraveling circular polarimetric images of magnetically arrested accretion flows near event horizon of a black hole. Mon. Not. R. Astron. Soc.508(3):4282–4296. https://doi.org/10.1093/mnras/ stab2790. arXiv:2103.00267 [astro-ph.HE] Motohashi H, Minamitsuji M (2019) Exact black hole solutions in shift-symmetric quadratic degenerate higher-order scalar-tensor theories. Phys Rev D 99(6):064040. https://doi.org/10.1103/PhysRevD.99.064040. arXiv:1901.04658
- [gr-qc] Moriyama K, Mineshige S (2015) New method for black-hole spin measurement based on flux variation from an infalling gas ring. Publ. Astron. Soc. Jpn67(6):106. https: //doi.org/10.1093/pasj/psv074. arXiv:1508.03334 [astro-ph.HE] 138 The ngEHT Fundamental Physics SWG Moriyama K, Mineshige S, Honma M, Akiyama K (2019) Black Hole Spin Measurement Based on Time-domain VLBI Observations of Infalling Gas Clouds. Astrophys. J.887(2):227. https://doi.org/10.3847/1538-4357/ab505b. arXiv:1910.10713 [astro-ph.HE] Morris MS, Thorne KS (1988) Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am J Phys 56:395–412. https://doi. org/10.1119/1.15620 Mościbrodzka M, Gammie CF (2018) IPOLE - semi-analytic scheme for relativistic polarized radiative transport. Mon. Not. R. Astron. Soc.475:43–54. https://doi.org/ 10.1093/mnras/stx3162. arXiv:1712.03057 [astro-ph.HE] Mościbrodzka M, Falcke H, Shiokawa H (2016) General relativistic magnetohydrodynamical simulations of the jet in M 87. Astron. Astrophys.586:A38. https://doi.org/ 10.1051/0004-6361/201526630. arXiv:1510.07243 [astro-ph.HE] Mościbrodzka M, Janiuk A, De Laurentis M (2021) Unraveling circular polarimetric images of magnetically arrested accretion flows near event horizon of a black hole. Mon. Not. R. Astron. Soc.508(3):4282–4296. https://doi.org/10.1093/mnras/ stab2790. arXiv:2103.00267 [astro-ph.HE] Motohashi H, Minamitsuji M (2019) Exact black hole solutions in shift-symmetric quadratic degenerate higher-order scalar-tensor theories. Phys Rev D 99(6):064040. https://doi.org/10.1103/PhysRevD.99.064040. arXiv:1901.04658
- [gr-qc] Moriyama K, Mineshige S (2015) New method for black-hole spin measurement based on flux variation from an infalling gas ring. Publ. Astron. Soc. Jpn67(6):106. https: //doi.org/10.1093/pasj/psv074. arXiv:1508.03334 [astro-ph.HE] 138 The ngEHT Fundamental Physics SWG Moriyama K, Mineshige S, Honma M, Akiyama K (2019) Black Hole Spin Measurement Based on Time-domain VLBI Observations of Infalling Gas Clouds. Astrophys. J.887(2):227. https://doi.org/10.3847/1538-4357/ab505b. arXiv:1910.10713 [astro-ph.HE] Morris MS, Thorne KS (1988) Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am J Phys 56:395–412. https://doi. org/10.1119/1.15620 Mościbrodzka M, Gammie CF (2018) IPOLE - semi-analytic scheme for relativistic polarized radiative transport. Mon. Not. R. Astron. Soc.475:43–54. https://doi.org/ 10.1093/mnras/stx3162. arXiv:1712.03057 [astro-ph.HE] Mościbrodzka M, Falcke H, Shiokawa H (2016) General relativistic magnetohydrodynamical simulations of the jet in M 87. Astron. Astrophys.586:A38. https://doi.org/ 10.1051/0004-6361/201526630. arXiv:1510.07243 [astro-ph.HE] Mościbrodzka M, Janiuk A, De Laurentis M (2021) Unraveling circular polarimetric images of magnetically arrested accretion flows near event horizon of a black hole. Mon. Not. R. Astron. Soc.508(3):4282–4296. https://doi.org/10.1093/mnras/ stab2790. arXiv:2103.00267 [astro-ph.HE] Motohashi H, Minamitsuji M (2019) Exact black hole solutions in shift-symmetric quadratic degenerate higher-order scalar-tensor theories. Phys Rev D 99(6):064040. https://doi.org/10.1103/PhysRevD.99.064040. arXiv:1901.04658
- [gr-qc] Moriyama K, Mineshige S (2015) New method for black-hole spin measurement based on flux variation from an infalling gas ring. Publ. Astron. Soc. Jpn67(6):106. https: //doi.org/10.1093/pasj/psv074. arXiv:1508.03334 [astro-ph.HE] 138 The ngEHT Fundamental Physics SWG Moriyama K, Mineshige S, Honma M, Akiyama K (2019) Black Hole Spin Measurement Based on Time-domain VLBI Observations of Infalling Gas Clouds. Astrophys. J.887(2):227. https://doi.org/10.3847/1538-4357/ab505b. arXiv:1910.10713 [astro-ph.HE] Morris MS, Thorne KS (1988) Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am J Phys 56:395–412. https://doi. org/10.1119/1.15620 Mościbrodzka M, Gammie CF (2018) IPOLE - semi-analytic scheme for relativistic polarized radiative transport. Mon. Not. R. Astron. Soc.475:43–54. https://doi.org/ 10.1093/mnras/stx3162. arXiv:1712.03057 [astro-ph.HE] Mościbrodzka M, Falcke H, Shiokawa H (2016) General relativistic magnetohydrodynamical simulations of the jet in M 87. Astron. Astrophys.586:A38. https://doi.org/ 10.1051/0004-6361/201526630. arXiv:1510.07243 [astro-ph.HE] Mościbrodzka M, Janiuk A, De Laurentis M (2021) Unraveling circular polarimetric images of magnetically arrested accretion flows near event horizon of a black hole. Mon. Not. R. Astron. Soc.508(3):4282–4296. https://doi.org/10.1093/mnras/ stab2790. arXiv:2103.00267 [astro-ph.HE] Motohashi H, Minamitsuji M (2019) Exact black hole solutions in shift-symmetric quadratic degenerate higher-order scalar-tensor theories. Phys Rev D 99(6):064040. https://doi.org/10.1103/PhysRevD.99.064040. arXiv:1901.04658
- [gr-qc] Murphy MT, Flambaum VV, Muller S, Henkel C (2008) Strong Limit on a Variable Proton-to-Electron Mass Ratio from Molecules in the Distant Universe. Science 320:1611–1613. https://doi.org/10.1126/science.1156352. arXiv:0806.3081
- [astro-ph] Nampalliwar S, K S (2021) Theory-agnostic tests of gravity with black hole shadows. arXiv e-prints arXiv:2108.01190. https://doi.org/10.48550/arXiv.2108.01190. arXiv:2108.01190
- [astro-ph] Nampalliwar S, K S (2021) Theory-agnostic tests of gravity with black hole shadows. arXiv e-prints arXiv:2108.01190. https://doi.org/10.48550/arXiv.2108.01190. arXiv:2108.01190
- [gr-qc] Nampalliwar S, Yfantis AI, Kokkotas KD (2022a) Extending GRMHD for thin disks to non-Kerr spacetimes. Phys Rev D 106(6):063009. https://doi.org/10.1103/ PhysRevD.106.063009 Nampalliwar S, Yfantis AI, Kokkotas KD (2022b) Extending GRMHD for thin disks to non-Kerr spacetimes. Phys Rev D 106(6):063009. https://doi.org/10. 1103/PhysRevD.106.063009, URL https://journals.aps.org/prd/abstract/10.1103/ PhysRevD.106.063009 Naoz S (2016) The Eccentric Kozai-Lidov Effect and Its Applications. Annu. Rev. Astron. Astrophys.54:441–489. https://doi.org/10.1146/annurev-astro-081915-023315. arXiv:1601.07175 [astro-ph.EP] Naoz S, Will CM, Ramirez-Ruiz E, Hees A, Ghez AM, Do T (2020) A hidden friend for the galactic center black hole, Sgr A*. Astrophys J Lett 888(1):L8. https://doi. org/10.3847/2041-8213/ab5e3b. arXiv:1912.04910 [astro-ph.GA] Narayan R, McClintock JE (2008) Advection-Dominated Accretion and the Black Hole Event Horizon. New Astron Rev 51:733–751. https://doi.org/10.1016/j.newar.2008. 03.002. arXiv:0803.0322
- [gr-qc] Nampalliwar S, Yfantis AI, Kokkotas KD (2022a) Extending GRMHD for thin disks to non-Kerr spacetimes. Phys Rev D 106(6):063009. https://doi.org/10.1103/ PhysRevD.106.063009 Nampalliwar S, Yfantis AI, Kokkotas KD (2022b) Extending GRMHD for thin disks to non-Kerr spacetimes. Phys Rev D 106(6):063009. https://doi.org/10. 1103/PhysRevD.106.063009, URL https://journals.aps.org/prd/abstract/10.1103/ PhysRevD.106.063009 Naoz S (2016) The Eccentric Kozai-Lidov Effect and Its Applications. Annu. Rev. Astron. Astrophys.54:441–489. https://doi.org/10.1146/annurev-astro-081915-023315. arXiv:1601.07175 [astro-ph.EP] Naoz S, Will CM, Ramirez-Ruiz E, Hees A, Ghez AM, Do T (2020) A hidden friend for the galactic center black hole, Sgr A*. Astrophys J Lett 888(1):L8. https://doi. org/10.3847/2041-8213/ab5e3b. arXiv:1912.04910 [astro-ph.GA] Narayan R, McClintock JE (2008) Advection-Dominated Accretion and the Black Hole Event Horizon. New Astron Rev 51:733–751. https://doi.org/10.1016/j.newar.2008. 03.002. arXiv:0803.0322
- [gr-qc] Nampalliwar S, Yfantis AI, Kokkotas KD (2022a) Extending GRMHD for thin disks to non-Kerr spacetimes. Phys Rev D 106(6):063009. https://doi.org/10.1103/ PhysRevD.106.063009 Nampalliwar S, Yfantis AI, Kokkotas KD (2022b) Extending GRMHD for thin disks to non-Kerr spacetimes. Phys Rev D 106(6):063009. https://doi.org/10. 1103/PhysRevD.106.063009, URL https://journals.aps.org/prd/abstract/10.1103/ PhysRevD.106.063009 Naoz S (2016) The Eccentric Kozai-Lidov Effect and Its Applications. Annu. Rev. Astron. Astrophys.54:441–489. https://doi.org/10.1146/annurev-astro-081915-023315. arXiv:1601.07175 [astro-ph.EP] Naoz S, Will CM, Ramirez-Ruiz E, Hees A, Ghez AM, Do T (2020) A hidden friend for the galactic center black hole, Sgr A*. Astrophys J Lett 888(1):L8. https://doi. org/10.3847/2041-8213/ab5e3b. arXiv:1912.04910 [astro-ph.GA] Narayan R, McClintock JE (2008) Advection-Dominated Accretion and the Black Hole Event Horizon. New Astron Rev 51:733–751. https://doi.org/10.1016/j.newar.2008. 03.002. arXiv:0803.0322
- [gr-qc] Nampalliwar S, Yfantis AI, Kokkotas KD (2022a) Extending GRMHD for thin disks to non-Kerr spacetimes. Phys Rev D 106(6):063009. https://doi.org/10.1103/ PhysRevD.106.063009 Nampalliwar S, Yfantis AI, Kokkotas KD (2022b) Extending GRMHD for thin disks to non-Kerr spacetimes. Phys Rev D 106(6):063009. https://doi.org/10. 1103/PhysRevD.106.063009, URL https://journals.aps.org/prd/abstract/10.1103/ PhysRevD.106.063009 Naoz S (2016) The Eccentric Kozai-Lidov Effect and Its Applications. Annu. Rev. Astron. Astrophys.54:441–489. https://doi.org/10.1146/annurev-astro-081915-023315. arXiv:1601.07175 [astro-ph.EP] Naoz S, Will CM, Ramirez-Ruiz E, Hees A, Ghez AM, Do T (2020) A hidden friend for the galactic center black hole, Sgr A*. Astrophys J Lett 888(1):L8. https://doi. org/10.3847/2041-8213/ab5e3b. arXiv:1912.04910 [astro-ph.GA] Narayan R, McClintock JE (2008) Advection-Dominated Accretion and the Black Hole Event Horizon. New Astron Rev 51:733–751. https://doi.org/10.1016/j.newar.2008. 03.002. arXiv:0803.0322
- [gr-qc] Nampalliwar S, Yfantis AI, Kokkotas KD (2022a) Extending GRMHD for thin disks to non-Kerr spacetimes. Phys Rev D 106(6):063009. https://doi.org/10.1103/ PhysRevD.106.063009 Nampalliwar S, Yfantis AI, Kokkotas KD (2022b) Extending GRMHD for thin disks to non-Kerr spacetimes. Phys Rev D 106(6):063009. https://doi.org/10. 1103/PhysRevD.106.063009, URL https://journals.aps.org/prd/abstract/10.1103/ PhysRevD.106.063009 Naoz S (2016) The Eccentric Kozai-Lidov Effect and Its Applications. Annu. Rev. Astron. Astrophys.54:441–489. https://doi.org/10.1146/annurev-astro-081915-023315. arXiv:1601.07175 [astro-ph.EP] Naoz S, Will CM, Ramirez-Ruiz E, Hees A, Ghez AM, Do T (2020) A hidden friend for the galactic center black hole, Sgr A*. Astrophys J Lett 888(1):L8. https://doi. org/10.3847/2041-8213/ab5e3b. arXiv:1912.04910 [astro-ph.GA] Narayan R, McClintock JE (2008) Advection-Dominated Accretion and the Black Hole Event Horizon. New Astron Rev 51:733–751. https://doi.org/10.1016/j.newar.2008. 03.002. arXiv:0803.0322
- [astro-ph] Narayan R, Igumenshchev IV, Abramowicz MA (2003) Magnetically Arrested Disk: an Energetically Efficient Accretion Flow. Publ. Astron. Soc. Jpn55:L69–L72. https: //doi.org/10.1093/pasj/55.6.L69. arXiv:astro-ph/0305029
- [astro-ph] Narayan R, SÄ dowski A, Penna RF, Kulkarni AK (2012) GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: role of outflows. Mon. Not. R. Astron. Soc.426(4):3241–3259. https://doi.org/10.1111/j.1365-2966. 2012.22002.x. arXiv:1206.1213 [astro-ph.HE] Fundamental Physics Opportunities with the ngEHT 139 Narayan R, Palumbo DCM, Johnson MD, Gelles Z, et al (2021) The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophys. J.912(1):35. https://doi.org/10.3847/1538-4357/abf117. arXiv:2105.01804 [astro-ph.HE] Neilsen J, Nowak MA, Gammie C, Dexter J, Markoff S, Haggard D, Nayakshin S, Wang QD, Grosso N, Porquet D, Tomsick JA, Degenaar N, Fragile PC, Houck JC, Wijnands R, Miller JM, Baganoff FK (2013) A Chandra/HETGS Census of X-Ray Variability from Sgr A* during 2012. Astrophys. J.774(1):42. https://doi.org/10. 1088/0004-637X/774/1/42. arXiv:1307.5843 [astro-ph.HE] Neves JCS, Saa A (2014) Regular rotating black holes and the weak energy condition. Phys Lett B 734:44–48. https://doi.org/10.1016/j.physletb.2014.05.026. arXiv:1402.2694
- [astro-ph] Narayan R, SÄ dowski A, Penna RF, Kulkarni AK (2012) GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: role of outflows. Mon. Not. R. Astron. Soc.426(4):3241–3259. https://doi.org/10.1111/j.1365-2966. 2012.22002.x. arXiv:1206.1213 [astro-ph.HE] Fundamental Physics Opportunities with the ngEHT 139 Narayan R, Palumbo DCM, Johnson MD, Gelles Z, et al (2021) The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophys. J.912(1):35. https://doi.org/10.3847/1538-4357/abf117. arXiv:2105.01804 [astro-ph.HE] Neilsen J, Nowak MA, Gammie C, Dexter J, Markoff S, Haggard D, Nayakshin S, Wang QD, Grosso N, Porquet D, Tomsick JA, Degenaar N, Fragile PC, Houck JC, Wijnands R, Miller JM, Baganoff FK (2013) A Chandra/HETGS Census of X-Ray Variability from Sgr A* during 2012. Astrophys. J.774(1):42. https://doi.org/10. 1088/0004-637X/774/1/42. arXiv:1307.5843 [astro-ph.HE] Neves JCS, Saa A (2014) Regular rotating black holes and the weak energy condition. Phys Lett B 734:44–48. https://doi.org/10.1016/j.physletb.2014.05.026. arXiv:1402.2694
- [astro-ph] Narayan R, SÄ dowski A, Penna RF, Kulkarni AK (2012) GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: role of outflows. Mon. Not. R. Astron. Soc.426(4):3241–3259. https://doi.org/10.1111/j.1365-2966. 2012.22002.x. arXiv:1206.1213 [astro-ph.HE] Fundamental Physics Opportunities with the ngEHT 139 Narayan R, Palumbo DCM, Johnson MD, Gelles Z, et al (2021) The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophys. J.912(1):35. https://doi.org/10.3847/1538-4357/abf117. arXiv:2105.01804 [astro-ph.HE] Neilsen J, Nowak MA, Gammie C, Dexter J, Markoff S, Haggard D, Nayakshin S, Wang QD, Grosso N, Porquet D, Tomsick JA, Degenaar N, Fragile PC, Houck JC, Wijnands R, Miller JM, Baganoff FK (2013) A Chandra/HETGS Census of X-Ray Variability from Sgr A* during 2012. Astrophys. J.774(1):42. https://doi.org/10. 1088/0004-637X/774/1/42. arXiv:1307.5843 [astro-ph.HE] Neves JCS, Saa A (2014) Regular rotating black holes and the weak energy condition. Phys Lett B 734:44–48. https://doi.org/10.1016/j.physletb.2014.05.026. arXiv:1402.2694
- [astro-ph] Narayan R, SÄ dowski A, Penna RF, Kulkarni AK (2012) GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: role of outflows. Mon. Not. R. Astron. Soc.426(4):3241–3259. https://doi.org/10.1111/j.1365-2966. 2012.22002.x. arXiv:1206.1213 [astro-ph.HE] Fundamental Physics Opportunities with the ngEHT 139 Narayan R, Palumbo DCM, Johnson MD, Gelles Z, et al (2021) The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophys. J.912(1):35. https://doi.org/10.3847/1538-4357/abf117. arXiv:2105.01804 [astro-ph.HE] Neilsen J, Nowak MA, Gammie C, Dexter J, Markoff S, Haggard D, Nayakshin S, Wang QD, Grosso N, Porquet D, Tomsick JA, Degenaar N, Fragile PC, Houck JC, Wijnands R, Miller JM, Baganoff FK (2013) A Chandra/HETGS Census of X-Ray Variability from Sgr A* during 2012. Astrophys. J.774(1):42. https://doi.org/10. 1088/0004-637X/774/1/42. arXiv:1307.5843 [astro-ph.HE] Neves JCS, Saa A (2014) Regular rotating black holes and the weak energy condition. Phys Lett B 734:44–48. https://doi.org/10.1016/j.physletb.2014.05.026. arXiv:1402.2694
- [astro-ph] Narayan R, SÄ dowski A, Penna RF, Kulkarni AK (2012) GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: role of outflows. Mon. Not. R. Astron. Soc.426(4):3241–3259. https://doi.org/10.1111/j.1365-2966. 2012.22002.x. arXiv:1206.1213 [astro-ph.HE] Fundamental Physics Opportunities with the ngEHT 139 Narayan R, Palumbo DCM, Johnson MD, Gelles Z, et al (2021) The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophys. J.912(1):35. https://doi.org/10.3847/1538-4357/abf117. arXiv:2105.01804 [astro-ph.HE] Neilsen J, Nowak MA, Gammie C, Dexter J, Markoff S, Haggard D, Nayakshin S, Wang QD, Grosso N, Porquet D, Tomsick JA, Degenaar N, Fragile PC, Houck JC, Wijnands R, Miller JM, Baganoff FK (2013) A Chandra/HETGS Census of X-Ray Variability from Sgr A* during 2012. Astrophys. J.774(1):42. https://doi.org/10. 1088/0004-637X/774/1/42. arXiv:1307.5843 [astro-ph.HE] Neves JCS, Saa A (2014) Regular rotating black holes and the weak energy condition. Phys Lett B 734:44–48. https://doi.org/10.1016/j.physletb.2014.05.026. arXiv:1402.2694
- [gr-qc] Newman ET, Janis AI (1965) Note on the Kerr spinning particle metric. J Math Phys 6:915–917. https://doi.org/10.1063/1.1704350 Newman ET, Couch R, Chinnapared K, Exton A, Prakash A, Torrence R (1965) Metric of a Rotating, Charged Mass. J Math Phys 6:918–919. https://doi.org/10.1063/1. 1704351 Ng KKY, Hannuksela OA, Vitale S, Li TGF (2021) Searching for ultralight bosons within spin measurements of a population of binary black hole mergers. Phys Rev D 103(6):063010. https://doi.org/10.1103/PhysRevD.103.063010. arXiv:1908.02312
- [gr-qc] Newman ET, Janis AI (1965) Note on the Kerr spinning particle metric. J Math Phys 6:915–917. https://doi.org/10.1063/1.1704350 Newman ET, Couch R, Chinnapared K, Exton A, Prakash A, Torrence R (1965) Metric of a Rotating, Charged Mass. J Math Phys 6:918–919. https://doi.org/10.1063/1. 1704351 Ng KKY, Hannuksela OA, Vitale S, Li TGF (2021) Searching for ultralight bosons within spin measurements of a population of binary black hole mergers. Phys Rev D 103(6):063010. https://doi.org/10.1103/PhysRevD.103.063010. arXiv:1908.02312
- [gr-qc] Newman ET, Janis AI (1965) Note on the Kerr spinning particle metric. J Math Phys 6:915–917. https://doi.org/10.1063/1.1704350 Newman ET, Couch R, Chinnapared K, Exton A, Prakash A, Torrence R (1965) Metric of a Rotating, Charged Mass. J Math Phys 6:918–919. https://doi.org/10.1063/1. 1704351 Ng KKY, Hannuksela OA, Vitale S, Li TGF (2021) Searching for ultralight bosons within spin measurements of a population of binary black hole mergers. Phys Rev D 103(6):063010. https://doi.org/10.1103/PhysRevD.103.063010. arXiv:1908.02312
- [gr-qc] Nguyen B, Christian P, Chan Ck (2023) Shadow Geometry of Kerr Naked Singularities. Astrophys. J.954(1):78. https://doi.org/10.3847/1538-4357/ace697. arXiv:2302.08094 [astro-ph.HE] Nicolini P (2009) Noncommutative Black Holes, The Final Appeal To Quantum Gravity: A Review. Int J Mod Phys A 24:1229–1308. https://doi.org/10.1142/ S0217751X09043353. arXiv:0807.1939
- [gr-qc] Nguyen B, Christian P, Chan Ck (2023) Shadow Geometry of Kerr Naked Singularities. Astrophys. J.954(1):78. https://doi.org/10.3847/1538-4357/ace697. arXiv:2302.08094 [astro-ph.HE] Nicolini P (2009) Noncommutative Black Holes, The Final Appeal To Quantum Gravity: A Review. Int J Mod Phys A 24:1229–1308. https://doi.org/10.1142/ S0217751X09043353. arXiv:0807.1939
- [hep-th] Noble SC, Krolik JH, Campanelli M, Zlochower Y, Mundim BC, Nakano H, Zilhão M (2021) Mass-ratio and Magnetic Flux Dependence of Modulated Accretion from Circumbinary Disks. The Astrophysical Journal 922(2):175. https://doi.org/10. 3847/1538-4357/ac2229, URL https://dx.doi.org/10.3847/1538-4357/ac2229, publisher: The American Astronomical Society Ohgami T, Sakai N (2015) Wormhole shadows. Phys Rev D 91(12):124020. https: //doi.org/10.1103/PhysRevD.91.124020. arXiv:1704.07065
- [hep-th] Noble SC, Krolik JH, Campanelli M, Zlochower Y, Mundim BC, Nakano H, Zilhão M (2021) Mass-ratio and Magnetic Flux Dependence of Modulated Accretion from Circumbinary Disks. The Astrophysical Journal 922(2):175. https://doi.org/10. 3847/1538-4357/ac2229, URL https://dx.doi.org/10.3847/1538-4357/ac2229, publisher: The American Astronomical Society Ohgami T, Sakai N (2015) Wormhole shadows. Phys Rev D 91(12):124020. https: //doi.org/10.1103/PhysRevD.91.124020. arXiv:1704.07065
- [gr-qc] Ohgami T, Sakai N (2016) Wormhole shadows in rotating dust. Phys Rev D 94(6):064071. https://doi.org/10.1103/PhysRevD.94.064071. arXiv:1704.07093
- [grqc] Okounkova M, Scheel MA, Teukolsky SA (2019) Numerical black hole initial data and shadows in dynamical Chern-Simons gravity. Class Quant Grav 36(5):054001. https://doi.org/10.1088/1361-6382/aafcdf. arXiv:1810.05306
- [gr-qc] Olivares H, Younsi Z, Fromm CM, De Laurentis M, Porth O, Mizuno Y, Falcke H, Kramer M, Rezzolla L (2020) How to tell an accreting boson star from a black hole. Mon Not Roy Astron Soc 497(1):521–535. https://doi.org/10.1093/mnras/staa1878. arXiv:1809.08682
- [gr-qc] Olivares H, Gold R, Tootle S (2023, in prep.) In preparation. Omiya H, Takahashi T, Tanaka T, Yoshino H (2023) Impact of multiple modes on the evolution of self-interacting axion condensate around rotating black holes. J. Cosmol. Astropart. Phys.2023(6):016. https://doi.org/10.1088/1475-7516/2023/06/016. arXiv:2211.01949
- [gr-qc] 140 The ngEHT Fundamental Physics SWG O’Neill S, Kiehlmann S, Readhead ACS, Aller MF, Blandford RD, Liodakis I, Lister ML, Mróz P, O’Dea CP, Pearson TJ, Ravi V, Vallisneri M, Cleary KA, Graham MJ, Grainge KJB, Hodges MW, Hovatta T, Lähteenmäki A, Lamb JW, Lazio TJW, MaxMoerbeck W, Pavlidou V, Prince TA, Reeves RA, Tornikoski M, Vergara de la Parra P, Zensus JA (2022) The Unanticipated Phenomenology of the Blazar PKS 2131-021: A Unique Supermassive Black Hole Binary Candidate. Astrophys. J. Lett.926(2):L35. https://doi.org/10.3847/2041-8213/ac504b. arXiv:2111.02436 [astro-ph.HE] Ottewill AC, Winstanley E (2000) The Renormalized stress tensor in Kerr spacetime: general results. Phys Rev D 62:084018. https://doi.org/10.1103/PhysRevD. 62.084018. arXiv:gr-qc/0004022 Owen CB, Yunes N, Witek H (2021) Petrov type, principal null directions, and Killing tensors of slowly rotating black holes in quadratic gravity. Phys Rev D 103(12):124057. https://doi.org/10.1103/PhysRevD.103.124057. arXiv:2103.15891
- [gr-qc] 140 The ngEHT Fundamental Physics SWG O’Neill S, Kiehlmann S, Readhead ACS, Aller MF, Blandford RD, Liodakis I, Lister ML, Mróz P, O’Dea CP, Pearson TJ, Ravi V, Vallisneri M, Cleary KA, Graham MJ, Grainge KJB, Hodges MW, Hovatta T, Lähteenmäki A, Lamb JW, Lazio TJW, MaxMoerbeck W, Pavlidou V, Prince TA, Reeves RA, Tornikoski M, Vergara de la Parra P, Zensus JA (2022) The Unanticipated Phenomenology of the Blazar PKS 2131-021: A Unique Supermassive Black Hole Binary Candidate. Astrophys. J. Lett.926(2):L35. https://doi.org/10.3847/2041-8213/ac504b. arXiv:2111.02436 [astro-ph.HE] Ottewill AC, Winstanley E (2000) The Renormalized stress tensor in Kerr spacetime: general results. Phys Rev D 62:084018. https://doi.org/10.1103/PhysRevD. 62.084018. arXiv:gr-qc/0004022 Owen CB, Yunes N, Witek H (2021) Petrov type, principal null directions, and Killing tensors of slowly rotating black holes in quadratic gravity. Phys Rev D 103(12):124057. https://doi.org/10.1103/PhysRevD.103.124057. arXiv:2103.15891
- [gr-qc] 140 The ngEHT Fundamental Physics SWG O’Neill S, Kiehlmann S, Readhead ACS, Aller MF, Blandford RD, Liodakis I, Lister ML, Mróz P, O’Dea CP, Pearson TJ, Ravi V, Vallisneri M, Cleary KA, Graham MJ, Grainge KJB, Hodges MW, Hovatta T, Lähteenmäki A, Lamb JW, Lazio TJW, MaxMoerbeck W, Pavlidou V, Prince TA, Reeves RA, Tornikoski M, Vergara de la Parra P, Zensus JA (2022) The Unanticipated Phenomenology of the Blazar PKS 2131-021: A Unique Supermassive Black Hole Binary Candidate. Astrophys. J. Lett.926(2):L35. https://doi.org/10.3847/2041-8213/ac504b. arXiv:2111.02436 [astro-ph.HE] Ottewill AC, Winstanley E (2000) The Renormalized stress tensor in Kerr spacetime: general results. Phys Rev D 62:084018. https://doi.org/10.1103/PhysRevD. 62.084018. arXiv:gr-qc/0004022 Owen CB, Yunes N, Witek H (2021) Petrov type, principal null directions, and Killing tensors of slowly rotating black holes in quadratic gravity. Phys Rev D 103(12):124057. https://doi.org/10.1103/PhysRevD.103.124057. arXiv:2103.15891
- [gr-qc] Özel F, Psaltis D, Younsi Z (2022) Black Hole Images as Tests of General Relativity: Effects of Plasma Physics. Astrophys. J.941(1):88. https://doi.org/10.3847/1538-4357/ ac9fcb. arXiv:2111.01123 [astro-ph.HE] Pacucci F, Loeb A (2020) Separating accretion and mergers in the cosmic growth of black holes with x-ray and gravitational-wave observations. The Astrophysical Journal 895(2):95. https://doi.org/10.3847/1538-4357/ab886e, URL https://dx.doi. org/10.3847/1538-4357/ab886e Palumbo DCM, Wong GN (2022) Photon Ring Symmetries in Simulated Linear Polarization Images of Messier 87*. Astrophys. J.929(1):49. https://doi.org/10.3847/ 1538-4357/ac59b4. arXiv:2203.00844 [astro-ph.HE] Palumbo DCM, Wong GN, Prather BS (2020) Discriminating Accretion States via Rotational Symmetry in Simulated Polarimetric Images of M87. Astrophys. J.894(2):156. https://doi.org/10.3847/1538-4357/ab86ac. arXiv:2004.01751 [astro-ph.HE] Palumbo DCM, Gelles Z, Tiede P, Chang DO, Pesce DW, Chael A, Johnson MD (2022) Bayesian Accretion Modeling: Axisymmetric Equatorial Emission in the Kerr Spacetime. Astrophys. J.939(2):107. https://doi.org/10.3847/1538-4357/ ac9ab7. arXiv:2210.07108 [astro-ph.HE] Palumbo DCM, Wong GN, Chael A, Johnson MD (2023) Demonstrating Photon Ring Existence with Single-baseline Polarimetry. Astrophys. J. Lett.952(2):L31. https: //doi.org/10.3847/2041-8213/ace630. arXiv:2307.05293 [astro-ph.HE] Palumbo DCM, Wong GN, Chael AA, Johnson MD (2023) Demonstrating Photon Ring Existence with Single-baseline Polarimetry. Astrophys J Lett 952(2):L31. https: //doi.org/10.3847/2041-8213/ace630. arXiv:2307.05293 [astro-ph.HE] Pan Z, Yang H (2021a) Formation Rate of Extreme Mass Ratio Inspirals in Active Galactic Nuclei. Phys Rev D 103(10):103018. https://doi.org/10.1103/PhysRevD. 103.103018. arXiv:2101.09146 [astro-ph.HE]
- [gr-qc] Özel F, Psaltis D, Younsi Z (2022) Black Hole Images as Tests of General Relativity: Effects of Plasma Physics. Astrophys. J.941(1):88. https://doi.org/10.3847/1538-4357/ ac9fcb. arXiv:2111.01123 [astro-ph.HE] Pacucci F, Loeb A (2020) Separating accretion and mergers in the cosmic growth of black holes with x-ray and gravitational-wave observations. The Astrophysical Journal 895(2):95. https://doi.org/10.3847/1538-4357/ab886e, URL https://dx.doi. org/10.3847/1538-4357/ab886e Palumbo DCM, Wong GN (2022) Photon Ring Symmetries in Simulated Linear Polarization Images of Messier 87*. Astrophys. J.929(1):49. https://doi.org/10.3847/ 1538-4357/ac59b4. arXiv:2203.00844 [astro-ph.HE] Palumbo DCM, Wong GN, Prather BS (2020) Discriminating Accretion States via Rotational Symmetry in Simulated Polarimetric Images of M87. Astrophys. J.894(2):156. https://doi.org/10.3847/1538-4357/ab86ac. arXiv:2004.01751 [astro-ph.HE] Palumbo DCM, Gelles Z, Tiede P, Chang DO, Pesce DW, Chael A, Johnson MD (2022) Bayesian Accretion Modeling: Axisymmetric Equatorial Emission in the Kerr Spacetime. Astrophys. J.939(2):107. https://doi.org/10.3847/1538-4357/ ac9ab7. arXiv:2210.07108 [astro-ph.HE] Palumbo DCM, Wong GN, Chael A, Johnson MD (2023) Demonstrating Photon Ring Existence with Single-baseline Polarimetry. Astrophys. J. Lett.952(2):L31. https: //doi.org/10.3847/2041-8213/ace630. arXiv:2307.05293 [astro-ph.HE] Palumbo DCM, Wong GN, Chael AA, Johnson MD (2023) Demonstrating Photon Ring Existence with Single-baseline Polarimetry. Astrophys J Lett 952(2):L31. https: //doi.org/10.3847/2041-8213/ace630. arXiv:2307.05293 [astro-ph.HE] Pan Z, Yang H (2021a) Formation Rate of Extreme Mass Ratio Inspirals in Active Galactic Nuclei. Phys Rev D 103(10):103018. https://doi.org/10.1103/PhysRevD. 103.103018. arXiv:2101.09146 [astro-ph.HE]
- [gr-qc] Özel F, Psaltis D, Younsi Z (2022) Black Hole Images as Tests of General Relativity: Effects of Plasma Physics. Astrophys. J.941(1):88. https://doi.org/10.3847/1538-4357/ ac9fcb. arXiv:2111.01123 [astro-ph.HE] Pacucci F, Loeb A (2020) Separating accretion and mergers in the cosmic growth of black holes with x-ray and gravitational-wave observations. The Astrophysical Journal 895(2):95. https://doi.org/10.3847/1538-4357/ab886e, URL https://dx.doi. org/10.3847/1538-4357/ab886e Palumbo DCM, Wong GN (2022) Photon Ring Symmetries in Simulated Linear Polarization Images of Messier 87*. Astrophys. J.929(1):49. https://doi.org/10.3847/ 1538-4357/ac59b4. arXiv:2203.00844 [astro-ph.HE] Palumbo DCM, Wong GN, Prather BS (2020) Discriminating Accretion States via Rotational Symmetry in Simulated Polarimetric Images of M87. Astrophys. J.894(2):156. https://doi.org/10.3847/1538-4357/ab86ac. arXiv:2004.01751 [astro-ph.HE] Palumbo DCM, Gelles Z, Tiede P, Chang DO, Pesce DW, Chael A, Johnson MD (2022) Bayesian Accretion Modeling: Axisymmetric Equatorial Emission in the Kerr Spacetime. Astrophys. J.939(2):107. https://doi.org/10.3847/1538-4357/ ac9ab7. arXiv:2210.07108 [astro-ph.HE] Palumbo DCM, Wong GN, Chael A, Johnson MD (2023) Demonstrating Photon Ring Existence with Single-baseline Polarimetry. Astrophys. J. Lett.952(2):L31. https: //doi.org/10.3847/2041-8213/ace630. arXiv:2307.05293 [astro-ph.HE] Palumbo DCM, Wong GN, Chael AA, Johnson MD (2023) Demonstrating Photon Ring Existence with Single-baseline Polarimetry. Astrophys J Lett 952(2):L31. https: //doi.org/10.3847/2041-8213/ace630. arXiv:2307.05293 [astro-ph.HE] Pan Z, Yang H (2021a) Formation Rate of Extreme Mass Ratio Inspirals in Active Galactic Nuclei. Phys Rev D 103(10):103018. https://doi.org/10.1103/PhysRevD. 103.103018. arXiv:2101.09146 [astro-ph.HE]
- [gr-qc] Özel F, Psaltis D, Younsi Z (2022) Black Hole Images as Tests of General Relativity: Effects of Plasma Physics. Astrophys. J.941(1):88. https://doi.org/10.3847/1538-4357/ ac9fcb. arXiv:2111.01123 [astro-ph.HE] Pacucci F, Loeb A (2020) Separating accretion and mergers in the cosmic growth of black holes with x-ray and gravitational-wave observations. The Astrophysical Journal 895(2):95. https://doi.org/10.3847/1538-4357/ab886e, URL https://dx.doi. org/10.3847/1538-4357/ab886e Palumbo DCM, Wong GN (2022) Photon Ring Symmetries in Simulated Linear Polarization Images of Messier 87*. Astrophys. J.929(1):49. https://doi.org/10.3847/ 1538-4357/ac59b4. arXiv:2203.00844 [astro-ph.HE] Palumbo DCM, Wong GN, Prather BS (2020) Discriminating Accretion States via Rotational Symmetry in Simulated Polarimetric Images of M87. Astrophys. J.894(2):156. https://doi.org/10.3847/1538-4357/ab86ac. arXiv:2004.01751 [astro-ph.HE] Palumbo DCM, Gelles Z, Tiede P, Chang DO, Pesce DW, Chael A, Johnson MD (2022) Bayesian Accretion Modeling: Axisymmetric Equatorial Emission in the Kerr Spacetime. Astrophys. J.939(2):107. https://doi.org/10.3847/1538-4357/ ac9ab7. arXiv:2210.07108 [astro-ph.HE] Palumbo DCM, Wong GN, Chael A, Johnson MD (2023) Demonstrating Photon Ring Existence with Single-baseline Polarimetry. Astrophys. J. Lett.952(2):L31. https: //doi.org/10.3847/2041-8213/ace630. arXiv:2307.05293 [astro-ph.HE] Palumbo DCM, Wong GN, Chael AA, Johnson MD (2023) Demonstrating Photon Ring Existence with Single-baseline Polarimetry. Astrophys J Lett 952(2):L31. https: //doi.org/10.3847/2041-8213/ace630. arXiv:2307.05293 [astro-ph.HE] Pan Z, Yang H (2021a) Formation Rate of Extreme Mass Ratio Inspirals in Active Galactic Nuclei. Phys Rev D 103(10):103018. https://doi.org/10.1103/PhysRevD. 103.103018. arXiv:2101.09146 [astro-ph.HE]
- [gr-qc] Özel F, Psaltis D, Younsi Z (2022) Black Hole Images as Tests of General Relativity: Effects of Plasma Physics. Astrophys. J.941(1):88. https://doi.org/10.3847/1538-4357/ ac9fcb. arXiv:2111.01123 [astro-ph.HE] Pacucci F, Loeb A (2020) Separating accretion and mergers in the cosmic growth of black holes with x-ray and gravitational-wave observations. The Astrophysical Journal 895(2):95. https://doi.org/10.3847/1538-4357/ab886e, URL https://dx.doi. org/10.3847/1538-4357/ab886e Palumbo DCM, Wong GN (2022) Photon Ring Symmetries in Simulated Linear Polarization Images of Messier 87*. Astrophys. J.929(1):49. https://doi.org/10.3847/ 1538-4357/ac59b4. arXiv:2203.00844 [astro-ph.HE] Palumbo DCM, Wong GN, Prather BS (2020) Discriminating Accretion States via Rotational Symmetry in Simulated Polarimetric Images of M87. Astrophys. J.894(2):156. https://doi.org/10.3847/1538-4357/ab86ac. arXiv:2004.01751 [astro-ph.HE] Palumbo DCM, Gelles Z, Tiede P, Chang DO, Pesce DW, Chael A, Johnson MD (2022) Bayesian Accretion Modeling: Axisymmetric Equatorial Emission in the Kerr Spacetime. Astrophys. J.939(2):107. https://doi.org/10.3847/1538-4357/ ac9ab7. arXiv:2210.07108 [astro-ph.HE] Palumbo DCM, Wong GN, Chael A, Johnson MD (2023) Demonstrating Photon Ring Existence with Single-baseline Polarimetry. Astrophys. J. Lett.952(2):L31. https: //doi.org/10.3847/2041-8213/ace630. arXiv:2307.05293 [astro-ph.HE] Palumbo DCM, Wong GN, Chael AA, Johnson MD (2023) Demonstrating Photon Ring Existence with Single-baseline Polarimetry. Astrophys J Lett 952(2):L31. https: //doi.org/10.3847/2041-8213/ace630. arXiv:2307.05293 [astro-ph.HE] Pan Z, Yang H (2021a) Formation Rate of Extreme Mass Ratio Inspirals in Active Galactic Nuclei. Phys Rev D 103(10):103018. https://doi.org/10.1103/PhysRevD. 103.103018. arXiv:2101.09146 [astro-ph.HE]
- [gr-qc] Özel F, Psaltis D, Younsi Z (2022) Black Hole Images as Tests of General Relativity: Effects of Plasma Physics. Astrophys. J.941(1):88. https://doi.org/10.3847/1538-4357/ ac9fcb. arXiv:2111.01123 [astro-ph.HE] Pacucci F, Loeb A (2020) Separating accretion and mergers in the cosmic growth of black holes with x-ray and gravitational-wave observations. The Astrophysical Journal 895(2):95. https://doi.org/10.3847/1538-4357/ab886e, URL https://dx.doi. org/10.3847/1538-4357/ab886e Palumbo DCM, Wong GN (2022) Photon Ring Symmetries in Simulated Linear Polarization Images of Messier 87*. Astrophys. J.929(1):49. https://doi.org/10.3847/ 1538-4357/ac59b4. arXiv:2203.00844 [astro-ph.HE] Palumbo DCM, Wong GN, Prather BS (2020) Discriminating Accretion States via Rotational Symmetry in Simulated Polarimetric Images of M87. Astrophys. J.894(2):156. https://doi.org/10.3847/1538-4357/ab86ac. arXiv:2004.01751 [astro-ph.HE] Palumbo DCM, Gelles Z, Tiede P, Chang DO, Pesce DW, Chael A, Johnson MD (2022) Bayesian Accretion Modeling: Axisymmetric Equatorial Emission in the Kerr Spacetime. Astrophys. J.939(2):107. https://doi.org/10.3847/1538-4357/ ac9ab7. arXiv:2210.07108 [astro-ph.HE] Palumbo DCM, Wong GN, Chael A, Johnson MD (2023) Demonstrating Photon Ring Existence with Single-baseline Polarimetry. Astrophys. J. Lett.952(2):L31. https: //doi.org/10.3847/2041-8213/ace630. arXiv:2307.05293 [astro-ph.HE] Palumbo DCM, Wong GN, Chael AA, Johnson MD (2023) Demonstrating Photon Ring Existence with Single-baseline Polarimetry. Astrophys J Lett 952(2):L31. https: //doi.org/10.3847/2041-8213/ace630. arXiv:2307.05293 [astro-ph.HE] Pan Z, Yang H (2021a) Formation Rate of Extreme Mass Ratio Inspirals in Active Galactic Nuclei. Phys Rev D 103(10):103018. https://doi.org/10.1103/PhysRevD. 103.103018. arXiv:2101.09146 [astro-ph.HE]
- [gr-qc] Özel F, Psaltis D, Younsi Z (2022) Black Hole Images as Tests of General Relativity: Effects of Plasma Physics. Astrophys. J.941(1):88. https://doi.org/10.3847/1538-4357/ ac9fcb. arXiv:2111.01123 [astro-ph.HE] Pacucci F, Loeb A (2020) Separating accretion and mergers in the cosmic growth of black holes with x-ray and gravitational-wave observations. The Astrophysical Journal 895(2):95. https://doi.org/10.3847/1538-4357/ab886e, URL https://dx.doi. org/10.3847/1538-4357/ab886e Palumbo DCM, Wong GN (2022) Photon Ring Symmetries in Simulated Linear Polarization Images of Messier 87*. Astrophys. J.929(1):49. https://doi.org/10.3847/ 1538-4357/ac59b4. arXiv:2203.00844 [astro-ph.HE] Palumbo DCM, Wong GN, Prather BS (2020) Discriminating Accretion States via Rotational Symmetry in Simulated Polarimetric Images of M87. Astrophys. J.894(2):156. https://doi.org/10.3847/1538-4357/ab86ac. arXiv:2004.01751 [astro-ph.HE] Palumbo DCM, Gelles Z, Tiede P, Chang DO, Pesce DW, Chael A, Johnson MD (2022) Bayesian Accretion Modeling: Axisymmetric Equatorial Emission in the Kerr Spacetime. Astrophys. J.939(2):107. https://doi.org/10.3847/1538-4357/ ac9ab7. arXiv:2210.07108 [astro-ph.HE] Palumbo DCM, Wong GN, Chael A, Johnson MD (2023) Demonstrating Photon Ring Existence with Single-baseline Polarimetry. Astrophys. J. Lett.952(2):L31. https: //doi.org/10.3847/2041-8213/ace630. arXiv:2307.05293 [astro-ph.HE] Palumbo DCM, Wong GN, Chael AA, Johnson MD (2023) Demonstrating Photon Ring Existence with Single-baseline Polarimetry. Astrophys J Lett 952(2):L31. https: //doi.org/10.3847/2041-8213/ace630. arXiv:2307.05293 [astro-ph.HE] Pan Z, Yang H (2021a) Formation Rate of Extreme Mass Ratio Inspirals in Active Galactic Nuclei. Phys Rev D 103(10):103018. https://doi.org/10.1103/PhysRevD. 103.103018. arXiv:2101.09146 [astro-ph.HE]
- [gr-qc] Özel F, Psaltis D, Younsi Z (2022) Black Hole Images as Tests of General Relativity: Effects of Plasma Physics. Astrophys. J.941(1):88. https://doi.org/10.3847/1538-4357/ ac9fcb. arXiv:2111.01123 [astro-ph.HE] Pacucci F, Loeb A (2020) Separating accretion and mergers in the cosmic growth of black holes with x-ray and gravitational-wave observations. The Astrophysical Journal 895(2):95. https://doi.org/10.3847/1538-4357/ab886e, URL https://dx.doi. org/10.3847/1538-4357/ab886e Palumbo DCM, Wong GN (2022) Photon Ring Symmetries in Simulated Linear Polarization Images of Messier 87*. Astrophys. J.929(1):49. https://doi.org/10.3847/ 1538-4357/ac59b4. arXiv:2203.00844 [astro-ph.HE] Palumbo DCM, Wong GN, Prather BS (2020) Discriminating Accretion States via Rotational Symmetry in Simulated Polarimetric Images of M87. Astrophys. J.894(2):156. https://doi.org/10.3847/1538-4357/ab86ac. arXiv:2004.01751 [astro-ph.HE] Palumbo DCM, Gelles Z, Tiede P, Chang DO, Pesce DW, Chael A, Johnson MD (2022) Bayesian Accretion Modeling: Axisymmetric Equatorial Emission in the Kerr Spacetime. Astrophys. J.939(2):107. https://doi.org/10.3847/1538-4357/ ac9ab7. arXiv:2210.07108 [astro-ph.HE] Palumbo DCM, Wong GN, Chael A, Johnson MD (2023) Demonstrating Photon Ring Existence with Single-baseline Polarimetry. Astrophys. J. Lett.952(2):L31. https: //doi.org/10.3847/2041-8213/ace630. arXiv:2307.05293 [astro-ph.HE] Palumbo DCM, Wong GN, Chael AA, Johnson MD (2023) Demonstrating Photon Ring Existence with Single-baseline Polarimetry. Astrophys J Lett 952(2):L31. https: //doi.org/10.3847/2041-8213/ace630. arXiv:2307.05293 [astro-ph.HE] Pan Z, Yang H (2021a) Formation Rate of Extreme Mass Ratio Inspirals in Active Galactic Nuclei. Phys Rev D 103(10):103018. https://doi.org/10.1103/PhysRevD. 103.103018. arXiv:2101.09146 [astro-ph.HE]
- [gr-qc] Pani P, Cardoso V, Gualtieri L, Berti E, Ishibashi A (2012) Perturbations of slowly rotating black holes: massive vector fields in the Kerr metric. Phys Rev D 86:104017. https://doi.org/10.1103/PhysRevD.86.104017. arXiv:1209.0773
- [gr-qc] Pani P, Sotiriou TP, Vernieri D (2013) Gravity with auxiliary fields. Phys. Rev. D88(12):121502. https://doi.org/10.1103/PhysRevD.88.121502. arXiv:1306.1835
- [gr-qc] Papapetrou A (1966) Champs gravitationnels stationnaires a symetrie axiale. Ann Inst H Poincare Phys Theor 4:83–105 Papnoi U, Atamurotov F, Ghosh SG, Ahmedov B (2014) Shadow of five-dimensional rotating Myers-Perry black hole. Phys Rev D 90(2):024073. https://doi.org/10.1103/ PhysRevD.90.024073. arXiv:1407.0834
- [gr-qc] Papapetrou A (1966) Champs gravitationnels stationnaires a symetrie axiale. Ann Inst H Poincare Phys Theor 4:83–105 Papnoi U, Atamurotov F, Ghosh SG, Ahmedov B (2014) Shadow of five-dimensional rotating Myers-Perry black hole. Phys Rev D 90(2):024073. https://doi.org/10.1103/ PhysRevD.90.024073. arXiv:1407.0834
- [gr-qc] Parfrey K, Tchekhovskoy A (2017) General-relativistic Simulations of Four States of Accretion onto Millisecond Pulsars. The Astrophysical Journal Letters 851(2):L34. https://doi.org/10.3847/2041-8213/aa9c85, URL https://dx.doi.org/10. 3847/2041-8213/aa9c85, publisher: The American Astronomical Society Paschalidis V, Bright J, Ruiz M, Gold R (2021) Minidisk Dynamics in Accreting, Spinning Black Hole Binaries: Simulations in Full General Relativity. Astrophys. J. Lett.910(2):L26. https://doi.org/10.3847/2041-8213/abee21. arXiv:2102.06712 [astro-ph.HE] Paul S, Shaikh R, Banerjee P, Sarkar T (2020) Observational signatures of wormholes with thin accretion disks. JCAP 03:055. https://doi.org/10.1088/1475-7516/2020/ 03/055. arXiv:1911.05525
- [gr-qc] Parfrey K, Tchekhovskoy A (2017) General-relativistic Simulations of Four States of Accretion onto Millisecond Pulsars. The Astrophysical Journal Letters 851(2):L34. https://doi.org/10.3847/2041-8213/aa9c85, URL https://dx.doi.org/10. 3847/2041-8213/aa9c85, publisher: The American Astronomical Society Paschalidis V, Bright J, Ruiz M, Gold R (2021) Minidisk Dynamics in Accreting, Spinning Black Hole Binaries: Simulations in Full General Relativity. Astrophys. J. Lett.910(2):L26. https://doi.org/10.3847/2041-8213/abee21. arXiv:2102.06712 [astro-ph.HE] Paul S, Shaikh R, Banerjee P, Sarkar T (2020) Observational signatures of wormholes with thin accretion disks. JCAP 03:055. https://doi.org/10.1088/1475-7516/2020/ 03/055. arXiv:1911.05525
- [gr-qc] Parfrey K, Tchekhovskoy A (2017) General-relativistic Simulations of Four States of Accretion onto Millisecond Pulsars. The Astrophysical Journal Letters 851(2):L34. https://doi.org/10.3847/2041-8213/aa9c85, URL https://dx.doi.org/10. 3847/2041-8213/aa9c85, publisher: The American Astronomical Society Paschalidis V, Bright J, Ruiz M, Gold R (2021) Minidisk Dynamics in Accreting, Spinning Black Hole Binaries: Simulations in Full General Relativity. Astrophys. J. Lett.910(2):L26. https://doi.org/10.3847/2041-8213/abee21. arXiv:2102.06712 [astro-ph.HE] Paul S, Shaikh R, Banerjee P, Sarkar T (2020) Observational signatures of wormholes with thin accretion disks. JCAP 03:055. https://doi.org/10.1088/1475-7516/2020/ 03/055. arXiv:1911.05525
- [gr-qc] Paumard T, et al. (2006) The two young star disks in the central parsec of the galaxy: properties, dynamics and formation. Astrophys J 643:1011–1035. https://doi.org/10. 1086/503273. arXiv:astro-ph/0601268 Peccei RD, Quinn HR (1977a) Constraints Imposed by CP Conservation in the Presence of Instantons. Phys Rev D 16:1791–1797. https://doi.org/10.1103/PhysRevD. 16.1791 Peccei RD, Quinn HR (1977b) CP Conservation in the Presence of Instantons. Phys Rev Lett 38:1440–1443. https://doi.org/10.1103/PhysRevLett.38.1440 Peng J, Guo M, Feng XH (2021) Observational signature and additional photon rings of an asymmetric thin-shell wormhole. Phys Rev D 104(12):124010. https://doi.org/ 10.1103/PhysRevD.104.124010. arXiv:2102.05488
- [gr-qc] Paumard T, et al. (2006) The two young star disks in the central parsec of the galaxy: properties, dynamics and formation. Astrophys J 643:1011–1035. https://doi.org/10. 1086/503273. arXiv:astro-ph/0601268 Peccei RD, Quinn HR (1977a) Constraints Imposed by CP Conservation in the Presence of Instantons. Phys Rev D 16:1791–1797. https://doi.org/10.1103/PhysRevD. 16.1791 Peccei RD, Quinn HR (1977b) CP Conservation in the Presence of Instantons. Phys Rev Lett 38:1440–1443. https://doi.org/10.1103/PhysRevLett.38.1440 Peng J, Guo M, Feng XH (2021) Observational signature and additional photon rings of an asymmetric thin-shell wormhole. Phys Rev D 104(12):124010. https://doi.org/ 10.1103/PhysRevD.104.124010. arXiv:2102.05488
- [gr-qc] Paumard T, et al. (2006) The two young star disks in the central parsec of the galaxy: properties, dynamics and formation. Astrophys J 643:1011–1035. https://doi.org/10. 1086/503273. arXiv:astro-ph/0601268 Peccei RD, Quinn HR (1977a) Constraints Imposed by CP Conservation in the Presence of Instantons. Phys Rev D 16:1791–1797. https://doi.org/10.1103/PhysRevD. 16.1791 Peccei RD, Quinn HR (1977b) CP Conservation in the Presence of Instantons. Phys Rev Lett 38:1440–1443. https://doi.org/10.1103/PhysRevLett.38.1440 Peng J, Guo M, Feng XH (2021) Observational signature and additional photon rings of an asymmetric thin-shell wormhole. Phys Rev D 104(12):124010. https://doi.org/ 10.1103/PhysRevD.104.124010. arXiv:2102.05488
- [gr-qc] Paumard T, et al. (2006) The two young star disks in the central parsec of the galaxy: properties, dynamics and formation. Astrophys J 643:1011–1035. https://doi.org/10. 1086/503273. arXiv:astro-ph/0601268 Peccei RD, Quinn HR (1977a) Constraints Imposed by CP Conservation in the Presence of Instantons. Phys Rev D 16:1791–1797. https://doi.org/10.1103/PhysRevD. 16.1791 Peccei RD, Quinn HR (1977b) CP Conservation in the Presence of Instantons. Phys Rev Lett 38:1440–1443. https://doi.org/10.1103/PhysRevLett.38.1440 Peng J, Guo M, Feng XH (2021) Observational signature and additional photon rings of an asymmetric thin-shell wormhole. Phys Rev D 104(12):124010. https://doi.org/ 10.1103/PhysRevD.104.124010. arXiv:2102.05488
- [gr-qc] Penrose R (1965) Gravitational collapse and space-time singularities. Phys Rev Lett 14:57–59. https://doi.org/10.1103/PhysRevLett.14.57 Penrose R (1969) Gravitational collapse: The role of general relativity. Riv Nuovo Cim 1:252–276. https://doi.org/10.1023/A:1016578408204 Penrose R (1972) Techniques of differential topology in relativity. In: CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 7. Society for Industrial & Applied Mathematics, Philadelphia Penrose R, Floyd RM (1971) Extraction of rotational energy from a black hole. Nature 229:177–179. https://doi.org/10.1038/physci229177a0 Perlick V (2004) Gravitational Lensing from a Spacetime Perspective. Living Rev Relativ 7(9). https://doi.org/10.12942/lrr-2004-9 Perlick V, Tsupko OY (2022) Calculating black hole shadows: Review of analytical studies. Phys Rept 947:1–39. https://doi.org/10.1016/j.physrep.2021.10.004. arXiv:2105.07101
- [gr-qc] Penrose R (1965) Gravitational collapse and space-time singularities. Phys Rev Lett 14:57–59. https://doi.org/10.1103/PhysRevLett.14.57 Penrose R (1969) Gravitational collapse: The role of general relativity. Riv Nuovo Cim 1:252–276. https://doi.org/10.1023/A:1016578408204 Penrose R (1972) Techniques of differential topology in relativity. In: CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 7. Society for Industrial & Applied Mathematics, Philadelphia Penrose R, Floyd RM (1971) Extraction of rotational energy from a black hole. Nature 229:177–179. https://doi.org/10.1038/physci229177a0 Perlick V (2004) Gravitational Lensing from a Spacetime Perspective. Living Rev Relativ 7(9). https://doi.org/10.12942/lrr-2004-9 Perlick V, Tsupko OY (2022) Calculating black hole shadows: Review of analytical studies. Phys Rept 947:1–39. https://doi.org/10.1016/j.physrep.2021.10.004. arXiv:2105.07101
- [gr-qc] Penrose R (1965) Gravitational collapse and space-time singularities. Phys Rev Lett 14:57–59. https://doi.org/10.1103/PhysRevLett.14.57 Penrose R (1969) Gravitational collapse: The role of general relativity. Riv Nuovo Cim 1:252–276. https://doi.org/10.1023/A:1016578408204 Penrose R (1972) Techniques of differential topology in relativity. In: CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 7. Society for Industrial & Applied Mathematics, Philadelphia Penrose R, Floyd RM (1971) Extraction of rotational energy from a black hole. Nature 229:177–179. https://doi.org/10.1038/physci229177a0 Perlick V (2004) Gravitational Lensing from a Spacetime Perspective. Living Rev Relativ 7(9). https://doi.org/10.12942/lrr-2004-9 Perlick V, Tsupko OY (2022) Calculating black hole shadows: Review of analytical studies. Phys Rept 947:1–39. https://doi.org/10.1016/j.physrep.2021.10.004. arXiv:2105.07101
- [gr-qc] Penrose R (1965) Gravitational collapse and space-time singularities. Phys Rev Lett 14:57–59. https://doi.org/10.1103/PhysRevLett.14.57 Penrose R (1969) Gravitational collapse: The role of general relativity. Riv Nuovo Cim 1:252–276. https://doi.org/10.1023/A:1016578408204 Penrose R (1972) Techniques of differential topology in relativity. In: CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 7. Society for Industrial & Applied Mathematics, Philadelphia Penrose R, Floyd RM (1971) Extraction of rotational energy from a black hole. Nature 229:177–179. https://doi.org/10.1038/physci229177a0 Perlick V (2004) Gravitational Lensing from a Spacetime Perspective. Living Rev Relativ 7(9). https://doi.org/10.12942/lrr-2004-9 Perlick V, Tsupko OY (2022) Calculating black hole shadows: Review of analytical studies. Phys Rept 947:1–39. https://doi.org/10.1016/j.physrep.2021.10.004. arXiv:2105.07101
- [gr-qc] Penrose R (1965) Gravitational collapse and space-time singularities. Phys Rev Lett 14:57–59. https://doi.org/10.1103/PhysRevLett.14.57 Penrose R (1969) Gravitational collapse: The role of general relativity. Riv Nuovo Cim 1:252–276. https://doi.org/10.1023/A:1016578408204 Penrose R (1972) Techniques of differential topology in relativity. In: CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 7. Society for Industrial & Applied Mathematics, Philadelphia Penrose R, Floyd RM (1971) Extraction of rotational energy from a black hole. Nature 229:177–179. https://doi.org/10.1038/physci229177a0 Perlick V (2004) Gravitational Lensing from a Spacetime Perspective. Living Rev Relativ 7(9). https://doi.org/10.12942/lrr-2004-9 Perlick V, Tsupko OY (2022) Calculating black hole shadows: Review of analytical studies. Phys Rept 947:1–39. https://doi.org/10.1016/j.physrep.2021.10.004. arXiv:2105.07101
- [gr-qc] 142 The ngEHT Fundamental Physics SWG Pesce DW (2021) A D-term Modeling Code (DMC) for Simultaneous Calibration and Full-Stokes Imaging of Very Long Baseline Interferometric Data. The Astronomical Journal 161(4):178. https://doi.org/10.3847/1538-3881/abe3f8. arXiv:2102.03328 [astro-ph.IM] Pfeifle RW, Satyapal S, Manzano-King C, Cann J, Sexton RO, Rothberg B, Canalizo G, Ricci C, Blecha L, Ellison SL, Gliozzi M, Secrest NJ, Constantin A, Harvey JB (2019) A Triple AGN in a Mid-infrared Selected Late-stage Galaxy Merger. Astrophys. J.883(2):167. https://doi.org/10.3847/1538-4357/ab3a9b. arXiv:1908.01732 [astro-ph.GA] Piro L, Ahlers M, Coleiro A, Colpi M, de Oña Wilhelmi E, Guainazzi M, Jonker PG, Namara PM, Nichols DA, O’Brien P, Troja E, Vink J, Aird J, Amati L, Anand S, Bozzo E, Carrera FJ, Fabian AC, Fryer C, Hall E, Korobkin O, Korol V, Mangiagli A, Martínez-Núñez S, Nissanke S, Osborne J, Padovani P, Rossi EM, Ryan G, Sesana A, Stratta G, Tanvir N, van Eerten H (2022) Athena synergies in the multi-messenger and transient universe. Experimental Astronomy 54(1):23–117. https://doi.org/10. 1007/s10686-022-09865-6. arXiv:2110.15677 [astro-ph.HE] Platania A (2019) Dynamical renormalization of black-hole spacetimes. Eur Phys J C 79(6):470. https://doi.org/10.1140/epjc/s10052-019-6990-2. arXiv:1903.10411
- [gr-qc] 142 The ngEHT Fundamental Physics SWG Pesce DW (2021) A D-term Modeling Code (DMC) for Simultaneous Calibration and Full-Stokes Imaging of Very Long Baseline Interferometric Data. The Astronomical Journal 161(4):178. https://doi.org/10.3847/1538-3881/abe3f8. arXiv:2102.03328 [astro-ph.IM] Pfeifle RW, Satyapal S, Manzano-King C, Cann J, Sexton RO, Rothberg B, Canalizo G, Ricci C, Blecha L, Ellison SL, Gliozzi M, Secrest NJ, Constantin A, Harvey JB (2019) A Triple AGN in a Mid-infrared Selected Late-stage Galaxy Merger. Astrophys. J.883(2):167. https://doi.org/10.3847/1538-4357/ab3a9b. arXiv:1908.01732 [astro-ph.GA] Piro L, Ahlers M, Coleiro A, Colpi M, de Oña Wilhelmi E, Guainazzi M, Jonker PG, Namara PM, Nichols DA, O’Brien P, Troja E, Vink J, Aird J, Amati L, Anand S, Bozzo E, Carrera FJ, Fabian AC, Fryer C, Hall E, Korobkin O, Korol V, Mangiagli A, Martínez-Núñez S, Nissanke S, Osborne J, Padovani P, Rossi EM, Ryan G, Sesana A, Stratta G, Tanvir N, van Eerten H (2022) Athena synergies in the multi-messenger and transient universe. Experimental Astronomy 54(1):23–117. https://doi.org/10. 1007/s10686-022-09865-6. arXiv:2110.15677 [astro-ph.HE] Platania A (2019) Dynamical renormalization of black-hole spacetimes. Eur Phys J C 79(6):470. https://doi.org/10.1140/epjc/s10052-019-6990-2. arXiv:1903.10411
- [gr-qc] 142 The ngEHT Fundamental Physics SWG Pesce DW (2021) A D-term Modeling Code (DMC) for Simultaneous Calibration and Full-Stokes Imaging of Very Long Baseline Interferometric Data. The Astronomical Journal 161(4):178. https://doi.org/10.3847/1538-3881/abe3f8. arXiv:2102.03328 [astro-ph.IM] Pfeifle RW, Satyapal S, Manzano-King C, Cann J, Sexton RO, Rothberg B, Canalizo G, Ricci C, Blecha L, Ellison SL, Gliozzi M, Secrest NJ, Constantin A, Harvey JB (2019) A Triple AGN in a Mid-infrared Selected Late-stage Galaxy Merger. Astrophys. J.883(2):167. https://doi.org/10.3847/1538-4357/ab3a9b. arXiv:1908.01732 [astro-ph.GA] Piro L, Ahlers M, Coleiro A, Colpi M, de Oña Wilhelmi E, Guainazzi M, Jonker PG, Namara PM, Nichols DA, O’Brien P, Troja E, Vink J, Aird J, Amati L, Anand S, Bozzo E, Carrera FJ, Fabian AC, Fryer C, Hall E, Korobkin O, Korol V, Mangiagli A, Martínez-Núñez S, Nissanke S, Osborne J, Padovani P, Rossi EM, Ryan G, Sesana A, Stratta G, Tanvir N, van Eerten H (2022) Athena synergies in the multi-messenger and transient universe. Experimental Astronomy 54(1):23–117. https://doi.org/10. 1007/s10686-022-09865-6. arXiv:2110.15677 [astro-ph.HE] Platania A (2019) Dynamical renormalization of black-hole spacetimes. Eur Phys J C 79(6):470. https://doi.org/10.1140/epjc/s10052-019-6990-2. arXiv:1903.10411
- [gr-qc] 142 The ngEHT Fundamental Physics SWG Pesce DW (2021) A D-term Modeling Code (DMC) for Simultaneous Calibration and Full-Stokes Imaging of Very Long Baseline Interferometric Data. The Astronomical Journal 161(4):178. https://doi.org/10.3847/1538-3881/abe3f8. arXiv:2102.03328 [astro-ph.IM] Pfeifle RW, Satyapal S, Manzano-King C, Cann J, Sexton RO, Rothberg B, Canalizo G, Ricci C, Blecha L, Ellison SL, Gliozzi M, Secrest NJ, Constantin A, Harvey JB (2019) A Triple AGN in a Mid-infrared Selected Late-stage Galaxy Merger. Astrophys. J.883(2):167. https://doi.org/10.3847/1538-4357/ab3a9b. arXiv:1908.01732 [astro-ph.GA] Piro L, Ahlers M, Coleiro A, Colpi M, de Oña Wilhelmi E, Guainazzi M, Jonker PG, Namara PM, Nichols DA, O’Brien P, Troja E, Vink J, Aird J, Amati L, Anand S, Bozzo E, Carrera FJ, Fabian AC, Fryer C, Hall E, Korobkin O, Korol V, Mangiagli A, Martínez-Núñez S, Nissanke S, Osborne J, Padovani P, Rossi EM, Ryan G, Sesana A, Stratta G, Tanvir N, van Eerten H (2022) Athena synergies in the multi-messenger and transient universe. Experimental Astronomy 54(1):23–117. https://doi.org/10. 1007/s10686-022-09865-6. arXiv:2110.15677 [astro-ph.HE] Platania A (2019) Dynamical renormalization of black-hole spacetimes. Eur Phys J C 79(6):470. https://doi.org/10.1140/epjc/s10052-019-6990-2. arXiv:1903.10411
- [grqc] Podolský J, Švarc R, Pravda V, Pravdova A (2020) Black holes and other exact spherical solutions in Quadratic Gravity. Phys Rev D 101(2):024027. https: //doi.org/10.1103/PhysRevD.101.024027. arXiv:1907.00046
- [gr-qc] Podurets MA (1965) Asymptotic Behavior of the Optical Luminosity of a Star in Gravitational Collapse. Soviet Ast 8:868 Ponti G, et al. (2017) A powerful flare from Sgr A* confirms the synchrotron nature of the X-ray emission. Mon Not Roy Astron Soc 468(2):2447–2468. https://doi.org/ 10.1093/mnras/stx596. arXiv:1703.03410 [astro-ph.HE] Porth O, et al. (2019) The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophys J Suppl 243(2):26. https://doi.org/10.3847/ 1538-4365/ab29fd. arXiv:1904.04923 [astro-ph.HE] Pozo A, Broadhurst T, De Martino I, Luu HN, Smoot GF, Lim J, Neyrinck M (2021) Wave dark matter and ultra-diffuse galaxies. Mon Not Roy Astron Soc 504(2):2868– 2876. https://doi.org/10.1093/mnras/stab855. arXiv:2003.08313 [astro-ph.GA] Preskill J, Wise MB, Wilczek F (1983) Cosmology of the Invisible Axion. Phys Lett B 120:127–132. https://doi.org/10.1016/0370-2693(83)90637-8 Psaltis D, Perrodin D, Dienes KR, Mocioiu I (2008) Kerr Black Holes are Not Unique to General Relativity. Phys Rev Lett 100:091101. https://doi.org/10.1103/ PhysRevLett.100.091101. arXiv:0710.4564
- [gr-qc] Podurets MA (1965) Asymptotic Behavior of the Optical Luminosity of a Star in Gravitational Collapse. Soviet Ast 8:868 Ponti G, et al. (2017) A powerful flare from Sgr A* confirms the synchrotron nature of the X-ray emission. Mon Not Roy Astron Soc 468(2):2447–2468. https://doi.org/ 10.1093/mnras/stx596. arXiv:1703.03410 [astro-ph.HE] Porth O, et al. (2019) The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophys J Suppl 243(2):26. https://doi.org/10.3847/ 1538-4365/ab29fd. arXiv:1904.04923 [astro-ph.HE] Pozo A, Broadhurst T, De Martino I, Luu HN, Smoot GF, Lim J, Neyrinck M (2021) Wave dark matter and ultra-diffuse galaxies. Mon Not Roy Astron Soc 504(2):2868– 2876. https://doi.org/10.1093/mnras/stab855. arXiv:2003.08313 [astro-ph.GA] Preskill J, Wise MB, Wilczek F (1983) Cosmology of the Invisible Axion. Phys Lett B 120:127–132. https://doi.org/10.1016/0370-2693(83)90637-8 Psaltis D, Perrodin D, Dienes KR, Mocioiu I (2008) Kerr Black Holes are Not Unique to General Relativity. Phys Rev Lett 100:091101. https://doi.org/10.1103/ PhysRevLett.100.091101. arXiv:0710.4564
- [gr-qc] Podurets MA (1965) Asymptotic Behavior of the Optical Luminosity of a Star in Gravitational Collapse. Soviet Ast 8:868 Ponti G, et al. (2017) A powerful flare from Sgr A* confirms the synchrotron nature of the X-ray emission. Mon Not Roy Astron Soc 468(2):2447–2468. https://doi.org/ 10.1093/mnras/stx596. arXiv:1703.03410 [astro-ph.HE] Porth O, et al. (2019) The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophys J Suppl 243(2):26. https://doi.org/10.3847/ 1538-4365/ab29fd. arXiv:1904.04923 [astro-ph.HE] Pozo A, Broadhurst T, De Martino I, Luu HN, Smoot GF, Lim J, Neyrinck M (2021) Wave dark matter and ultra-diffuse galaxies. Mon Not Roy Astron Soc 504(2):2868– 2876. https://doi.org/10.1093/mnras/stab855. arXiv:2003.08313 [astro-ph.GA] Preskill J, Wise MB, Wilczek F (1983) Cosmology of the Invisible Axion. Phys Lett B 120:127–132. https://doi.org/10.1016/0370-2693(83)90637-8 Psaltis D, Perrodin D, Dienes KR, Mocioiu I (2008) Kerr Black Holes are Not Unique to General Relativity. Phys Rev Lett 100:091101. https://doi.org/10.1103/ PhysRevLett.100.091101. arXiv:0710.4564
- [gr-qc] Podurets MA (1965) Asymptotic Behavior of the Optical Luminosity of a Star in Gravitational Collapse. Soviet Ast 8:868 Ponti G, et al. (2017) A powerful flare from Sgr A* confirms the synchrotron nature of the X-ray emission. Mon Not Roy Astron Soc 468(2):2447–2468. https://doi.org/ 10.1093/mnras/stx596. arXiv:1703.03410 [astro-ph.HE] Porth O, et al. (2019) The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophys J Suppl 243(2):26. https://doi.org/10.3847/ 1538-4365/ab29fd. arXiv:1904.04923 [astro-ph.HE] Pozo A, Broadhurst T, De Martino I, Luu HN, Smoot GF, Lim J, Neyrinck M (2021) Wave dark matter and ultra-diffuse galaxies. Mon Not Roy Astron Soc 504(2):2868– 2876. https://doi.org/10.1093/mnras/stab855. arXiv:2003.08313 [astro-ph.GA] Preskill J, Wise MB, Wilczek F (1983) Cosmology of the Invisible Axion. Phys Lett B 120:127–132. https://doi.org/10.1016/0370-2693(83)90637-8 Psaltis D, Perrodin D, Dienes KR, Mocioiu I (2008) Kerr Black Holes are Not Unique to General Relativity. Phys Rev Lett 100:091101. https://doi.org/10.1103/ PhysRevLett.100.091101. arXiv:0710.4564
- [gr-qc] Podurets MA (1965) Asymptotic Behavior of the Optical Luminosity of a Star in Gravitational Collapse. Soviet Ast 8:868 Ponti G, et al. (2017) A powerful flare from Sgr A* confirms the synchrotron nature of the X-ray emission. Mon Not Roy Astron Soc 468(2):2447–2468. https://doi.org/ 10.1093/mnras/stx596. arXiv:1703.03410 [astro-ph.HE] Porth O, et al. (2019) The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophys J Suppl 243(2):26. https://doi.org/10.3847/ 1538-4365/ab29fd. arXiv:1904.04923 [astro-ph.HE] Pozo A, Broadhurst T, De Martino I, Luu HN, Smoot GF, Lim J, Neyrinck M (2021) Wave dark matter and ultra-diffuse galaxies. Mon Not Roy Astron Soc 504(2):2868– 2876. https://doi.org/10.1093/mnras/stab855. arXiv:2003.08313 [astro-ph.GA] Preskill J, Wise MB, Wilczek F (1983) Cosmology of the Invisible Axion. Phys Lett B 120:127–132. https://doi.org/10.1016/0370-2693(83)90637-8 Psaltis D, Perrodin D, Dienes KR, Mocioiu I (2008) Kerr Black Holes are Not Unique to General Relativity. Phys Rev Lett 100:091101. https://doi.org/10.1103/ PhysRevLett.100.091101. arXiv:0710.4564
- [gr-qc] Podurets MA (1965) Asymptotic Behavior of the Optical Luminosity of a Star in Gravitational Collapse. Soviet Ast 8:868 Ponti G, et al. (2017) A powerful flare from Sgr A* confirms the synchrotron nature of the X-ray emission. Mon Not Roy Astron Soc 468(2):2447–2468. https://doi.org/ 10.1093/mnras/stx596. arXiv:1703.03410 [astro-ph.HE] Porth O, et al. (2019) The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophys J Suppl 243(2):26. https://doi.org/10.3847/ 1538-4365/ab29fd. arXiv:1904.04923 [astro-ph.HE] Pozo A, Broadhurst T, De Martino I, Luu HN, Smoot GF, Lim J, Neyrinck M (2021) Wave dark matter and ultra-diffuse galaxies. Mon Not Roy Astron Soc 504(2):2868– 2876. https://doi.org/10.1093/mnras/stab855. arXiv:2003.08313 [astro-ph.GA] Preskill J, Wise MB, Wilczek F (1983) Cosmology of the Invisible Axion. Phys Lett B 120:127–132. https://doi.org/10.1016/0370-2693(83)90637-8 Psaltis D, Perrodin D, Dienes KR, Mocioiu I (2008) Kerr Black Holes are Not Unique to General Relativity. Phys Rev Lett 100:091101. https://doi.org/10.1103/ PhysRevLett.100.091101. arXiv:0710.4564
- [astro-ph] Psaltis D, Wex N, Kramer M (2016) A Quantitative Test of the No-Hair Theorem with Sgr A* using stars, pulsars, and the Event Horizon Telescope. Astrophys J 818(2):121. https://doi.org/10.3847/0004-637X/818/2/121. arXiv:1510.00394 [astroph.HE] Psaltis D, et al. (2020a) Gravitational Test Beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Phys Rev Lett 125(14):141104. https: //doi.org/10.1103/PhysRevLett.125.141104. arXiv:2010.01055
- [astro-ph] Psaltis D, Wex N, Kramer M (2016) A Quantitative Test of the No-Hair Theorem with Sgr A* using stars, pulsars, and the Event Horizon Telescope. Astrophys J 818(2):121. https://doi.org/10.3847/0004-637X/818/2/121. arXiv:1510.00394 [astroph.HE] Psaltis D, et al. (2020a) Gravitational Test Beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Phys Rev Lett 125(14):141104. https: //doi.org/10.1103/PhysRevLett.125.141104. arXiv:2010.01055
- [gr-qc] Psaltis D, et al. (2020b) Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Phys Rev Lett 125(14):141104. https:// doi.org/10.1103/PhysRevLett.125.141104, URL https://link.aps.org/doi/10.1103/ PhysRevLett.125.141104 Fundamental Physics Opportunities with the ngEHT 143 Pu HY, Yun K, Younsi Z, Yoon SJ (2016) Odyssey: A Public GPU-based Code for General Relativistic Radiative Transfer in Kerr Spacetime. Astrophys. J.820(2):105. https://doi.org/10.3847/0004-637X/820/2/105. arXiv:1601.02063 [astro-ph.HE] Raymond AW, Palumbo D, Paine SN, Blackburn L, Córdova Rosado R, Doeleman SS, Farah JR, Johnson MD, Roelofs F, Tilanus RPJ, Weintroub J (2021) Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope. Astrophys. J. Suppl.253(1):5. https://doi.org/10.3847/1538-3881/abc3c3. arXiv:2102.05482 [astro-ph.IM] Ressler SM, Quataert E, Stone JM (2018) Hydrodynamic simulations of the inner accretion flow of Sagittarius A* fuelled by stellar winds. Mon Not Roy Astron Soc 478(3):3544–3563. https://doi.org/10.1093/mnras/sty1146. arXiv:1805.00474 [astroph.HE] Ressler SM, Quataert E, Stone JM (2020a) The Surprisingly Small Impact of Magnetic Fields On The Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds. Mon Not Roy Astron Soc 492(3):3272–3293. https://doi.org/10.1093/mnras/stz3605. arXiv:2001.04469 [astro-ph.HE] Ressler SM, White CJ, Quataert E, Stone JM (2020b) Ab Initio Horizonscale Simulations of Magnetically Arrested Accretion in Sagittarius A* Fed by Stellar Winds. Astrophys J 896(1):L6. https://doi.org/10.3847/2041-8213/ ab9532, URL https://iopscience.iop.org/article/10.3847/2041-8213/ab9532https:// iopscience.iop.org/article/10.3847/2041-8213/ab9532/meta. arXiv:2006.00005 Reuter M (1998) Nonperturbative evolution equation for quantum gravity. Phys Rev D 57:971–985. https://doi.org/10.1103/PhysRevD.57.971. arXiv:hep-th/9605030
- [gr-qc] Psaltis D, et al. (2020b) Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Phys Rev Lett 125(14):141104. https:// doi.org/10.1103/PhysRevLett.125.141104, URL https://link.aps.org/doi/10.1103/ PhysRevLett.125.141104 Fundamental Physics Opportunities with the ngEHT 143 Pu HY, Yun K, Younsi Z, Yoon SJ (2016) Odyssey: A Public GPU-based Code for General Relativistic Radiative Transfer in Kerr Spacetime. Astrophys. J.820(2):105. https://doi.org/10.3847/0004-637X/820/2/105. arXiv:1601.02063 [astro-ph.HE] Raymond AW, Palumbo D, Paine SN, Blackburn L, Córdova Rosado R, Doeleman SS, Farah JR, Johnson MD, Roelofs F, Tilanus RPJ, Weintroub J (2021) Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope. Astrophys. J. Suppl.253(1):5. https://doi.org/10.3847/1538-3881/abc3c3. arXiv:2102.05482 [astro-ph.IM] Ressler SM, Quataert E, Stone JM (2018) Hydrodynamic simulations of the inner accretion flow of Sagittarius A* fuelled by stellar winds. Mon Not Roy Astron Soc 478(3):3544–3563. https://doi.org/10.1093/mnras/sty1146. arXiv:1805.00474 [astroph.HE] Ressler SM, Quataert E, Stone JM (2020a) The Surprisingly Small Impact of Magnetic Fields On The Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds. Mon Not Roy Astron Soc 492(3):3272–3293. https://doi.org/10.1093/mnras/stz3605. arXiv:2001.04469 [astro-ph.HE] Ressler SM, White CJ, Quataert E, Stone JM (2020b) Ab Initio Horizonscale Simulations of Magnetically Arrested Accretion in Sagittarius A* Fed by Stellar Winds. Astrophys J 896(1):L6. https://doi.org/10.3847/2041-8213/ ab9532, URL https://iopscience.iop.org/article/10.3847/2041-8213/ab9532https:// iopscience.iop.org/article/10.3847/2041-8213/ab9532/meta. arXiv:2006.00005 Reuter M (1998) Nonperturbative evolution equation for quantum gravity. Phys Rev D 57:971–985. https://doi.org/10.1103/PhysRevD.57.971. arXiv:hep-th/9605030
- [gr-qc] Psaltis D, et al. (2020b) Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Phys Rev Lett 125(14):141104. https:// doi.org/10.1103/PhysRevLett.125.141104, URL https://link.aps.org/doi/10.1103/ PhysRevLett.125.141104 Fundamental Physics Opportunities with the ngEHT 143 Pu HY, Yun K, Younsi Z, Yoon SJ (2016) Odyssey: A Public GPU-based Code for General Relativistic Radiative Transfer in Kerr Spacetime. Astrophys. J.820(2):105. https://doi.org/10.3847/0004-637X/820/2/105. arXiv:1601.02063 [astro-ph.HE] Raymond AW, Palumbo D, Paine SN, Blackburn L, Córdova Rosado R, Doeleman SS, Farah JR, Johnson MD, Roelofs F, Tilanus RPJ, Weintroub J (2021) Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope. Astrophys. J. Suppl.253(1):5. https://doi.org/10.3847/1538-3881/abc3c3. arXiv:2102.05482 [astro-ph.IM] Ressler SM, Quataert E, Stone JM (2018) Hydrodynamic simulations of the inner accretion flow of Sagittarius A* fuelled by stellar winds. Mon Not Roy Astron Soc 478(3):3544–3563. https://doi.org/10.1093/mnras/sty1146. arXiv:1805.00474 [astroph.HE] Ressler SM, Quataert E, Stone JM (2020a) The Surprisingly Small Impact of Magnetic Fields On The Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds. Mon Not Roy Astron Soc 492(3):3272–3293. https://doi.org/10.1093/mnras/stz3605. arXiv:2001.04469 [astro-ph.HE] Ressler SM, White CJ, Quataert E, Stone JM (2020b) Ab Initio Horizonscale Simulations of Magnetically Arrested Accretion in Sagittarius A* Fed by Stellar Winds. Astrophys J 896(1):L6. https://doi.org/10.3847/2041-8213/ ab9532, URL https://iopscience.iop.org/article/10.3847/2041-8213/ab9532https:// iopscience.iop.org/article/10.3847/2041-8213/ab9532/meta. arXiv:2006.00005 Reuter M (1998) Nonperturbative evolution equation for quantum gravity. Phys Rev D 57:971–985. https://doi.org/10.1103/PhysRevD.57.971. arXiv:hep-th/9605030
- [gr-qc] Psaltis D, et al. (2020b) Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Phys Rev Lett 125(14):141104. https:// doi.org/10.1103/PhysRevLett.125.141104, URL https://link.aps.org/doi/10.1103/ PhysRevLett.125.141104 Fundamental Physics Opportunities with the ngEHT 143 Pu HY, Yun K, Younsi Z, Yoon SJ (2016) Odyssey: A Public GPU-based Code for General Relativistic Radiative Transfer in Kerr Spacetime. Astrophys. J.820(2):105. https://doi.org/10.3847/0004-637X/820/2/105. arXiv:1601.02063 [astro-ph.HE] Raymond AW, Palumbo D, Paine SN, Blackburn L, Córdova Rosado R, Doeleman SS, Farah JR, Johnson MD, Roelofs F, Tilanus RPJ, Weintroub J (2021) Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope. Astrophys. J. Suppl.253(1):5. https://doi.org/10.3847/1538-3881/abc3c3. arXiv:2102.05482 [astro-ph.IM] Ressler SM, Quataert E, Stone JM (2018) Hydrodynamic simulations of the inner accretion flow of Sagittarius A* fuelled by stellar winds. Mon Not Roy Astron Soc 478(3):3544–3563. https://doi.org/10.1093/mnras/sty1146. arXiv:1805.00474 [astroph.HE] Ressler SM, Quataert E, Stone JM (2020a) The Surprisingly Small Impact of Magnetic Fields On The Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds. Mon Not Roy Astron Soc 492(3):3272–3293. https://doi.org/10.1093/mnras/stz3605. arXiv:2001.04469 [astro-ph.HE] Ressler SM, White CJ, Quataert E, Stone JM (2020b) Ab Initio Horizonscale Simulations of Magnetically Arrested Accretion in Sagittarius A* Fed by Stellar Winds. Astrophys J 896(1):L6. https://doi.org/10.3847/2041-8213/ ab9532, URL https://iopscience.iop.org/article/10.3847/2041-8213/ab9532https:// iopscience.iop.org/article/10.3847/2041-8213/ab9532/meta. arXiv:2006.00005 Reuter M (1998) Nonperturbative evolution equation for quantum gravity. Phys Rev D 57:971–985. https://doi.org/10.1103/PhysRevD.57.971. arXiv:hep-th/9605030
- [gr-qc] Psaltis D, et al. (2020b) Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Phys Rev Lett 125(14):141104. https:// doi.org/10.1103/PhysRevLett.125.141104, URL https://link.aps.org/doi/10.1103/ PhysRevLett.125.141104 Fundamental Physics Opportunities with the ngEHT 143 Pu HY, Yun K, Younsi Z, Yoon SJ (2016) Odyssey: A Public GPU-based Code for General Relativistic Radiative Transfer in Kerr Spacetime. Astrophys. J.820(2):105. https://doi.org/10.3847/0004-637X/820/2/105. arXiv:1601.02063 [astro-ph.HE] Raymond AW, Palumbo D, Paine SN, Blackburn L, Córdova Rosado R, Doeleman SS, Farah JR, Johnson MD, Roelofs F, Tilanus RPJ, Weintroub J (2021) Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope. Astrophys. J. Suppl.253(1):5. https://doi.org/10.3847/1538-3881/abc3c3. arXiv:2102.05482 [astro-ph.IM] Ressler SM, Quataert E, Stone JM (2018) Hydrodynamic simulations of the inner accretion flow of Sagittarius A* fuelled by stellar winds. Mon Not Roy Astron Soc 478(3):3544–3563. https://doi.org/10.1093/mnras/sty1146. arXiv:1805.00474 [astroph.HE] Ressler SM, Quataert E, Stone JM (2020a) The Surprisingly Small Impact of Magnetic Fields On The Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds. Mon Not Roy Astron Soc 492(3):3272–3293. https://doi.org/10.1093/mnras/stz3605. arXiv:2001.04469 [astro-ph.HE] Ressler SM, White CJ, Quataert E, Stone JM (2020b) Ab Initio Horizonscale Simulations of Magnetically Arrested Accretion in Sagittarius A* Fed by Stellar Winds. Astrophys J 896(1):L6. https://doi.org/10.3847/2041-8213/ ab9532, URL https://iopscience.iop.org/article/10.3847/2041-8213/ab9532https:// iopscience.iop.org/article/10.3847/2041-8213/ab9532/meta. arXiv:2006.00005 Reuter M (1998) Nonperturbative evolution equation for quantum gravity. Phys Rev D 57:971–985. https://doi.org/10.1103/PhysRevD.57.971. arXiv:hep-th/9605030
- [gr-qc] Psaltis D, et al. (2020b) Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Phys Rev Lett 125(14):141104. https:// doi.org/10.1103/PhysRevLett.125.141104, URL https://link.aps.org/doi/10.1103/ PhysRevLett.125.141104 Fundamental Physics Opportunities with the ngEHT 143 Pu HY, Yun K, Younsi Z, Yoon SJ (2016) Odyssey: A Public GPU-based Code for General Relativistic Radiative Transfer in Kerr Spacetime. Astrophys. J.820(2):105. https://doi.org/10.3847/0004-637X/820/2/105. arXiv:1601.02063 [astro-ph.HE] Raymond AW, Palumbo D, Paine SN, Blackburn L, Córdova Rosado R, Doeleman SS, Farah JR, Johnson MD, Roelofs F, Tilanus RPJ, Weintroub J (2021) Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope. Astrophys. J. Suppl.253(1):5. https://doi.org/10.3847/1538-3881/abc3c3. arXiv:2102.05482 [astro-ph.IM] Ressler SM, Quataert E, Stone JM (2018) Hydrodynamic simulations of the inner accretion flow of Sagittarius A* fuelled by stellar winds. Mon Not Roy Astron Soc 478(3):3544–3563. https://doi.org/10.1093/mnras/sty1146. arXiv:1805.00474 [astroph.HE] Ressler SM, Quataert E, Stone JM (2020a) The Surprisingly Small Impact of Magnetic Fields On The Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds. Mon Not Roy Astron Soc 492(3):3272–3293. https://doi.org/10.1093/mnras/stz3605. arXiv:2001.04469 [astro-ph.HE] Ressler SM, White CJ, Quataert E, Stone JM (2020b) Ab Initio Horizonscale Simulations of Magnetically Arrested Accretion in Sagittarius A* Fed by Stellar Winds. Astrophys J 896(1):L6. https://doi.org/10.3847/2041-8213/ ab9532, URL https://iopscience.iop.org/article/10.3847/2041-8213/ab9532https:// iopscience.iop.org/article/10.3847/2041-8213/ab9532/meta. arXiv:2006.00005 Reuter M (1998) Nonperturbative evolution equation for quantum gravity. Phys Rev D 57:971–985. https://doi.org/10.1103/PhysRevD.57.971. arXiv:hep-th/9605030
- [gr-qc] Psaltis D, et al. (2020b) Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Phys Rev Lett 125(14):141104. https:// doi.org/10.1103/PhysRevLett.125.141104, URL https://link.aps.org/doi/10.1103/ PhysRevLett.125.141104 Fundamental Physics Opportunities with the ngEHT 143 Pu HY, Yun K, Younsi Z, Yoon SJ (2016) Odyssey: A Public GPU-based Code for General Relativistic Radiative Transfer in Kerr Spacetime. Astrophys. J.820(2):105. https://doi.org/10.3847/0004-637X/820/2/105. arXiv:1601.02063 [astro-ph.HE] Raymond AW, Palumbo D, Paine SN, Blackburn L, Córdova Rosado R, Doeleman SS, Farah JR, Johnson MD, Roelofs F, Tilanus RPJ, Weintroub J (2021) Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope. Astrophys. J. Suppl.253(1):5. https://doi.org/10.3847/1538-3881/abc3c3. arXiv:2102.05482 [astro-ph.IM] Ressler SM, Quataert E, Stone JM (2018) Hydrodynamic simulations of the inner accretion flow of Sagittarius A* fuelled by stellar winds. Mon Not Roy Astron Soc 478(3):3544–3563. https://doi.org/10.1093/mnras/sty1146. arXiv:1805.00474 [astroph.HE] Ressler SM, Quataert E, Stone JM (2020a) The Surprisingly Small Impact of Magnetic Fields On The Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds. Mon Not Roy Astron Soc 492(3):3272–3293. https://doi.org/10.1093/mnras/stz3605. arXiv:2001.04469 [astro-ph.HE] Ressler SM, White CJ, Quataert E, Stone JM (2020b) Ab Initio Horizonscale Simulations of Magnetically Arrested Accretion in Sagittarius A* Fed by Stellar Winds. Astrophys J 896(1):L6. https://doi.org/10.3847/2041-8213/ ab9532, URL https://iopscience.iop.org/article/10.3847/2041-8213/ab9532https:// iopscience.iop.org/article/10.3847/2041-8213/ab9532/meta. arXiv:2006.00005 Reuter M (1998) Nonperturbative evolution equation for quantum gravity. Phys Rev D 57:971–985. https://doi.org/10.1103/PhysRevD.57.971. arXiv:hep-th/9605030
- [gr-qc] Psaltis D, et al. (2020b) Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Phys Rev Lett 125(14):141104. https:// doi.org/10.1103/PhysRevLett.125.141104, URL https://link.aps.org/doi/10.1103/ PhysRevLett.125.141104 Fundamental Physics Opportunities with the ngEHT 143 Pu HY, Yun K, Younsi Z, Yoon SJ (2016) Odyssey: A Public GPU-based Code for General Relativistic Radiative Transfer in Kerr Spacetime. Astrophys. J.820(2):105. https://doi.org/10.3847/0004-637X/820/2/105. arXiv:1601.02063 [astro-ph.HE] Raymond AW, Palumbo D, Paine SN, Blackburn L, Córdova Rosado R, Doeleman SS, Farah JR, Johnson MD, Roelofs F, Tilanus RPJ, Weintroub J (2021) Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope. Astrophys. J. Suppl.253(1):5. https://doi.org/10.3847/1538-3881/abc3c3. arXiv:2102.05482 [astro-ph.IM] Ressler SM, Quataert E, Stone JM (2018) Hydrodynamic simulations of the inner accretion flow of Sagittarius A* fuelled by stellar winds. Mon Not Roy Astron Soc 478(3):3544–3563. https://doi.org/10.1093/mnras/sty1146. arXiv:1805.00474 [astroph.HE] Ressler SM, Quataert E, Stone JM (2020a) The Surprisingly Small Impact of Magnetic Fields On The Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds. Mon Not Roy Astron Soc 492(3):3272–3293. https://doi.org/10.1093/mnras/stz3605. arXiv:2001.04469 [astro-ph.HE] Ressler SM, White CJ, Quataert E, Stone JM (2020b) Ab Initio Horizonscale Simulations of Magnetically Arrested Accretion in Sagittarius A* Fed by Stellar Winds. Astrophys J 896(1):L6. https://doi.org/10.3847/2041-8213/ ab9532, URL https://iopscience.iop.org/article/10.3847/2041-8213/ab9532https:// iopscience.iop.org/article/10.3847/2041-8213/ab9532/meta. arXiv:2006.00005 Reuter M (1998) Nonperturbative evolution equation for quantum gravity. Phys Rev D 57:971–985. https://doi.org/10.1103/PhysRevD.57.971. arXiv:hep-th/9605030
- [gr-qc] Psaltis D, et al. (2020b) Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Phys Rev Lett 125(14):141104. https:// doi.org/10.1103/PhysRevLett.125.141104, URL https://link.aps.org/doi/10.1103/ PhysRevLett.125.141104 Fundamental Physics Opportunities with the ngEHT 143 Pu HY, Yun K, Younsi Z, Yoon SJ (2016) Odyssey: A Public GPU-based Code for General Relativistic Radiative Transfer in Kerr Spacetime. Astrophys. J.820(2):105. https://doi.org/10.3847/0004-637X/820/2/105. arXiv:1601.02063 [astro-ph.HE] Raymond AW, Palumbo D, Paine SN, Blackburn L, Córdova Rosado R, Doeleman SS, Farah JR, Johnson MD, Roelofs F, Tilanus RPJ, Weintroub J (2021) Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope. Astrophys. J. Suppl.253(1):5. https://doi.org/10.3847/1538-3881/abc3c3. arXiv:2102.05482 [astro-ph.IM] Ressler SM, Quataert E, Stone JM (2018) Hydrodynamic simulations of the inner accretion flow of Sagittarius A* fuelled by stellar winds. Mon Not Roy Astron Soc 478(3):3544–3563. https://doi.org/10.1093/mnras/sty1146. arXiv:1805.00474 [astroph.HE] Ressler SM, Quataert E, Stone JM (2020a) The Surprisingly Small Impact of Magnetic Fields On The Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds. Mon Not Roy Astron Soc 492(3):3272–3293. https://doi.org/10.1093/mnras/stz3605. arXiv:2001.04469 [astro-ph.HE] Ressler SM, White CJ, Quataert E, Stone JM (2020b) Ab Initio Horizonscale Simulations of Magnetically Arrested Accretion in Sagittarius A* Fed by Stellar Winds. Astrophys J 896(1):L6. https://doi.org/10.3847/2041-8213/ ab9532, URL https://iopscience.iop.org/article/10.3847/2041-8213/ab9532https:// iopscience.iop.org/article/10.3847/2041-8213/ab9532/meta. arXiv:2006.00005 Reuter M (1998) Nonperturbative evolution equation for quantum gravity. Phys Rev D 57:971–985. https://doi.org/10.1103/PhysRevD.57.971. arXiv:hep-th/9605030
- [hepth] de Rham C, Pozsgay V (2020) New class of Proca interactions. Phys Rev D 102(8):083508. https://doi.org/10.1103/PhysRevD.102.083508. arXiv:2003.13773
- [hep-th] de Rham C, Gabadadze G, Tolley AJ (2011) Resummation of Massive Gravity. Phys Rev Lett 106:231101. https://doi.org/10.1103/PhysRevLett.106.231101. arXiv:1011.1232
- [hep-th] de Rham C, Francfort J, Zhang J (2020) Black Hole Gravitational Waves in the Effective Field Theory of Gravity. Phys Rev D 102(2):024079. https://doi.org/10.1103/ PhysRevD.102.024079. arXiv:2005.13923
- [hep-th] Ricarte A, Natarajan P (2018) The observational signatures of supermassive black hole seeds. Mon. Not. R. Astron. Soc.481(3):3278–3292. https://doi.org/10.1093/mnras/ sty2448. arXiv:1809.01177 [astro-ph.GA] Ricarte A, Qiu R, Narayan R (2021) Black hole magnetic fields and their imprint on circular polarization images. Mon. Not. R. Astron. Soc.505(1):523–539. https: //doi.org/10.1093/mnras/stab1289. arXiv:2104.11301 [astro-ph.HE] Ricarte A, Palumbo DCM, Narayan R, Roelofs F, Emami R (2022) Observational Signatures of Frame Dragging in Strong Gravity. Astrophys. J. Lett.941(1):L12. https://doi.org/10.3847/2041-8213/aca087. arXiv:2211.01810
- [hep-th] Ricarte A, Natarajan P (2018) The observational signatures of supermassive black hole seeds. Mon. Not. R. Astron. Soc.481(3):3278–3292. https://doi.org/10.1093/mnras/ sty2448. arXiv:1809.01177 [astro-ph.GA] Ricarte A, Qiu R, Narayan R (2021) Black hole magnetic fields and their imprint on circular polarization images. Mon. Not. R. Astron. Soc.505(1):523–539. https: //doi.org/10.1093/mnras/stab1289. arXiv:2104.11301 [astro-ph.HE] Ricarte A, Palumbo DCM, Narayan R, Roelofs F, Emami R (2022) Observational Signatures of Frame Dragging in Strong Gravity. Astrophys. J. Lett.941(1):L12. https://doi.org/10.3847/2041-8213/aca087. arXiv:2211.01810
- [hep-th] Ricarte A, Natarajan P (2018) The observational signatures of supermassive black hole seeds. Mon. Not. R. Astron. Soc.481(3):3278–3292. https://doi.org/10.1093/mnras/ sty2448. arXiv:1809.01177 [astro-ph.GA] Ricarte A, Qiu R, Narayan R (2021) Black hole magnetic fields and their imprint on circular polarization images. Mon. Not. R. Astron. Soc.505(1):523–539. https: //doi.org/10.1093/mnras/stab1289. arXiv:2104.11301 [astro-ph.HE] Ricarte A, Palumbo DCM, Narayan R, Roelofs F, Emami R (2022) Observational Signatures of Frame Dragging in Strong Gravity. Astrophys. J. Lett.941(1):L12. https://doi.org/10.3847/2041-8213/aca087. arXiv:2211.01810
- [gr-qc] Rioja M, Dodson R, Malarecki J, Asaki Y (2011) EXPLORATION OF SOURCE FREQUENCY PHASE REFERENCING TECHNIQUES FOR ASTROMETRY AND OBSERVATIONS OF WEAK SOURCES WITH HIGH FREQUENCY SPACE VERY LONG BASELINE INTERFEROMETRY. The Astronomical Journal 142(5):157. https://doi.org/10.1088/0004-6256/142/5/157, URL https://doi. 144 The ngEHT Fundamental Physics SWG org/10.1088%2F0004-6256%2F142%2F5%2F157 Rioja MJ, Dodson R, Asaki Y (2023) The transformational power of frequency phase transfer methods for ngeht. Galaxies 11(1). https://doi.org/10.3390/ galaxies11010016, URL https://www.mdpi.com/2075-4434/11/1/16 Ripperda B, Bacchini F, Porth O, Most ER, Olivares H, Nathanail A, Rezzolla L, Teunissen J, Keppens R (2019) General-relativistic Resistive Magnetohydrodynamics with Robust Primitive-variable Recovery for Accretion Disk Simulations. The Astrophysical Journal Supplement Series 244(1):10. https://doi.org/10.3847/1538-4365/ ab3922, URL https://iopscience.iop.org/article/10.3847/1538-4365/ab3922, publisher: IOP Publishing Robinson DC (1975) Uniqueness of the Kerr black hole. Phys Rev Lett 34:905–906. https://doi.org/10.1103/PhysRevLett.34.905 Robles VH, Matos T (2012) Flat Central Density Profile and Constant DM Surface Density in Galaxies from Scalar Field Dark Matter. Mon Not Roy Astron Soc 422:282–289. https://doi.org/10.1111/j.1365-2966.2012.20603.x. arXiv:1201.3032 [astro-ph.CO] Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2022) Comparison of Kerr and dilaton black hole shadows. PoS EVN2021:024. https://doi.org/10. 22323/1.399.0024 Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2022) Comparison of Kerr and dilaton black hole shadows. In: European VLBI Network MiniSymposium and Users’ Meeting 2021. p 24 Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2023) Probing the spacetime and accretion model for the Galactic Center: Comparison of Kerr and dilaton black hole shadows. Astron. Astrophys.671:A143. https://doi.org/10.1051/ 0004-6361/202244866. arXiv:2301.09549 [astro-ph.HE]
- [gr-qc] Rioja M, Dodson R, Malarecki J, Asaki Y (2011) EXPLORATION OF SOURCE FREQUENCY PHASE REFERENCING TECHNIQUES FOR ASTROMETRY AND OBSERVATIONS OF WEAK SOURCES WITH HIGH FREQUENCY SPACE VERY LONG BASELINE INTERFEROMETRY. The Astronomical Journal 142(5):157. https://doi.org/10.1088/0004-6256/142/5/157, URL https://doi. 144 The ngEHT Fundamental Physics SWG org/10.1088%2F0004-6256%2F142%2F5%2F157 Rioja MJ, Dodson R, Asaki Y (2023) The transformational power of frequency phase transfer methods for ngeht. Galaxies 11(1). https://doi.org/10.3390/ galaxies11010016, URL https://www.mdpi.com/2075-4434/11/1/16 Ripperda B, Bacchini F, Porth O, Most ER, Olivares H, Nathanail A, Rezzolla L, Teunissen J, Keppens R (2019) General-relativistic Resistive Magnetohydrodynamics with Robust Primitive-variable Recovery for Accretion Disk Simulations. The Astrophysical Journal Supplement Series 244(1):10. https://doi.org/10.3847/1538-4365/ ab3922, URL https://iopscience.iop.org/article/10.3847/1538-4365/ab3922, publisher: IOP Publishing Robinson DC (1975) Uniqueness of the Kerr black hole. Phys Rev Lett 34:905–906. https://doi.org/10.1103/PhysRevLett.34.905 Robles VH, Matos T (2012) Flat Central Density Profile and Constant DM Surface Density in Galaxies from Scalar Field Dark Matter. Mon Not Roy Astron Soc 422:282–289. https://doi.org/10.1111/j.1365-2966.2012.20603.x. arXiv:1201.3032 [astro-ph.CO] Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2022) Comparison of Kerr and dilaton black hole shadows. PoS EVN2021:024. https://doi.org/10. 22323/1.399.0024 Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2022) Comparison of Kerr and dilaton black hole shadows. In: European VLBI Network MiniSymposium and Users’ Meeting 2021. p 24 Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2023) Probing the spacetime and accretion model for the Galactic Center: Comparison of Kerr and dilaton black hole shadows. Astron. Astrophys.671:A143. https://doi.org/10.1051/ 0004-6361/202244866. arXiv:2301.09549 [astro-ph.HE]
- [gr-qc] Rioja M, Dodson R, Malarecki J, Asaki Y (2011) EXPLORATION OF SOURCE FREQUENCY PHASE REFERENCING TECHNIQUES FOR ASTROMETRY AND OBSERVATIONS OF WEAK SOURCES WITH HIGH FREQUENCY SPACE VERY LONG BASELINE INTERFEROMETRY. The Astronomical Journal 142(5):157. https://doi.org/10.1088/0004-6256/142/5/157, URL https://doi. 144 The ngEHT Fundamental Physics SWG org/10.1088%2F0004-6256%2F142%2F5%2F157 Rioja MJ, Dodson R, Asaki Y (2023) The transformational power of frequency phase transfer methods for ngeht. Galaxies 11(1). https://doi.org/10.3390/ galaxies11010016, URL https://www.mdpi.com/2075-4434/11/1/16 Ripperda B, Bacchini F, Porth O, Most ER, Olivares H, Nathanail A, Rezzolla L, Teunissen J, Keppens R (2019) General-relativistic Resistive Magnetohydrodynamics with Robust Primitive-variable Recovery for Accretion Disk Simulations. The Astrophysical Journal Supplement Series 244(1):10. https://doi.org/10.3847/1538-4365/ ab3922, URL https://iopscience.iop.org/article/10.3847/1538-4365/ab3922, publisher: IOP Publishing Robinson DC (1975) Uniqueness of the Kerr black hole. Phys Rev Lett 34:905–906. https://doi.org/10.1103/PhysRevLett.34.905 Robles VH, Matos T (2012) Flat Central Density Profile and Constant DM Surface Density in Galaxies from Scalar Field Dark Matter. Mon Not Roy Astron Soc 422:282–289. https://doi.org/10.1111/j.1365-2966.2012.20603.x. arXiv:1201.3032 [astro-ph.CO] Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2022) Comparison of Kerr and dilaton black hole shadows. PoS EVN2021:024. https://doi.org/10. 22323/1.399.0024 Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2022) Comparison of Kerr and dilaton black hole shadows. In: European VLBI Network MiniSymposium and Users’ Meeting 2021. p 24 Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2023) Probing the spacetime and accretion model for the Galactic Center: Comparison of Kerr and dilaton black hole shadows. Astron. Astrophys.671:A143. https://doi.org/10.1051/ 0004-6361/202244866. arXiv:2301.09549 [astro-ph.HE]
- [gr-qc] Rioja M, Dodson R, Malarecki J, Asaki Y (2011) EXPLORATION OF SOURCE FREQUENCY PHASE REFERENCING TECHNIQUES FOR ASTROMETRY AND OBSERVATIONS OF WEAK SOURCES WITH HIGH FREQUENCY SPACE VERY LONG BASELINE INTERFEROMETRY. The Astronomical Journal 142(5):157. https://doi.org/10.1088/0004-6256/142/5/157, URL https://doi. 144 The ngEHT Fundamental Physics SWG org/10.1088%2F0004-6256%2F142%2F5%2F157 Rioja MJ, Dodson R, Asaki Y (2023) The transformational power of frequency phase transfer methods for ngeht. Galaxies 11(1). https://doi.org/10.3390/ galaxies11010016, URL https://www.mdpi.com/2075-4434/11/1/16 Ripperda B, Bacchini F, Porth O, Most ER, Olivares H, Nathanail A, Rezzolla L, Teunissen J, Keppens R (2019) General-relativistic Resistive Magnetohydrodynamics with Robust Primitive-variable Recovery for Accretion Disk Simulations. The Astrophysical Journal Supplement Series 244(1):10. https://doi.org/10.3847/1538-4365/ ab3922, URL https://iopscience.iop.org/article/10.3847/1538-4365/ab3922, publisher: IOP Publishing Robinson DC (1975) Uniqueness of the Kerr black hole. Phys Rev Lett 34:905–906. https://doi.org/10.1103/PhysRevLett.34.905 Robles VH, Matos T (2012) Flat Central Density Profile and Constant DM Surface Density in Galaxies from Scalar Field Dark Matter. Mon Not Roy Astron Soc 422:282–289. https://doi.org/10.1111/j.1365-2966.2012.20603.x. arXiv:1201.3032 [astro-ph.CO] Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2022) Comparison of Kerr and dilaton black hole shadows. PoS EVN2021:024. https://doi.org/10. 22323/1.399.0024 Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2022) Comparison of Kerr and dilaton black hole shadows. In: European VLBI Network MiniSymposium and Users’ Meeting 2021. p 24 Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2023) Probing the spacetime and accretion model for the Galactic Center: Comparison of Kerr and dilaton black hole shadows. Astron. Astrophys.671:A143. https://doi.org/10.1051/ 0004-6361/202244866. arXiv:2301.09549 [astro-ph.HE]
- [gr-qc] Rioja M, Dodson R, Malarecki J, Asaki Y (2011) EXPLORATION OF SOURCE FREQUENCY PHASE REFERENCING TECHNIQUES FOR ASTROMETRY AND OBSERVATIONS OF WEAK SOURCES WITH HIGH FREQUENCY SPACE VERY LONG BASELINE INTERFEROMETRY. The Astronomical Journal 142(5):157. https://doi.org/10.1088/0004-6256/142/5/157, URL https://doi. 144 The ngEHT Fundamental Physics SWG org/10.1088%2F0004-6256%2F142%2F5%2F157 Rioja MJ, Dodson R, Asaki Y (2023) The transformational power of frequency phase transfer methods for ngeht. Galaxies 11(1). https://doi.org/10.3390/ galaxies11010016, URL https://www.mdpi.com/2075-4434/11/1/16 Ripperda B, Bacchini F, Porth O, Most ER, Olivares H, Nathanail A, Rezzolla L, Teunissen J, Keppens R (2019) General-relativistic Resistive Magnetohydrodynamics with Robust Primitive-variable Recovery for Accretion Disk Simulations. The Astrophysical Journal Supplement Series 244(1):10. https://doi.org/10.3847/1538-4365/ ab3922, URL https://iopscience.iop.org/article/10.3847/1538-4365/ab3922, publisher: IOP Publishing Robinson DC (1975) Uniqueness of the Kerr black hole. Phys Rev Lett 34:905–906. https://doi.org/10.1103/PhysRevLett.34.905 Robles VH, Matos T (2012) Flat Central Density Profile and Constant DM Surface Density in Galaxies from Scalar Field Dark Matter. Mon Not Roy Astron Soc 422:282–289. https://doi.org/10.1111/j.1365-2966.2012.20603.x. arXiv:1201.3032 [astro-ph.CO] Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2022) Comparison of Kerr and dilaton black hole shadows. PoS EVN2021:024. https://doi.org/10. 22323/1.399.0024 Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2022) Comparison of Kerr and dilaton black hole shadows. In: European VLBI Network MiniSymposium and Users’ Meeting 2021. p 24 Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2023) Probing the spacetime and accretion model for the Galactic Center: Comparison of Kerr and dilaton black hole shadows. Astron. Astrophys.671:A143. https://doi.org/10.1051/ 0004-6361/202244866. arXiv:2301.09549 [astro-ph.HE]
- [gr-qc] Rioja M, Dodson R, Malarecki J, Asaki Y (2011) EXPLORATION OF SOURCE FREQUENCY PHASE REFERENCING TECHNIQUES FOR ASTROMETRY AND OBSERVATIONS OF WEAK SOURCES WITH HIGH FREQUENCY SPACE VERY LONG BASELINE INTERFEROMETRY. The Astronomical Journal 142(5):157. https://doi.org/10.1088/0004-6256/142/5/157, URL https://doi. 144 The ngEHT Fundamental Physics SWG org/10.1088%2F0004-6256%2F142%2F5%2F157 Rioja MJ, Dodson R, Asaki Y (2023) The transformational power of frequency phase transfer methods for ngeht. Galaxies 11(1). https://doi.org/10.3390/ galaxies11010016, URL https://www.mdpi.com/2075-4434/11/1/16 Ripperda B, Bacchini F, Porth O, Most ER, Olivares H, Nathanail A, Rezzolla L, Teunissen J, Keppens R (2019) General-relativistic Resistive Magnetohydrodynamics with Robust Primitive-variable Recovery for Accretion Disk Simulations. The Astrophysical Journal Supplement Series 244(1):10. https://doi.org/10.3847/1538-4365/ ab3922, URL https://iopscience.iop.org/article/10.3847/1538-4365/ab3922, publisher: IOP Publishing Robinson DC (1975) Uniqueness of the Kerr black hole. Phys Rev Lett 34:905–906. https://doi.org/10.1103/PhysRevLett.34.905 Robles VH, Matos T (2012) Flat Central Density Profile and Constant DM Surface Density in Galaxies from Scalar Field Dark Matter. Mon Not Roy Astron Soc 422:282–289. https://doi.org/10.1111/j.1365-2966.2012.20603.x. arXiv:1201.3032 [astro-ph.CO] Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2022) Comparison of Kerr and dilaton black hole shadows. PoS EVN2021:024. https://doi.org/10. 22323/1.399.0024 Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2022) Comparison of Kerr and dilaton black hole shadows. In: European VLBI Network MiniSymposium and Users’ Meeting 2021. p 24 Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2023) Probing the spacetime and accretion model for the Galactic Center: Comparison of Kerr and dilaton black hole shadows. Astron. Astrophys.671:A143. https://doi.org/10.1051/ 0004-6361/202244866. arXiv:2301.09549 [astro-ph.HE]
- [gr-qc] Rioja M, Dodson R, Malarecki J, Asaki Y (2011) EXPLORATION OF SOURCE FREQUENCY PHASE REFERENCING TECHNIQUES FOR ASTROMETRY AND OBSERVATIONS OF WEAK SOURCES WITH HIGH FREQUENCY SPACE VERY LONG BASELINE INTERFEROMETRY. The Astronomical Journal 142(5):157. https://doi.org/10.1088/0004-6256/142/5/157, URL https://doi. 144 The ngEHT Fundamental Physics SWG org/10.1088%2F0004-6256%2F142%2F5%2F157 Rioja MJ, Dodson R, Asaki Y (2023) The transformational power of frequency phase transfer methods for ngeht. Galaxies 11(1). https://doi.org/10.3390/ galaxies11010016, URL https://www.mdpi.com/2075-4434/11/1/16 Ripperda B, Bacchini F, Porth O, Most ER, Olivares H, Nathanail A, Rezzolla L, Teunissen J, Keppens R (2019) General-relativistic Resistive Magnetohydrodynamics with Robust Primitive-variable Recovery for Accretion Disk Simulations. The Astrophysical Journal Supplement Series 244(1):10. https://doi.org/10.3847/1538-4365/ ab3922, URL https://iopscience.iop.org/article/10.3847/1538-4365/ab3922, publisher: IOP Publishing Robinson DC (1975) Uniqueness of the Kerr black hole. Phys Rev Lett 34:905–906. https://doi.org/10.1103/PhysRevLett.34.905 Robles VH, Matos T (2012) Flat Central Density Profile and Constant DM Surface Density in Galaxies from Scalar Field Dark Matter. Mon Not Roy Astron Soc 422:282–289. https://doi.org/10.1111/j.1365-2966.2012.20603.x. arXiv:1201.3032 [astro-ph.CO] Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2022) Comparison of Kerr and dilaton black hole shadows. PoS EVN2021:024. https://doi.org/10. 22323/1.399.0024 Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2022) Comparison of Kerr and dilaton black hole shadows. In: European VLBI Network MiniSymposium and Users’ Meeting 2021. p 24 Röder J, Cruz-Osorio A, Fromm CM, Mizuno Y, Younsi Z, Rezzolla L (2023) Probing the spacetime and accretion model for the Galactic Center: Comparison of Kerr and dilaton black hole shadows. Astron. Astrophys.671:A143. https://doi.org/10.1051/ 0004-6361/202244866. arXiv:2301.09549 [astro-ph.HE]
- [astro-ph] Roelofs F, Blackburn L, Lindahl G, Doeleman SS, Johnson MD, Arras P, Chatterjee K, Emami R, Fromm C, Fuentes A, Knollmüller J, Kosogorov N, Müller H, Patel N, Raymond A, Tiede P, Traianou E, Vega J (2023) The ngEHT Analysis Challenges. Galaxies 11(1):12. https://doi.org/10.3390/galaxies11010012. arXiv:2212.11355 [astro-ph.IM] Romero GE (2020) Large Latin American Millimeter Array. arXiv e-prints arXiv:2010.00738. arXiv:2010.00738 [astro-ph.IM] Rovelli C, Vidotto F (2014) Planck stars. Int J Mod Phys D 23(12):1442026. https: //doi.org/10.1142/S0218271814420267. arXiv:1401.6562
- [astro-ph] Roelofs F, Blackburn L, Lindahl G, Doeleman SS, Johnson MD, Arras P, Chatterjee K, Emami R, Fromm C, Fuentes A, Knollmüller J, Kosogorov N, Müller H, Patel N, Raymond A, Tiede P, Traianou E, Vega J (2023) The ngEHT Analysis Challenges. Galaxies 11(1):12. https://doi.org/10.3390/galaxies11010012. arXiv:2212.11355 [astro-ph.IM] Romero GE (2020) Large Latin American Millimeter Array. arXiv e-prints arXiv:2010.00738. arXiv:2010.00738 [astro-ph.IM] Rovelli C, Vidotto F (2014) Planck stars. Int J Mod Phys D 23(12):1442026. https: //doi.org/10.1142/S0218271814420267. arXiv:1401.6562
- [astro-ph] Roelofs F, Blackburn L, Lindahl G, Doeleman SS, Johnson MD, Arras P, Chatterjee K, Emami R, Fromm C, Fuentes A, Knollmüller J, Kosogorov N, Müller H, Patel N, Raymond A, Tiede P, Traianou E, Vega J (2023) The ngEHT Analysis Challenges. Galaxies 11(1):12. https://doi.org/10.3390/galaxies11010012. arXiv:2212.11355 [astro-ph.IM] Romero GE (2020) Large Latin American Millimeter Array. arXiv e-prints arXiv:2010.00738. arXiv:2010.00738 [astro-ph.IM] Rovelli C, Vidotto F (2014) Planck stars. Int J Mod Phys D 23(12):1442026. https: //doi.org/10.1142/S0218271814420267. arXiv:1401.6562
- [astro-ph] Roelofs F, Blackburn L, Lindahl G, Doeleman SS, Johnson MD, Arras P, Chatterjee K, Emami R, Fromm C, Fuentes A, Knollmüller J, Kosogorov N, Müller H, Patel N, Raymond A, Tiede P, Traianou E, Vega J (2023) The ngEHT Analysis Challenges. Galaxies 11(1):12. https://doi.org/10.3390/galaxies11010012. arXiv:2212.11355 [astro-ph.IM] Romero GE (2020) Large Latin American Millimeter Array. arXiv e-prints arXiv:2010.00738. arXiv:2010.00738 [astro-ph.IM] Rovelli C, Vidotto F (2014) Planck stars. Int J Mod Phys D 23(12):1442026. https: //doi.org/10.1142/S0218271814420267. arXiv:1401.6562
- [gr-qc] Roy R, Yajnik UA (2020) Evolution of black hole shadow in the presence of ultralight bosons. Phys Lett B 803:135284. https://doi.org/10.1016/j.physletb.2020.135284. arXiv:1906.03190
- [gr-qc] Roy R, Vagnozzi S, Visinelli L (2022) Superradiance evolution of black hole shadows revisited. Phys Rev D 105(8):083002. https://doi.org/10.1103/PhysRevD.105.083002. arXiv:2112.06932 [astro-ph.HE] Rubinur K, Das M, Kharb P (2019) Searching for dual AGN in galaxies with doublepeaked emission line spectra using radio observations. Mon Not R Astron Soc 484(4):4933–4950. https://doi.org/10.1093/mnras/stz334. arXiv:1902.00689 [astroph.GA] Fundamental Physics Opportunities with the ngEHT 145 Ruderman MA, Sutherland PG (1975) Theory of pulsars - Polar caps, sparks, and coherent microwave radiation. The Astrophysical Journal 196:51–72. https://doi. org/10.1086/153393 Saida H (2017) How to measure a black hole’s mass, spin, and direction of spin axis in the Kerr lens effect 1: Test case with simple source emission near a black hole. Progress of Theoretical and Experimental Physics 2017(5):053E02. https://doi.org/ 10.1093/ptep/ptx060. arXiv:1606.04716 [astro-ph.HE] Sanchis-Gual N, Di Giovanni F, Zilhão M, Herdeiro C, Cerdá-Durán P, Font JA, Radu E (2019) Nonlinear Dynamics of Spinning Bosonic Stars: Formation and Stability. Phys Rev Lett 123(22):221101. https://doi.org/10.1103/PhysRevLett.123.221101. arXiv:1907.12565
- [gr-qc] Roy R, Vagnozzi S, Visinelli L (2022) Superradiance evolution of black hole shadows revisited. Phys Rev D 105(8):083002. https://doi.org/10.1103/PhysRevD.105.083002. arXiv:2112.06932 [astro-ph.HE] Rubinur K, Das M, Kharb P (2019) Searching for dual AGN in galaxies with doublepeaked emission line spectra using radio observations. Mon Not R Astron Soc 484(4):4933–4950. https://doi.org/10.1093/mnras/stz334. arXiv:1902.00689 [astroph.GA] Fundamental Physics Opportunities with the ngEHT 145 Ruderman MA, Sutherland PG (1975) Theory of pulsars - Polar caps, sparks, and coherent microwave radiation. The Astrophysical Journal 196:51–72. https://doi. org/10.1086/153393 Saida H (2017) How to measure a black hole’s mass, spin, and direction of spin axis in the Kerr lens effect 1: Test case with simple source emission near a black hole. Progress of Theoretical and Experimental Physics 2017(5):053E02. https://doi.org/ 10.1093/ptep/ptx060. arXiv:1606.04716 [astro-ph.HE] Sanchis-Gual N, Di Giovanni F, Zilhão M, Herdeiro C, Cerdá-Durán P, Font JA, Radu E (2019) Nonlinear Dynamics of Spinning Bosonic Stars: Formation and Stability. Phys Rev Lett 123(22):221101. https://doi.org/10.1103/PhysRevLett.123.221101. arXiv:1907.12565
- [gr-qc] Roy R, Vagnozzi S, Visinelli L (2022) Superradiance evolution of black hole shadows revisited. Phys Rev D 105(8):083002. https://doi.org/10.1103/PhysRevD.105.083002. arXiv:2112.06932 [astro-ph.HE] Rubinur K, Das M, Kharb P (2019) Searching for dual AGN in galaxies with doublepeaked emission line spectra using radio observations. Mon Not R Astron Soc 484(4):4933–4950. https://doi.org/10.1093/mnras/stz334. arXiv:1902.00689 [astroph.GA] Fundamental Physics Opportunities with the ngEHT 145 Ruderman MA, Sutherland PG (1975) Theory of pulsars - Polar caps, sparks, and coherent microwave radiation. The Astrophysical Journal 196:51–72. https://doi. org/10.1086/153393 Saida H (2017) How to measure a black hole’s mass, spin, and direction of spin axis in the Kerr lens effect 1: Test case with simple source emission near a black hole. Progress of Theoretical and Experimental Physics 2017(5):053E02. https://doi.org/ 10.1093/ptep/ptx060. arXiv:1606.04716 [astro-ph.HE] Sanchis-Gual N, Di Giovanni F, Zilhão M, Herdeiro C, Cerdá-Durán P, Font JA, Radu E (2019) Nonlinear Dynamics of Spinning Bosonic Stars: Formation and Stability. Phys Rev Lett 123(22):221101. https://doi.org/10.1103/PhysRevLett.123.221101. arXiv:1907.12565
- [gr-qc] Roy R, Vagnozzi S, Visinelli L (2022) Superradiance evolution of black hole shadows revisited. Phys Rev D 105(8):083002. https://doi.org/10.1103/PhysRevD.105.083002. arXiv:2112.06932 [astro-ph.HE] Rubinur K, Das M, Kharb P (2019) Searching for dual AGN in galaxies with doublepeaked emission line spectra using radio observations. Mon Not R Astron Soc 484(4):4933–4950. https://doi.org/10.1093/mnras/stz334. arXiv:1902.00689 [astroph.GA] Fundamental Physics Opportunities with the ngEHT 145 Ruderman MA, Sutherland PG (1975) Theory of pulsars - Polar caps, sparks, and coherent microwave radiation. The Astrophysical Journal 196:51–72. https://doi. org/10.1086/153393 Saida H (2017) How to measure a black hole’s mass, spin, and direction of spin axis in the Kerr lens effect 1: Test case with simple source emission near a black hole. Progress of Theoretical and Experimental Physics 2017(5):053E02. https://doi.org/ 10.1093/ptep/ptx060. arXiv:1606.04716 [astro-ph.HE] Sanchis-Gual N, Di Giovanni F, Zilhão M, Herdeiro C, Cerdá-Durán P, Font JA, Radu E (2019) Nonlinear Dynamics of Spinning Bosonic Stars: Formation and Stability. Phys Rev Lett 123(22):221101. https://doi.org/10.1103/PhysRevLett.123.221101. arXiv:1907.12565
- [gr-qc] Roy R, Vagnozzi S, Visinelli L (2022) Superradiance evolution of black hole shadows revisited. Phys Rev D 105(8):083002. https://doi.org/10.1103/PhysRevD.105.083002. arXiv:2112.06932 [astro-ph.HE] Rubinur K, Das M, Kharb P (2019) Searching for dual AGN in galaxies with doublepeaked emission line spectra using radio observations. Mon Not R Astron Soc 484(4):4933–4950. https://doi.org/10.1093/mnras/stz334. arXiv:1902.00689 [astroph.GA] Fundamental Physics Opportunities with the ngEHT 145 Ruderman MA, Sutherland PG (1975) Theory of pulsars - Polar caps, sparks, and coherent microwave radiation. The Astrophysical Journal 196:51–72. https://doi. org/10.1086/153393 Saida H (2017) How to measure a black hole’s mass, spin, and direction of spin axis in the Kerr lens effect 1: Test case with simple source emission near a black hole. Progress of Theoretical and Experimental Physics 2017(5):053E02. https://doi.org/ 10.1093/ptep/ptx060. arXiv:1606.04716 [astro-ph.HE] Sanchis-Gual N, Di Giovanni F, Zilhão M, Herdeiro C, Cerdá-Durán P, Font JA, Radu E (2019) Nonlinear Dynamics of Spinning Bosonic Stars: Formation and Stability. Phys Rev Lett 123(22):221101. https://doi.org/10.1103/PhysRevLett.123.221101. arXiv:1907.12565
- [gr-qc] Sanders DB, Soifer BT, Elias JH, Madore BF, Matthews K, Neugebauer G, Scoville NZ (1988) Ultraluminous Infrared Galaxies and the Origin of Quasars. Astrophys. J.325:74. https://doi.org/10.1086/165983 Sarkar A, Gupta AC, Chitnis VR, Wiita PJ (2021) Multiwaveband quasi-periodic oscillation in the blazar 3C 454.3. Mon. Not. R. Astron. Soc.501(1):50–61. https: //doi.org/10.1093/mnras/staa3211. arXiv:2003.01911 [astro-ph.HE] Schive HY, Chiueh T, Broadhurst T (2014) Cosmic Structure as the Quantum Interference of a Coherent Dark Wave. Nature Phys 10:496–499. https://doi.org/10.1038/ nphys2996. arXiv:1406.6586 [astro-ph.GA] Schnittman JD (2005) Interpreting the High-Frequency Quasi-periodic Oscillation Power Spectra of Accreting Black Holes. Astrophys. J.621(2):940–950. https://doi. org/10.1086/427646. arXiv:astro-ph/0407179
- [gr-qc] Sanders DB, Soifer BT, Elias JH, Madore BF, Matthews K, Neugebauer G, Scoville NZ (1988) Ultraluminous Infrared Galaxies and the Origin of Quasars. Astrophys. J.325:74. https://doi.org/10.1086/165983 Sarkar A, Gupta AC, Chitnis VR, Wiita PJ (2021) Multiwaveband quasi-periodic oscillation in the blazar 3C 454.3. Mon. Not. R. Astron. Soc.501(1):50–61. https: //doi.org/10.1093/mnras/staa3211. arXiv:2003.01911 [astro-ph.HE] Schive HY, Chiueh T, Broadhurst T (2014) Cosmic Structure as the Quantum Interference of a Coherent Dark Wave. Nature Phys 10:496–499. https://doi.org/10.1038/ nphys2996. arXiv:1406.6586 [astro-ph.GA] Schnittman JD (2005) Interpreting the High-Frequency Quasi-periodic Oscillation Power Spectra of Accreting Black Holes. Astrophys. J.621(2):940–950. https://doi. org/10.1086/427646. arXiv:astro-ph/0407179
- [gr-qc] Sanders DB, Soifer BT, Elias JH, Madore BF, Matthews K, Neugebauer G, Scoville NZ (1988) Ultraluminous Infrared Galaxies and the Origin of Quasars. Astrophys. J.325:74. https://doi.org/10.1086/165983 Sarkar A, Gupta AC, Chitnis VR, Wiita PJ (2021) Multiwaveband quasi-periodic oscillation in the blazar 3C 454.3. Mon. Not. R. Astron. Soc.501(1):50–61. https: //doi.org/10.1093/mnras/staa3211. arXiv:2003.01911 [astro-ph.HE] Schive HY, Chiueh T, Broadhurst T (2014) Cosmic Structure as the Quantum Interference of a Coherent Dark Wave. Nature Phys 10:496–499. https://doi.org/10.1038/ nphys2996. arXiv:1406.6586 [astro-ph.GA] Schnittman JD (2005) Interpreting the High-Frequency Quasi-periodic Oscillation Power Spectra of Accreting Black Holes. Astrophys. J.621(2):940–950. https://doi. org/10.1086/427646. arXiv:astro-ph/0407179
- [gr-qc] Sanders DB, Soifer BT, Elias JH, Madore BF, Matthews K, Neugebauer G, Scoville NZ (1988) Ultraluminous Infrared Galaxies and the Origin of Quasars. Astrophys. J.325:74. https://doi.org/10.1086/165983 Sarkar A, Gupta AC, Chitnis VR, Wiita PJ (2021) Multiwaveband quasi-periodic oscillation in the blazar 3C 454.3. Mon. Not. R. Astron. Soc.501(1):50–61. https: //doi.org/10.1093/mnras/staa3211. arXiv:2003.01911 [astro-ph.HE] Schive HY, Chiueh T, Broadhurst T (2014) Cosmic Structure as the Quantum Interference of a Coherent Dark Wave. Nature Phys 10:496–499. https://doi.org/10.1038/ nphys2996. arXiv:1406.6586 [astro-ph.GA] Schnittman JD (2005) Interpreting the High-Frequency Quasi-periodic Oscillation Power Spectra of Accreting Black Holes. Astrophys. J.621(2):940–950. https://doi. org/10.1086/427646. arXiv:astro-ph/0407179
- [astro-ph] Schnittman JD (2011) Electromagnetic counterparts to black hole mergers. Classical and Quantum Gravity 28(9):094021. https://doi.org/10.1088/0264-9381/28/9/ 094021, URL https://doi.org/10.1088/0264-9381/28/9/094021 Schnittman JD, Bertschinger E (2004) The Harmonic Structure of High-Frequency Quasi-periodic Oscillations in Accreting Black Holes. Astrophys. J.606(2):1098–1111. https://doi.org/10.1086/383180. arXiv:astro-ph/0309458
- [astro-ph] Schnittman JD (2011) Electromagnetic counterparts to black hole mergers. Classical and Quantum Gravity 28(9):094021. https://doi.org/10.1088/0264-9381/28/9/ 094021, URL https://doi.org/10.1088/0264-9381/28/9/094021 Schnittman JD, Bertschinger E (2004) The Harmonic Structure of High-Frequency Quasi-periodic Oscillations in Accreting Black Holes. Astrophys. J.606(2):1098–1111. https://doi.org/10.1086/383180. arXiv:astro-ph/0309458
- [astro-ph] Schnittman JD (2011) Electromagnetic counterparts to black hole mergers. Classical and Quantum Gravity 28(9):094021. https://doi.org/10.1088/0264-9381/28/9/ 094021, URL https://doi.org/10.1088/0264-9381/28/9/094021 Schnittman JD, Bertschinger E (2004) The Harmonic Structure of High-Frequency Quasi-periodic Oscillations in Accreting Black Holes. Astrophys. J.606(2):1098–1111. https://doi.org/10.1086/383180. arXiv:astro-ph/0309458
- [astro-ph] Schodel R, et al. (2002) A Star in a 15.2 year orbit around the supermassive black hole at the center of the Milky Way. Nature 419:694–696. https://doi.org/10.1038/ nature01121. arXiv:astro-ph/0210426 Sen A (1992) Rotating charged black hole solution in heterotic string theory. Phys. Rev. Lett.69(7):1006–1009. https://doi.org/10.1103/PhysRevLett.69.1006. arXiv:hep-th/9204046
- [astro-ph] Schodel R, et al. (2002) A Star in a 15.2 year orbit around the supermassive black hole at the center of the Milky Way. Nature 419:694–696. https://doi.org/10.1038/ nature01121. arXiv:astro-ph/0210426 Sen A (1992) Rotating charged black hole solution in heterotic string theory. Phys. Rev. Lett.69(7):1006–1009. https://doi.org/10.1103/PhysRevLett.69.1006. arXiv:hep-th/9204046
- [hep-th] Sen S (2018) Plasma effects on lasing of a uniform ultralight axion condensate. Phys Rev D 98(10):103012. https://doi.org/10.1103/PhysRevD.98.103012. arXiv:1805.06471
- [hep-ph] Sengo I, Cunha PVP, Herdeiro CAR, Radu E (2023) Kerr black holes with synchronised Proca hair: lensing, shadows and EHT constraints. J. Cosmol. Astropart. Phys.2023(1):047. https://doi.org/10.1088/1475-7516/2023/01/047. arXiv:2209.06237
- [gr-qc] Senovilla JMM (1998) Singularity Theorems and Their Consequences. Gen Rel Grav 30:701. https://doi.org/10.1023/A:1018801101244. arXiv:1801.04912
- [gr-qc] Senovilla JMM, Garfinkle D (2015) The 1965 Penrose singularity theorem. Class Quant Grav 32(12):124008. https://doi.org/10.1088/0264-9381/32/12/124008. arXiv:1410.5226
- [gr-qc] Shaikh R (2019) Black hole shadow in a general rotating spacetime obtained through Newman-Janis algorithm. Phys Rev D 100(2):024028. https://doi.org/10.1103/ 146 The ngEHT Fundamental Physics SWG PhysRevD.100.024028. arXiv:1904.08322
- [gr-qc] Shaikh R, Joshi PS (2019) Can we distinguish black holes from naked singularities by the images of their accretion disks? JCAP 10:064. https://doi.org/10.1088/ 1475-7516/2019/10/064. arXiv:1909.10322
- [gr-qc] Shaikh R, Banerjee P, Paul S, Sarkar T (2019a) Strong gravitational lensing by wormholes. JCAP 07:028. https://doi.org/10.1088/1475-7516/2019/07/028. arXiv:1905.06932
- [gr-qc] Shaikh R, Kocherlakota P, Narayan R, Joshi PS (2019b) Shadows of spherically symmetric black holes and naked singularities. Mon Not Roy Astron Soc 482(1):52–64. https://doi.org/10.1093/mnras/sty2624. arXiv:1802.08060 [astro-ph.HE] Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337–355 Shankar F, Salucci P, Granato G, De Zotti G, Danese L (2004) Supermassive black hole demography: the match between the local and accreted mass functions. Monthly Notices of the Royal Astronomical Society 354(4):1020–1030 Shankar F, Weinberg DH, Miralda-Escude J (2009) Self-Consistent Models of the AGN and Black Hole Populations: Duty Cycles, Accretion Rates, and the Mean Radiative Efficiency. Astrophys J 690:20–41. https://doi.org/10.1088/0004-637X/690/1/20. arXiv:0710.4488
- [gr-qc] Shaikh R, Kocherlakota P, Narayan R, Joshi PS (2019b) Shadows of spherically symmetric black holes and naked singularities. Mon Not Roy Astron Soc 482(1):52–64. https://doi.org/10.1093/mnras/sty2624. arXiv:1802.08060 [astro-ph.HE] Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337–355 Shankar F, Salucci P, Granato G, De Zotti G, Danese L (2004) Supermassive black hole demography: the match between the local and accreted mass functions. Monthly Notices of the Royal Astronomical Society 354(4):1020–1030 Shankar F, Weinberg DH, Miralda-Escude J (2009) Self-Consistent Models of the AGN and Black Hole Populations: Duty Cycles, Accretion Rates, and the Mean Radiative Efficiency. Astrophys J 690:20–41. https://doi.org/10.1088/0004-637X/690/1/20. arXiv:0710.4488
- [gr-qc] Shaikh R, Kocherlakota P, Narayan R, Joshi PS (2019b) Shadows of spherically symmetric black holes and naked singularities. Mon Not Roy Astron Soc 482(1):52–64. https://doi.org/10.1093/mnras/sty2624. arXiv:1802.08060 [astro-ph.HE] Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337–355 Shankar F, Salucci P, Granato G, De Zotti G, Danese L (2004) Supermassive black hole demography: the match between the local and accreted mass functions. Monthly Notices of the Royal Astronomical Society 354(4):1020–1030 Shankar F, Weinberg DH, Miralda-Escude J (2009) Self-Consistent Models of the AGN and Black Hole Populations: Duty Cycles, Accretion Rates, and the Mean Radiative Efficiency. Astrophys J 690:20–41. https://doi.org/10.1088/0004-637X/690/1/20. arXiv:0710.4488
- [gr-qc] Shaikh R, Kocherlakota P, Narayan R, Joshi PS (2019b) Shadows of spherically symmetric black holes and naked singularities. Mon Not Roy Astron Soc 482(1):52–64. https://doi.org/10.1093/mnras/sty2624. arXiv:1802.08060 [astro-ph.HE] Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337–355 Shankar F, Salucci P, Granato G, De Zotti G, Danese L (2004) Supermassive black hole demography: the match between the local and accreted mass functions. Monthly Notices of the Royal Astronomical Society 354(4):1020–1030 Shankar F, Weinberg DH, Miralda-Escude J (2009) Self-Consistent Models of the AGN and Black Hole Populations: Duty Cycles, Accretion Rates, and the Mean Radiative Efficiency. Astrophys J 690:20–41. https://doi.org/10.1088/0004-637X/690/1/20. arXiv:0710.4488
- [astro-ph] Shao L, et al. (2015) Testing Gravity with Pulsars in the SKA Era. In: Advancing Astrophysics with the Square Kilometre Array. vol AASKA14. Proceedings of Science, p 042. arXiv:1501.00058 [astro-ph.HE] Shashank S, Bambi C (2022) Constraining the Konoplya-Rezzolla-Zhidenko deformation parameters III: Limits from stellar-mass black holes using gravitational-wave observations. Phys Rev D 105(10):104004. https://doi.org/10.1103/PhysRevD.105. 104004. arXiv:2112.05388
- [astro-ph] Shao L, et al. (2015) Testing Gravity with Pulsars in the SKA Era. In: Advancing Astrophysics with the Square Kilometre Array. vol AASKA14. Proceedings of Science, p 042. arXiv:1501.00058 [astro-ph.HE] Shashank S, Bambi C (2022) Constraining the Konoplya-Rezzolla-Zhidenko deformation parameters III: Limits from stellar-mass black holes using gravitational-wave observations. Phys Rev D 105(10):104004. https://doi.org/10.1103/PhysRevD.105. 104004. arXiv:2112.05388
- [gr-qc] Shcherbakov RV, McKinney JC (2013) Submillimeter Quasi-periodic Oscillations in Magnetically Choked Accretion Flow Models of SgrA*. Astrophys. J. Lett.774(2):L22. https://doi.org/10.1088/2041-8205/774/2/L22. arXiv:1304.7768 [astro-ph.HE] Shen Y, Chen YC, Hwang HC, Liu X, Zakamska N, Oguri M, Li JIH, Lazio J, Breiding P (2021) A hidden population of high-redshift double quasars unveiled by astrometry. Nature Astronomy 5(6):569–574. https://doi.org/10.1038/s41550-021-01323-1, URL https://doi.org/10.1038%2Fs41550-021-01323-1 Sillanpaa A, Haarala S, Valtonen MJ, Sundelius B, Byrd GG (1988) OJ 287: Binary Pair of Supermassive Black Holes. Astrophys. J.325:628. https://doi.org/10.1086/ 166033 Silva HO, Sakstein J, Gualtieri L, Sotiriou TP, Berti E (2018) Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling. Phys Rev Lett 120(13):131104. https://doi.org/10.1103/PhysRevLett.120.131104. arXiv:1711.02080
- [gr-qc] Shcherbakov RV, McKinney JC (2013) Submillimeter Quasi-periodic Oscillations in Magnetically Choked Accretion Flow Models of SgrA*. Astrophys. J. Lett.774(2):L22. https://doi.org/10.1088/2041-8205/774/2/L22. arXiv:1304.7768 [astro-ph.HE] Shen Y, Chen YC, Hwang HC, Liu X, Zakamska N, Oguri M, Li JIH, Lazio J, Breiding P (2021) A hidden population of high-redshift double quasars unveiled by astrometry. Nature Astronomy 5(6):569–574. https://doi.org/10.1038/s41550-021-01323-1, URL https://doi.org/10.1038%2Fs41550-021-01323-1 Sillanpaa A, Haarala S, Valtonen MJ, Sundelius B, Byrd GG (1988) OJ 287: Binary Pair of Supermassive Black Holes. Astrophys. J.325:628. https://doi.org/10.1086/ 166033 Silva HO, Sakstein J, Gualtieri L, Sotiriou TP, Berti E (2018) Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling. Phys Rev Lett 120(13):131104. https://doi.org/10.1103/PhysRevLett.120.131104. arXiv:1711.02080
- [gr-qc] Shcherbakov RV, McKinney JC (2013) Submillimeter Quasi-periodic Oscillations in Magnetically Choked Accretion Flow Models of SgrA*. Astrophys. J. Lett.774(2):L22. https://doi.org/10.1088/2041-8205/774/2/L22. arXiv:1304.7768 [astro-ph.HE] Shen Y, Chen YC, Hwang HC, Liu X, Zakamska N, Oguri M, Li JIH, Lazio J, Breiding P (2021) A hidden population of high-redshift double quasars unveiled by astrometry. Nature Astronomy 5(6):569–574. https://doi.org/10.1038/s41550-021-01323-1, URL https://doi.org/10.1038%2Fs41550-021-01323-1 Sillanpaa A, Haarala S, Valtonen MJ, Sundelius B, Byrd GG (1988) OJ 287: Binary Pair of Supermassive Black Holes. Astrophys. J.325:628. https://doi.org/10.1086/ 166033 Silva HO, Sakstein J, Gualtieri L, Sotiriou TP, Berti E (2018) Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling. Phys Rev Lett 120(13):131104. https://doi.org/10.1103/PhysRevLett.120.131104. arXiv:1711.02080
- [gr-qc] Shcherbakov RV, McKinney JC (2013) Submillimeter Quasi-periodic Oscillations in Magnetically Choked Accretion Flow Models of SgrA*. Astrophys. J. Lett.774(2):L22. https://doi.org/10.1088/2041-8205/774/2/L22. arXiv:1304.7768 [astro-ph.HE] Shen Y, Chen YC, Hwang HC, Liu X, Zakamska N, Oguri M, Li JIH, Lazio J, Breiding P (2021) A hidden population of high-redshift double quasars unveiled by astrometry. Nature Astronomy 5(6):569–574. https://doi.org/10.1038/s41550-021-01323-1, URL https://doi.org/10.1038%2Fs41550-021-01323-1 Sillanpaa A, Haarala S, Valtonen MJ, Sundelius B, Byrd GG (1988) OJ 287: Binary Pair of Supermassive Black Holes. Astrophys. J.325:628. https://doi.org/10.1086/ 166033 Silva HO, Sakstein J, Gualtieri L, Sotiriou TP, Berti E (2018) Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling. Phys Rev Lett 120(13):131104. https://doi.org/10.1103/PhysRevLett.120.131104. arXiv:1711.02080
- [gr-qc] Simon J, Birrer S, Bechtol K, Chakrabarti S, Cyr-Racine FY, Dell’Antonio I, DrlicaWagner A, Fassnacht C, Geha M, Gilman D, Hezaveh YD, Kim D, Li TS, Strigari L, Treu T (2019) Testing the Nature of Dark Matter with Extremely Large Telescopes. Bulletin of the American Astronomical Society 51(3):153. https://doi.org/10.48550/ arXiv.1903.04742. arXiv:1903.04742 [astro-ph.CO] Simpson A, Visser M (2019) Regular black holes with asymptotically Minkowski cores. Universe 6(1):8. https://doi.org/10.3390/universe6010008. arXiv:1911.01020
- [gr-qc] Simon J, Birrer S, Bechtol K, Chakrabarti S, Cyr-Racine FY, Dell’Antonio I, DrlicaWagner A, Fassnacht C, Geha M, Gilman D, Hezaveh YD, Kim D, Li TS, Strigari L, Treu T (2019) Testing the Nature of Dark Matter with Extremely Large Telescopes. Bulletin of the American Astronomical Society 51(3):153. https://doi.org/10.48550/ arXiv.1903.04742. arXiv:1903.04742 [astro-ph.CO] Simpson A, Visser M (2019) Regular black holes with asymptotically Minkowski cores. Universe 6(1):8. https://doi.org/10.3390/universe6010008. arXiv:1911.01020
- [gr-qc] Simon J, Birrer S, Bechtol K, Chakrabarti S, Cyr-Racine FY, Dell’Antonio I, DrlicaWagner A, Fassnacht C, Geha M, Gilman D, Hezaveh YD, Kim D, Li TS, Strigari L, Treu T (2019) Testing the Nature of Dark Matter with Extremely Large Telescopes. Bulletin of the American Astronomical Society 51(3):153. https://doi.org/10.48550/ arXiv.1903.04742. arXiv:1903.04742 [astro-ph.CO] Simpson A, Visser M (2019) Regular black holes with asymptotically Minkowski cores. Universe 6(1):8. https://doi.org/10.3390/universe6010008. arXiv:1911.01020
- [gr-qc] Fundamental Physics Opportunities with the ngEHT 147 Singh BP, Ghosh SG (2018) Shadow of Schwarzschild–Tangherlini black holes. Annals Phys 395:127–137. https://doi.org/10.1016/j.aop.2018.05.010. arXiv:1707.07125
- [grqc] Sorce J, Wald RM (2017) Gedanken experiments to destroy a black hole. II. KerrNewman black holes cannot be overcharged or overspun. Phys. Rev. D96(10):104014. https://doi.org/10.1103/PhysRevD.96.104014. arXiv:1707.05862
- [gr-qc] Sotiriou TP, Faraoni V (2012) Black holes in scalar-tensor gravity. Phys Rev Lett 108:081103. https://doi.org/10.1103/PhysRevLett.108.081103. arXiv:1109.6324
- [grqc] Sotiriou TP, Vega I, Vernieri D (2014) Rotating black holes in three-dimensional Hořava gravity. Phys. Rev. D90(4):044046. https://doi.org/10.1103/PhysRevD.90.044046. arXiv:1405.3715
- [gr-qc] Spieksma TFM, Cannizzaro E, Ikeda T, Cardoso V, Chen Y (2023) Superradiance: Axionic couplings and plasma effects. Phys. Rev. D108(6):063013. https://doi.org/ 10.1103/PhysRevD.108.063013. arXiv:2306.16447
- [gr-qc] Staelens S, Mayerson DR, Bacchini F, Ripperda B, Küchler L (2023) Black hole photon rings beyond general relativity. Phys. Rev. D107(12):124026. https://doi.org/10. 1103/PhysRevD.107.124026. arXiv:2303.02111
- [gr-qc] Stelle KS (1978) Classical Gravity with Higher Derivatives. Gen Rel Grav 9:353–371. https://doi.org/10.1007/BF00760427 Stephan AP, Naoz S, Ghez AM, Witzel G, Sitarski BN, Do T, Kocsis B (2016) Merging binaries in the Galactic Center: the eccentric Kozai-Lidov mechanism with stellar evolution. Mon. Not. R. Astron. Soc.460(4):3494–3504. https://doi.org/10.1093/ mnras/stw1220. arXiv:1603.02709 [astro-ph.SR] Strominger A, Vafa C (1996) Microscopic origin of the Bekenstein-Hawking entropy. Phys Lett B 379:99–104. https://doi.org/10.1016/0370-2693(96)00345-0. arXiv:hepth/9601029 Stuchlík Z, Schee J (2019) Shadow of the regular Bardeen black holes and comparison of the motion of photons and neutrinos. Eur Phys J C 79(1):44. https://doi.org/10. 1140/epjc/s10052-019-6543-8 Svrcek P, Witten E (2006) Axions In String Theory. JHEP 06:051. https://doi.org/10. 1088/1126-6708/2006/06/051. arXiv:hep-th/0605206 Tahura S, Pan Z, Yang H (2022) Science potential for stellar-mass black holes as neighbors of Sgr A∗ . Phys. Rev. D105(12):123018. https://doi.org/10.1103/PhysRevD. 105.123018. arXiv:2201.03154 [astro-ph.HE] Takahashi R (2004) Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes. Astrophys. J.611(2):996–1004. https://doi.org/ 10.1086/422403. arXiv:astro-ph/0405099
- [gr-qc] Stelle KS (1978) Classical Gravity with Higher Derivatives. Gen Rel Grav 9:353–371. https://doi.org/10.1007/BF00760427 Stephan AP, Naoz S, Ghez AM, Witzel G, Sitarski BN, Do T, Kocsis B (2016) Merging binaries in the Galactic Center: the eccentric Kozai-Lidov mechanism with stellar evolution. Mon. Not. R. Astron. Soc.460(4):3494–3504. https://doi.org/10.1093/ mnras/stw1220. arXiv:1603.02709 [astro-ph.SR] Strominger A, Vafa C (1996) Microscopic origin of the Bekenstein-Hawking entropy. Phys Lett B 379:99–104. https://doi.org/10.1016/0370-2693(96)00345-0. arXiv:hepth/9601029 Stuchlík Z, Schee J (2019) Shadow of the regular Bardeen black holes and comparison of the motion of photons and neutrinos. Eur Phys J C 79(1):44. https://doi.org/10. 1140/epjc/s10052-019-6543-8 Svrcek P, Witten E (2006) Axions In String Theory. JHEP 06:051. https://doi.org/10. 1088/1126-6708/2006/06/051. arXiv:hep-th/0605206 Tahura S, Pan Z, Yang H (2022) Science potential for stellar-mass black holes as neighbors of Sgr A∗ . Phys. Rev. D105(12):123018. https://doi.org/10.1103/PhysRevD. 105.123018. arXiv:2201.03154 [astro-ph.HE] Takahashi R (2004) Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes. Astrophys. J.611(2):996–1004. https://doi.org/ 10.1086/422403. arXiv:astro-ph/0405099
- [gr-qc] Stelle KS (1978) Classical Gravity with Higher Derivatives. Gen Rel Grav 9:353–371. https://doi.org/10.1007/BF00760427 Stephan AP, Naoz S, Ghez AM, Witzel G, Sitarski BN, Do T, Kocsis B (2016) Merging binaries in the Galactic Center: the eccentric Kozai-Lidov mechanism with stellar evolution. Mon. Not. R. Astron. Soc.460(4):3494–3504. https://doi.org/10.1093/ mnras/stw1220. arXiv:1603.02709 [astro-ph.SR] Strominger A, Vafa C (1996) Microscopic origin of the Bekenstein-Hawking entropy. Phys Lett B 379:99–104. https://doi.org/10.1016/0370-2693(96)00345-0. arXiv:hepth/9601029 Stuchlík Z, Schee J (2019) Shadow of the regular Bardeen black holes and comparison of the motion of photons and neutrinos. Eur Phys J C 79(1):44. https://doi.org/10. 1140/epjc/s10052-019-6543-8 Svrcek P, Witten E (2006) Axions In String Theory. JHEP 06:051. https://doi.org/10. 1088/1126-6708/2006/06/051. arXiv:hep-th/0605206 Tahura S, Pan Z, Yang H (2022) Science potential for stellar-mass black holes as neighbors of Sgr A∗ . Phys. Rev. D105(12):123018. https://doi.org/10.1103/PhysRevD. 105.123018. arXiv:2201.03154 [astro-ph.HE] Takahashi R (2004) Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes. Astrophys. J.611(2):996–1004. https://doi.org/ 10.1086/422403. arXiv:astro-ph/0405099
- [gr-qc] Stelle KS (1978) Classical Gravity with Higher Derivatives. Gen Rel Grav 9:353–371. https://doi.org/10.1007/BF00760427 Stephan AP, Naoz S, Ghez AM, Witzel G, Sitarski BN, Do T, Kocsis B (2016) Merging binaries in the Galactic Center: the eccentric Kozai-Lidov mechanism with stellar evolution. Mon. Not. R. Astron. Soc.460(4):3494–3504. https://doi.org/10.1093/ mnras/stw1220. arXiv:1603.02709 [astro-ph.SR] Strominger A, Vafa C (1996) Microscopic origin of the Bekenstein-Hawking entropy. Phys Lett B 379:99–104. https://doi.org/10.1016/0370-2693(96)00345-0. arXiv:hepth/9601029 Stuchlík Z, Schee J (2019) Shadow of the regular Bardeen black holes and comparison of the motion of photons and neutrinos. Eur Phys J C 79(1):44. https://doi.org/10. 1140/epjc/s10052-019-6543-8 Svrcek P, Witten E (2006) Axions In String Theory. JHEP 06:051. https://doi.org/10. 1088/1126-6708/2006/06/051. arXiv:hep-th/0605206 Tahura S, Pan Z, Yang H (2022) Science potential for stellar-mass black holes as neighbors of Sgr A∗ . Phys. Rev. D105(12):123018. https://doi.org/10.1103/PhysRevD. 105.123018. arXiv:2201.03154 [astro-ph.HE] Takahashi R (2004) Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes. Astrophys. J.611(2):996–1004. https://doi.org/ 10.1086/422403. arXiv:astro-ph/0405099
- [gr-qc] Stelle KS (1978) Classical Gravity with Higher Derivatives. Gen Rel Grav 9:353–371. https://doi.org/10.1007/BF00760427 Stephan AP, Naoz S, Ghez AM, Witzel G, Sitarski BN, Do T, Kocsis B (2016) Merging binaries in the Galactic Center: the eccentric Kozai-Lidov mechanism with stellar evolution. Mon. Not. R. Astron. Soc.460(4):3494–3504. https://doi.org/10.1093/ mnras/stw1220. arXiv:1603.02709 [astro-ph.SR] Strominger A, Vafa C (1996) Microscopic origin of the Bekenstein-Hawking entropy. Phys Lett B 379:99–104. https://doi.org/10.1016/0370-2693(96)00345-0. arXiv:hepth/9601029 Stuchlík Z, Schee J (2019) Shadow of the regular Bardeen black holes and comparison of the motion of photons and neutrinos. Eur Phys J C 79(1):44. https://doi.org/10. 1140/epjc/s10052-019-6543-8 Svrcek P, Witten E (2006) Axions In String Theory. JHEP 06:051. https://doi.org/10. 1088/1126-6708/2006/06/051. arXiv:hep-th/0605206 Tahura S, Pan Z, Yang H (2022) Science potential for stellar-mass black holes as neighbors of Sgr A∗ . Phys. Rev. D105(12):123018. https://doi.org/10.1103/PhysRevD. 105.123018. arXiv:2201.03154 [astro-ph.HE] Takahashi R (2004) Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes. Astrophys. J.611(2):996–1004. https://doi.org/ 10.1086/422403. arXiv:astro-ph/0405099
- [gr-qc] Stelle KS (1978) Classical Gravity with Higher Derivatives. Gen Rel Grav 9:353–371. https://doi.org/10.1007/BF00760427 Stephan AP, Naoz S, Ghez AM, Witzel G, Sitarski BN, Do T, Kocsis B (2016) Merging binaries in the Galactic Center: the eccentric Kozai-Lidov mechanism with stellar evolution. Mon. Not. R. Astron. Soc.460(4):3494–3504. https://doi.org/10.1093/ mnras/stw1220. arXiv:1603.02709 [astro-ph.SR] Strominger A, Vafa C (1996) Microscopic origin of the Bekenstein-Hawking entropy. Phys Lett B 379:99–104. https://doi.org/10.1016/0370-2693(96)00345-0. arXiv:hepth/9601029 Stuchlík Z, Schee J (2019) Shadow of the regular Bardeen black holes and comparison of the motion of photons and neutrinos. Eur Phys J C 79(1):44. https://doi.org/10. 1140/epjc/s10052-019-6543-8 Svrcek P, Witten E (2006) Axions In String Theory. JHEP 06:051. https://doi.org/10. 1088/1126-6708/2006/06/051. arXiv:hep-th/0605206 Tahura S, Pan Z, Yang H (2022) Science potential for stellar-mass black holes as neighbors of Sgr A∗ . Phys. Rev. D105(12):123018. https://doi.org/10.1103/PhysRevD. 105.123018. arXiv:2201.03154 [astro-ph.HE] Takahashi R (2004) Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes. Astrophys. J.611(2):996–1004. https://doi.org/ 10.1086/422403. arXiv:astro-ph/0405099
- [gr-qc] Stelle KS (1978) Classical Gravity with Higher Derivatives. Gen Rel Grav 9:353–371. https://doi.org/10.1007/BF00760427 Stephan AP, Naoz S, Ghez AM, Witzel G, Sitarski BN, Do T, Kocsis B (2016) Merging binaries in the Galactic Center: the eccentric Kozai-Lidov mechanism with stellar evolution. Mon. Not. R. Astron. Soc.460(4):3494–3504. https://doi.org/10.1093/ mnras/stw1220. arXiv:1603.02709 [astro-ph.SR] Strominger A, Vafa C (1996) Microscopic origin of the Bekenstein-Hawking entropy. Phys Lett B 379:99–104. https://doi.org/10.1016/0370-2693(96)00345-0. arXiv:hepth/9601029 Stuchlík Z, Schee J (2019) Shadow of the regular Bardeen black holes and comparison of the motion of photons and neutrinos. Eur Phys J C 79(1):44. https://doi.org/10. 1140/epjc/s10052-019-6543-8 Svrcek P, Witten E (2006) Axions In String Theory. JHEP 06:051. https://doi.org/10. 1088/1126-6708/2006/06/051. arXiv:hep-th/0605206 Tahura S, Pan Z, Yang H (2022) Science potential for stellar-mass black holes as neighbors of Sgr A∗ . Phys. Rev. D105(12):123018. https://doi.org/10.1103/PhysRevD. 105.123018. arXiv:2201.03154 [astro-ph.HE] Takahashi R (2004) Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes. Astrophys. J.611(2):996–1004. https://doi.org/ 10.1086/422403. arXiv:astro-ph/0405099
- [astro-ph] Tchekhovskoy A, Narayan R, McKinney JC (2011) Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc.418(1):L79–L83. https://doi.org/10.1111/j.1745-3933. 2011.01147.x. arXiv:1108.0412 [astro-ph.HE] Teo E (2003) Spherical Photon Orbits Around a Kerr Black Hole. General Relativity and Gravitation 35(11):1909–1926. https://doi.org/10.1023/A:1026286607562 Teodoro MC, Collodel LG, Kunz J (2021) Tidal effects in the motion of gas clouds around boson stars. Physical Review D 103(10):104064. URL https://journals.aps. org/prd/abstract/10.1103/PhysRevD.103.104064, publisher: American Physical Society 148 The ngEHT Fundamental Physics SWG Terrazas BA, Bell EF, Pillepich A, Nelson D, Somerville RS, Genel S, Weinberger R, Habouzit M, Li Y, Hernquist L, et al. (2020) The relationship between black hole mass and galaxy properties: examining the black hole feedback model in illustristng. Monthly Notices of the Royal Astronomical Society 493(2):1888–1906 The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, et al (2021) Tests of General Relativity with GWTC-3. arXiv e-prints arXiv:2112.06861. https://doi.org/10.48550/arXiv.2112.06861. arXiv:2112.06861
- [astro-ph] Tchekhovskoy A, Narayan R, McKinney JC (2011) Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc.418(1):L79–L83. https://doi.org/10.1111/j.1745-3933. 2011.01147.x. arXiv:1108.0412 [astro-ph.HE] Teo E (2003) Spherical Photon Orbits Around a Kerr Black Hole. General Relativity and Gravitation 35(11):1909–1926. https://doi.org/10.1023/A:1026286607562 Teodoro MC, Collodel LG, Kunz J (2021) Tidal effects in the motion of gas clouds around boson stars. Physical Review D 103(10):104064. URL https://journals.aps. org/prd/abstract/10.1103/PhysRevD.103.104064, publisher: American Physical Society 148 The ngEHT Fundamental Physics SWG Terrazas BA, Bell EF, Pillepich A, Nelson D, Somerville RS, Genel S, Weinberger R, Habouzit M, Li Y, Hernquist L, et al. (2020) The relationship between black hole mass and galaxy properties: examining the black hole feedback model in illustristng. Monthly Notices of the Royal Astronomical Society 493(2):1888–1906 The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, et al (2021) Tests of General Relativity with GWTC-3. arXiv e-prints arXiv:2112.06861. https://doi.org/10.48550/arXiv.2112.06861. arXiv:2112.06861
- [astro-ph] Tchekhovskoy A, Narayan R, McKinney JC (2011) Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc.418(1):L79–L83. https://doi.org/10.1111/j.1745-3933. 2011.01147.x. arXiv:1108.0412 [astro-ph.HE] Teo E (2003) Spherical Photon Orbits Around a Kerr Black Hole. General Relativity and Gravitation 35(11):1909–1926. https://doi.org/10.1023/A:1026286607562 Teodoro MC, Collodel LG, Kunz J (2021) Tidal effects in the motion of gas clouds around boson stars. Physical Review D 103(10):104064. URL https://journals.aps. org/prd/abstract/10.1103/PhysRevD.103.104064, publisher: American Physical Society 148 The ngEHT Fundamental Physics SWG Terrazas BA, Bell EF, Pillepich A, Nelson D, Somerville RS, Genel S, Weinberger R, Habouzit M, Li Y, Hernquist L, et al. (2020) The relationship between black hole mass and galaxy properties: examining the black hole feedback model in illustristng. Monthly Notices of the Royal Astronomical Society 493(2):1888–1906 The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, et al (2021) Tests of General Relativity with GWTC-3. arXiv e-prints arXiv:2112.06861. https://doi.org/10.48550/arXiv.2112.06861. arXiv:2112.06861
- [astro-ph] Tchekhovskoy A, Narayan R, McKinney JC (2011) Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc.418(1):L79–L83. https://doi.org/10.1111/j.1745-3933. 2011.01147.x. arXiv:1108.0412 [astro-ph.HE] Teo E (2003) Spherical Photon Orbits Around a Kerr Black Hole. General Relativity and Gravitation 35(11):1909–1926. https://doi.org/10.1023/A:1026286607562 Teodoro MC, Collodel LG, Kunz J (2021) Tidal effects in the motion of gas clouds around boson stars. Physical Review D 103(10):104064. URL https://journals.aps. org/prd/abstract/10.1103/PhysRevD.103.104064, publisher: American Physical Society 148 The ngEHT Fundamental Physics SWG Terrazas BA, Bell EF, Pillepich A, Nelson D, Somerville RS, Genel S, Weinberger R, Habouzit M, Li Y, Hernquist L, et al. (2020) The relationship between black hole mass and galaxy properties: examining the black hole feedback model in illustristng. Monthly Notices of the Royal Astronomical Society 493(2):1888–1906 The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, et al (2021) Tests of General Relativity with GWTC-3. arXiv e-prints arXiv:2112.06861. https://doi.org/10.48550/arXiv.2112.06861. arXiv:2112.06861
- [astro-ph] Tchekhovskoy A, Narayan R, McKinney JC (2011) Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc.418(1):L79–L83. https://doi.org/10.1111/j.1745-3933. 2011.01147.x. arXiv:1108.0412 [astro-ph.HE] Teo E (2003) Spherical Photon Orbits Around a Kerr Black Hole. General Relativity and Gravitation 35(11):1909–1926. https://doi.org/10.1023/A:1026286607562 Teodoro MC, Collodel LG, Kunz J (2021) Tidal effects in the motion of gas clouds around boson stars. Physical Review D 103(10):104064. URL https://journals.aps. org/prd/abstract/10.1103/PhysRevD.103.104064, publisher: American Physical Society 148 The ngEHT Fundamental Physics SWG Terrazas BA, Bell EF, Pillepich A, Nelson D, Somerville RS, Genel S, Weinberger R, Habouzit M, Li Y, Hernquist L, et al. (2020) The relationship between black hole mass and galaxy properties: examining the black hole feedback model in illustristng. Monthly Notices of the Royal Astronomical Society 493(2):1888–1906 The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, et al (2021) Tests of General Relativity with GWTC-3. arXiv e-prints arXiv:2112.06861. https://doi.org/10.48550/arXiv.2112.06861. arXiv:2112.06861
- [gr-qc] Thirring H (1918) Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:33 Tiburzi C, Hobbs G, Kerr M, Coles WA, Dai S, Manchester RN, Possenti A, Shannon RM, You XP (2015) A study of spatial correlations in pulsar timing array data. Monthly Notices of the Royal Astronomical Society 455(4):4339–4350. https: //doi.org/10.1093/mnras/stv2143, URL https://doi.org/10.1093/mnras/stv2143. https://academic.oup.com/mnras/article-pdf/455/4/4339/4087311/stv2143.pdf Tiede P (2022) Comrade: Composable modeling of radio emission. Journal of Open Source Software 7(76):4457. https://doi.org/10.21105/joss.04457, URL https://doi. org/10.21105/joss.04457 Tiede P, Pu HY, Broderick AE, Gold R, Karami M, Preciado-López JA (2020) Spacetime Tomography Using the Event Horizon Telescope. Astrophys. J.892(2):132. https://doi.org/10.3847/1538-4357/ab744c. arXiv:2002.05735 [astro-ph.HE] Tiede P, Johnson MD, Pesce DW, Palumbo DCM, Chang DO, Galison P (2022) Measuring Photon Rings with the ngEHT. Galaxies 10(6):111. https://doi.org/10.3390/ galaxies10060111. arXiv:2210.13498 [astro-ph.HE] Titov O, Frey S, Melnikov A, Shu F, Xia B, González J, Tercero B, Gurvits L, de Witt A, McCallum J, Kharinov M, Zimovsky V, Krezinger M (2023) Astrometric Apparent Motion of High-redshift Radio Sources. The Astronomical Journal 165(2):69. https: //doi.org/10.3847/1538-3881/aca964. arXiv:2302.12957 [astro-ph.GA] Tokovinin AA (1997) On the multiplicity of spectroscopic binary stars. Astronomy Letters 23(6):727–730 Toshmatov B, Ahmedov B, Abdujabbarov A, Stuchlik Z (2014) Rotating Regular Black Hole Solution. Phys Rev D 89(10):104017. https://doi.org/10.1103/PhysRevD.89. 104017. arXiv:1404.6443
- [gr-qc] Thirring H (1918) Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:33 Tiburzi C, Hobbs G, Kerr M, Coles WA, Dai S, Manchester RN, Possenti A, Shannon RM, You XP (2015) A study of spatial correlations in pulsar timing array data. Monthly Notices of the Royal Astronomical Society 455(4):4339–4350. https: //doi.org/10.1093/mnras/stv2143, URL https://doi.org/10.1093/mnras/stv2143. https://academic.oup.com/mnras/article-pdf/455/4/4339/4087311/stv2143.pdf Tiede P (2022) Comrade: Composable modeling of radio emission. Journal of Open Source Software 7(76):4457. https://doi.org/10.21105/joss.04457, URL https://doi. org/10.21105/joss.04457 Tiede P, Pu HY, Broderick AE, Gold R, Karami M, Preciado-López JA (2020) Spacetime Tomography Using the Event Horizon Telescope. Astrophys. J.892(2):132. https://doi.org/10.3847/1538-4357/ab744c. arXiv:2002.05735 [astro-ph.HE] Tiede P, Johnson MD, Pesce DW, Palumbo DCM, Chang DO, Galison P (2022) Measuring Photon Rings with the ngEHT. Galaxies 10(6):111. https://doi.org/10.3390/ galaxies10060111. arXiv:2210.13498 [astro-ph.HE] Titov O, Frey S, Melnikov A, Shu F, Xia B, González J, Tercero B, Gurvits L, de Witt A, McCallum J, Kharinov M, Zimovsky V, Krezinger M (2023) Astrometric Apparent Motion of High-redshift Radio Sources. The Astronomical Journal 165(2):69. https: //doi.org/10.3847/1538-3881/aca964. arXiv:2302.12957 [astro-ph.GA] Tokovinin AA (1997) On the multiplicity of spectroscopic binary stars. Astronomy Letters 23(6):727–730 Toshmatov B, Ahmedov B, Abdujabbarov A, Stuchlik Z (2014) Rotating Regular Black Hole Solution. Phys Rev D 89(10):104017. https://doi.org/10.1103/PhysRevD.89. 104017. arXiv:1404.6443
- [gr-qc] Thirring H (1918) Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:33 Tiburzi C, Hobbs G, Kerr M, Coles WA, Dai S, Manchester RN, Possenti A, Shannon RM, You XP (2015) A study of spatial correlations in pulsar timing array data. Monthly Notices of the Royal Astronomical Society 455(4):4339–4350. https: //doi.org/10.1093/mnras/stv2143, URL https://doi.org/10.1093/mnras/stv2143. https://academic.oup.com/mnras/article-pdf/455/4/4339/4087311/stv2143.pdf Tiede P (2022) Comrade: Composable modeling of radio emission. Journal of Open Source Software 7(76):4457. https://doi.org/10.21105/joss.04457, URL https://doi. org/10.21105/joss.04457 Tiede P, Pu HY, Broderick AE, Gold R, Karami M, Preciado-López JA (2020) Spacetime Tomography Using the Event Horizon Telescope. Astrophys. J.892(2):132. https://doi.org/10.3847/1538-4357/ab744c. arXiv:2002.05735 [astro-ph.HE] Tiede P, Johnson MD, Pesce DW, Palumbo DCM, Chang DO, Galison P (2022) Measuring Photon Rings with the ngEHT. Galaxies 10(6):111. https://doi.org/10.3390/ galaxies10060111. arXiv:2210.13498 [astro-ph.HE] Titov O, Frey S, Melnikov A, Shu F, Xia B, González J, Tercero B, Gurvits L, de Witt A, McCallum J, Kharinov M, Zimovsky V, Krezinger M (2023) Astrometric Apparent Motion of High-redshift Radio Sources. The Astronomical Journal 165(2):69. https: //doi.org/10.3847/1538-3881/aca964. arXiv:2302.12957 [astro-ph.GA] Tokovinin AA (1997) On the multiplicity of spectroscopic binary stars. Astronomy Letters 23(6):727–730 Toshmatov B, Ahmedov B, Abdujabbarov A, Stuchlik Z (2014) Rotating Regular Black Hole Solution. Phys Rev D 89(10):104017. https://doi.org/10.1103/PhysRevD.89. 104017. arXiv:1404.6443
- [gr-qc] Thirring H (1918) Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:33 Tiburzi C, Hobbs G, Kerr M, Coles WA, Dai S, Manchester RN, Possenti A, Shannon RM, You XP (2015) A study of spatial correlations in pulsar timing array data. Monthly Notices of the Royal Astronomical Society 455(4):4339–4350. https: //doi.org/10.1093/mnras/stv2143, URL https://doi.org/10.1093/mnras/stv2143. https://academic.oup.com/mnras/article-pdf/455/4/4339/4087311/stv2143.pdf Tiede P (2022) Comrade: Composable modeling of radio emission. Journal of Open Source Software 7(76):4457. https://doi.org/10.21105/joss.04457, URL https://doi. org/10.21105/joss.04457 Tiede P, Pu HY, Broderick AE, Gold R, Karami M, Preciado-López JA (2020) Spacetime Tomography Using the Event Horizon Telescope. Astrophys. J.892(2):132. https://doi.org/10.3847/1538-4357/ab744c. arXiv:2002.05735 [astro-ph.HE] Tiede P, Johnson MD, Pesce DW, Palumbo DCM, Chang DO, Galison P (2022) Measuring Photon Rings with the ngEHT. Galaxies 10(6):111. https://doi.org/10.3390/ galaxies10060111. arXiv:2210.13498 [astro-ph.HE] Titov O, Frey S, Melnikov A, Shu F, Xia B, González J, Tercero B, Gurvits L, de Witt A, McCallum J, Kharinov M, Zimovsky V, Krezinger M (2023) Astrometric Apparent Motion of High-redshift Radio Sources. The Astronomical Journal 165(2):69. https: //doi.org/10.3847/1538-3881/aca964. arXiv:2302.12957 [astro-ph.GA] Tokovinin AA (1997) On the multiplicity of spectroscopic binary stars. Astronomy Letters 23(6):727–730 Toshmatov B, Ahmedov B, Abdujabbarov A, Stuchlik Z (2014) Rotating Regular Black Hole Solution. Phys Rev D 89(10):104017. https://doi.org/10.1103/PhysRevD.89. 104017. arXiv:1404.6443
- [gr-qc] Thirring H (1918) Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:33 Tiburzi C, Hobbs G, Kerr M, Coles WA, Dai S, Manchester RN, Possenti A, Shannon RM, You XP (2015) A study of spatial correlations in pulsar timing array data. Monthly Notices of the Royal Astronomical Society 455(4):4339–4350. https: //doi.org/10.1093/mnras/stv2143, URL https://doi.org/10.1093/mnras/stv2143. https://academic.oup.com/mnras/article-pdf/455/4/4339/4087311/stv2143.pdf Tiede P (2022) Comrade: Composable modeling of radio emission. Journal of Open Source Software 7(76):4457. https://doi.org/10.21105/joss.04457, URL https://doi. org/10.21105/joss.04457 Tiede P, Pu HY, Broderick AE, Gold R, Karami M, Preciado-López JA (2020) Spacetime Tomography Using the Event Horizon Telescope. Astrophys. J.892(2):132. https://doi.org/10.3847/1538-4357/ab744c. arXiv:2002.05735 [astro-ph.HE] Tiede P, Johnson MD, Pesce DW, Palumbo DCM, Chang DO, Galison P (2022) Measuring Photon Rings with the ngEHT. Galaxies 10(6):111. https://doi.org/10.3390/ galaxies10060111. arXiv:2210.13498 [astro-ph.HE] Titov O, Frey S, Melnikov A, Shu F, Xia B, González J, Tercero B, Gurvits L, de Witt A, McCallum J, Kharinov M, Zimovsky V, Krezinger M (2023) Astrometric Apparent Motion of High-redshift Radio Sources. The Astronomical Journal 165(2):69. https: //doi.org/10.3847/1538-3881/aca964. arXiv:2302.12957 [astro-ph.GA] Tokovinin AA (1997) On the multiplicity of spectroscopic binary stars. Astronomy Letters 23(6):727–730 Toshmatov B, Ahmedov B, Abdujabbarov A, Stuchlik Z (2014) Rotating Regular Black Hole Solution. Phys Rev D 89(10):104017. https://doi.org/10.1103/PhysRevD.89. 104017. arXiv:1404.6443
- [gr-qc] Thirring H (1918) Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:33 Tiburzi C, Hobbs G, Kerr M, Coles WA, Dai S, Manchester RN, Possenti A, Shannon RM, You XP (2015) A study of spatial correlations in pulsar timing array data. Monthly Notices of the Royal Astronomical Society 455(4):4339–4350. https: //doi.org/10.1093/mnras/stv2143, URL https://doi.org/10.1093/mnras/stv2143. https://academic.oup.com/mnras/article-pdf/455/4/4339/4087311/stv2143.pdf Tiede P (2022) Comrade: Composable modeling of radio emission. Journal of Open Source Software 7(76):4457. https://doi.org/10.21105/joss.04457, URL https://doi. org/10.21105/joss.04457 Tiede P, Pu HY, Broderick AE, Gold R, Karami M, Preciado-López JA (2020) Spacetime Tomography Using the Event Horizon Telescope. Astrophys. J.892(2):132. https://doi.org/10.3847/1538-4357/ab744c. arXiv:2002.05735 [astro-ph.HE] Tiede P, Johnson MD, Pesce DW, Palumbo DCM, Chang DO, Galison P (2022) Measuring Photon Rings with the ngEHT. Galaxies 10(6):111. https://doi.org/10.3390/ galaxies10060111. arXiv:2210.13498 [astro-ph.HE] Titov O, Frey S, Melnikov A, Shu F, Xia B, González J, Tercero B, Gurvits L, de Witt A, McCallum J, Kharinov M, Zimovsky V, Krezinger M (2023) Astrometric Apparent Motion of High-redshift Radio Sources. The Astronomical Journal 165(2):69. https: //doi.org/10.3847/1538-3881/aca964. arXiv:2302.12957 [astro-ph.GA] Tokovinin AA (1997) On the multiplicity of spectroscopic binary stars. Astronomy Letters 23(6):727–730 Toshmatov B, Ahmedov B, Abdujabbarov A, Stuchlik Z (2014) Rotating Regular Black Hole Solution. Phys Rev D 89(10):104017. https://doi.org/10.1103/PhysRevD.89. 104017. arXiv:1404.6443
- [gr-qc] Thirring H (1918) Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:33 Tiburzi C, Hobbs G, Kerr M, Coles WA, Dai S, Manchester RN, Possenti A, Shannon RM, You XP (2015) A study of spatial correlations in pulsar timing array data. Monthly Notices of the Royal Astronomical Society 455(4):4339–4350. https: //doi.org/10.1093/mnras/stv2143, URL https://doi.org/10.1093/mnras/stv2143. https://academic.oup.com/mnras/article-pdf/455/4/4339/4087311/stv2143.pdf Tiede P (2022) Comrade: Composable modeling of radio emission. Journal of Open Source Software 7(76):4457. https://doi.org/10.21105/joss.04457, URL https://doi. org/10.21105/joss.04457 Tiede P, Pu HY, Broderick AE, Gold R, Karami M, Preciado-López JA (2020) Spacetime Tomography Using the Event Horizon Telescope. Astrophys. J.892(2):132. https://doi.org/10.3847/1538-4357/ab744c. arXiv:2002.05735 [astro-ph.HE] Tiede P, Johnson MD, Pesce DW, Palumbo DCM, Chang DO, Galison P (2022) Measuring Photon Rings with the ngEHT. Galaxies 10(6):111. https://doi.org/10.3390/ galaxies10060111. arXiv:2210.13498 [astro-ph.HE] Titov O, Frey S, Melnikov A, Shu F, Xia B, González J, Tercero B, Gurvits L, de Witt A, McCallum J, Kharinov M, Zimovsky V, Krezinger M (2023) Astrometric Apparent Motion of High-redshift Radio Sources. The Astronomical Journal 165(2):69. https: //doi.org/10.3847/1538-3881/aca964. arXiv:2302.12957 [astro-ph.GA] Tokovinin AA (1997) On the multiplicity of spectroscopic binary stars. Astronomy Letters 23(6):727–730 Toshmatov B, Ahmedov B, Abdujabbarov A, Stuchlik Z (2014) Rotating Regular Black Hole Solution. Phys Rev D 89(10):104017. https://doi.org/10.1103/PhysRevD.89. 104017. arXiv:1404.6443
- [gr-qc] Thirring H (1918) Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:33 Tiburzi C, Hobbs G, Kerr M, Coles WA, Dai S, Manchester RN, Possenti A, Shannon RM, You XP (2015) A study of spatial correlations in pulsar timing array data. Monthly Notices of the Royal Astronomical Society 455(4):4339–4350. https: //doi.org/10.1093/mnras/stv2143, URL https://doi.org/10.1093/mnras/stv2143. https://academic.oup.com/mnras/article-pdf/455/4/4339/4087311/stv2143.pdf Tiede P (2022) Comrade: Composable modeling of radio emission. Journal of Open Source Software 7(76):4457. https://doi.org/10.21105/joss.04457, URL https://doi. org/10.21105/joss.04457 Tiede P, Pu HY, Broderick AE, Gold R, Karami M, Preciado-López JA (2020) Spacetime Tomography Using the Event Horizon Telescope. Astrophys. J.892(2):132. https://doi.org/10.3847/1538-4357/ab744c. arXiv:2002.05735 [astro-ph.HE] Tiede P, Johnson MD, Pesce DW, Palumbo DCM, Chang DO, Galison P (2022) Measuring Photon Rings with the ngEHT. Galaxies 10(6):111. https://doi.org/10.3390/ galaxies10060111. arXiv:2210.13498 [astro-ph.HE] Titov O, Frey S, Melnikov A, Shu F, Xia B, González J, Tercero B, Gurvits L, de Witt A, McCallum J, Kharinov M, Zimovsky V, Krezinger M (2023) Astrometric Apparent Motion of High-redshift Radio Sources. The Astronomical Journal 165(2):69. https: //doi.org/10.3847/1538-3881/aca964. arXiv:2302.12957 [astro-ph.GA] Tokovinin AA (1997) On the multiplicity of spectroscopic binary stars. Astronomy Letters 23(6):727–730 Toshmatov B, Ahmedov B, Abdujabbarov A, Stuchlik Z (2014) Rotating Regular Black Hole Solution. Phys Rev D 89(10):104017. https://doi.org/10.1103/PhysRevD.89. 104017. arXiv:1404.6443
- [gr-qc] Thirring H (1918) Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19:33 Tiburzi C, Hobbs G, Kerr M, Coles WA, Dai S, Manchester RN, Possenti A, Shannon RM, You XP (2015) A study of spatial correlations in pulsar timing array data. Monthly Notices of the Royal Astronomical Society 455(4):4339–4350. https: //doi.org/10.1093/mnras/stv2143, URL https://doi.org/10.1093/mnras/stv2143. https://academic.oup.com/mnras/article-pdf/455/4/4339/4087311/stv2143.pdf Tiede P (2022) Comrade: Composable modeling of radio emission. Journal of Open Source Software 7(76):4457. https://doi.org/10.21105/joss.04457, URL https://doi. org/10.21105/joss.04457 Tiede P, Pu HY, Broderick AE, Gold R, Karami M, Preciado-López JA (2020) Spacetime Tomography Using the Event Horizon Telescope. Astrophys. J.892(2):132. https://doi.org/10.3847/1538-4357/ab744c. arXiv:2002.05735 [astro-ph.HE] Tiede P, Johnson MD, Pesce DW, Palumbo DCM, Chang DO, Galison P (2022) Measuring Photon Rings with the ngEHT. Galaxies 10(6):111. https://doi.org/10.3390/ galaxies10060111. arXiv:2210.13498 [astro-ph.HE] Titov O, Frey S, Melnikov A, Shu F, Xia B, González J, Tercero B, Gurvits L, de Witt A, McCallum J, Kharinov M, Zimovsky V, Krezinger M (2023) Astrometric Apparent Motion of High-redshift Radio Sources. The Astronomical Journal 165(2):69. https: //doi.org/10.3847/1538-3881/aca964. arXiv:2302.12957 [astro-ph.GA] Tokovinin AA (1997) On the multiplicity of spectroscopic binary stars. Astronomy Letters 23(6):727–730 Toshmatov B, Ahmedov B, Abdujabbarov A, Stuchlik Z (2014) Rotating Regular Black Hole Solution. Phys Rev D 89(10):104017. https://doi.org/10.1103/PhysRevD.89. 104017. arXiv:1404.6443
- [gr-qc] Tsujikawa S (2013) Quintessence: A Review. Class Quant Grav 30:214003. https://doi. org/10.1088/0264-9381/30/21/214003. arXiv:1304.1961
- [gr-qc] Tsukamoto N (2018) Black hole shadow in an asymptotically-flat, stationary, and axisymmetric spacetime: The Kerr-Newman and rotating regular black holes. Phys Rev D 97(6):064021. https://doi.org/10.1103/PhysRevD.97.064021. arXiv:1708.07427
- [gr-qc] Vagnozzi S, Visinelli L (2019) Hunting for extra dimensions in the shadow of M87*. Phys Rev D 100(2):024020. https://doi.org/10.1103/PhysRevD.100.024020. arXiv:1905.12421
- [gr-qc] Vagnozzi S, Roy R, Tsai YD, Visinelli L, Afrin M, Allahyari A, Bambhaniya P, Dey D, Ghosh SG, Joshi PS, Jusufi K, Khodadi M, Walia RK, Övgün A, Bambi C (2023) Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A∗ . Classical and Quantum Gravity 40(16):165007. https://doi.org/10.1088/1361-6382/acd97b. arXiv:2205.07787
- [gr-qc] Vecchio A (2004) Lisa observations of rapidly spinning massive black hole binary systems. Phys Rev D 70:042001. https://doi.org/10.1103/PhysRevD.70.042001, URL Fundamental Physics Opportunities with the ngEHT 149 https://link.aps.org/doi/10.1103/PhysRevD.70.042001 Vernieri D, Sotiriou TP (2012) Hořava-Lifshitz gravity: Detailed balance revisited. Phys. Rev. D85(6):064003. https://doi.org/10.1103/PhysRevD.85.064003 Vetsov T, Gyulchev G, Yazadjiev S (2018) Shadows of Black Holes in Vector-Tensor Galileons Modified Gravity. arXiv e-prints arXiv:1801.04592. https://doi.org/10. 48550/arXiv.1801.04592. arXiv:1801.04592
- [gr-qc] Vecchio A (2004) Lisa observations of rapidly spinning massive black hole binary systems. Phys Rev D 70:042001. https://doi.org/10.1103/PhysRevD.70.042001, URL Fundamental Physics Opportunities with the ngEHT 149 https://link.aps.org/doi/10.1103/PhysRevD.70.042001 Vernieri D, Sotiriou TP (2012) Hořava-Lifshitz gravity: Detailed balance revisited. Phys. Rev. D85(6):064003. https://doi.org/10.1103/PhysRevD.85.064003 Vetsov T, Gyulchev G, Yazadjiev S (2018) Shadows of Black Holes in Vector-Tensor Galileons Modified Gravity. arXiv e-prints arXiv:1801.04592. https://doi.org/10. 48550/arXiv.1801.04592. arXiv:1801.04592
- [gr-qc] Vecchio A (2004) Lisa observations of rapidly spinning massive black hole binary systems. Phys Rev D 70:042001. https://doi.org/10.1103/PhysRevD.70.042001, URL Fundamental Physics Opportunities with the ngEHT 149 https://link.aps.org/doi/10.1103/PhysRevD.70.042001 Vernieri D, Sotiriou TP (2012) Hořava-Lifshitz gravity: Detailed balance revisited. Phys. Rev. D85(6):064003. https://doi.org/10.1103/PhysRevD.85.064003 Vetsov T, Gyulchev G, Yazadjiev S (2018) Shadows of Black Holes in Vector-Tensor Galileons Modified Gravity. arXiv e-prints arXiv:1801.04592. https://doi.org/10. 48550/arXiv.1801.04592. arXiv:1801.04592
- [gr-qc] Vecchio A (2004) Lisa observations of rapidly spinning massive black hole binary systems. Phys Rev D 70:042001. https://doi.org/10.1103/PhysRevD.70.042001, URL Fundamental Physics Opportunities with the ngEHT 149 https://link.aps.org/doi/10.1103/PhysRevD.70.042001 Vernieri D, Sotiriou TP (2012) Hořava-Lifshitz gravity: Detailed balance revisited. Phys. Rev. D85(6):064003. https://doi.org/10.1103/PhysRevD.85.064003 Vetsov T, Gyulchev G, Yazadjiev S (2018) Shadows of Black Holes in Vector-Tensor Galileons Modified Gravity. arXiv e-prints arXiv:1801.04592. https://doi.org/10. 48550/arXiv.1801.04592. arXiv:1801.04592
- [gr-qc] Vecchio A (2004) Lisa observations of rapidly spinning massive black hole binary systems. Phys Rev D 70:042001. https://doi.org/10.1103/PhysRevD.70.042001, URL Fundamental Physics Opportunities with the ngEHT 149 https://link.aps.org/doi/10.1103/PhysRevD.70.042001 Vernieri D, Sotiriou TP (2012) Hořava-Lifshitz gravity: Detailed balance revisited. Phys. Rev. D85(6):064003. https://doi.org/10.1103/PhysRevD.85.064003 Vetsov T, Gyulchev G, Yazadjiev S (2018) Shadows of Black Holes in Vector-Tensor Galileons Modified Gravity. arXiv e-prints arXiv:1801.04592. https://doi.org/10. 48550/arXiv.1801.04592. arXiv:1801.04592
- [gr-qc] Vigeland S, Yunes N, Stein L (2011) Bumpy Black Holes in Alternate Theories of Gravity. Phys Rev D 83:104027. https://doi.org/10.1103/PhysRevD.83.104027. arXiv:1102.3706
- [gr-qc] Vigeland SJ, Hughes SA (2010) Spacetime and orbits of bumpy black holes. Phys Rev D 81:024030. https://doi.org/10.1103/PhysRevD.81.024030. arXiv:0911.1756
- [gr-qc] Vincent FH, Gourgoulhon E, Herdeiro C, Radu E (2016a) Astrophysical imaging of Kerr black holes with scalar hair. Phys Rev D 94(8):084045. https://doi.org/10.1103/ PhysRevD.94.084045. arXiv:1606.04246
- [gr-qc] Vincent FH, Meliani Z, Grandclément P, Gourgoulhon E, Straub O (2016b) Imaging a boson star at the Galactic center. Classical and Quantum Gravity 33(10):105015. https://doi.org/10.1088/0264-9381/33/10/105015, URL http://stacks.iop.org/ 0264-9381/33/i=10/a=105015?key=crossref.c60cc7dd0e0d9320c11658001038fd55, publisher: IOP Publishing Vincent FH, Wielgus M, Abramowicz MA, Gourgoulhon E, Lasota JP, Paumard T, Perrin G (2021) Geometric modeling of M87* as a Kerr black hole or a non-Kerr compact object. Astron Astrophys 646:A37. https://doi.org/10.1051/0004-6361/202037787. arXiv:2002.09226
- [gr-qc] Vincent FH, Meliani Z, Grandclément P, Gourgoulhon E, Straub O (2016b) Imaging a boson star at the Galactic center. Classical and Quantum Gravity 33(10):105015. https://doi.org/10.1088/0264-9381/33/10/105015, URL http://stacks.iop.org/ 0264-9381/33/i=10/a=105015?key=crossref.c60cc7dd0e0d9320c11658001038fd55, publisher: IOP Publishing Vincent FH, Wielgus M, Abramowicz MA, Gourgoulhon E, Lasota JP, Paumard T, Perrin G (2021) Geometric modeling of M87* as a Kerr black hole or a non-Kerr compact object. Astron Astrophys 646:A37. https://doi.org/10.1051/0004-6361/202037787. arXiv:2002.09226
- [gr-qc] Visser M (2014) Physical observability of horizons. Phys Rev D 90(12):127502. https: //doi.org/10.1103/PhysRevD.90.127502. arXiv:1407.7295
- [gr-qc] Visser M, Wiltshire DL (2004) Stable gravastars: An Alternative to black holes? Class Quant Grav 21:1135–1152. https://doi.org/10.1088/0264-9381/21/4/027. arXiv:grqc/0310107 Visser M, Barcelo C, Liberati S, Sonego S (2008) Small, dark, and heavy: But is it a black hole? PoS BHGRS:010. https://doi.org/10.22323/1.075.0010. arXiv:0902.0346
- [gr-qc] Visser M, Wiltshire DL (2004) Stable gravastars: An Alternative to black holes? Class Quant Grav 21:1135–1152. https://doi.org/10.1088/0264-9381/21/4/027. arXiv:grqc/0310107 Visser M, Barcelo C, Liberati S, Sonego S (2008) Small, dark, and heavy: But is it a black hole? PoS BHGRS:010. https://doi.org/10.22323/1.075.0010. arXiv:0902.0346
- [gr-qc] Völkel SH, Barausse E, Franchini N, Broderick AE (2021) EHT tests of the strong-field regime of general relativity. Class Quant Grav 38(21):21LT01. https://doi.org/10. 1088/1361-6382/ac27ed. arXiv:2011.06812
- [gr-qc] Volonteri M (2010) Formation of Supermassive Black Holes. Astron Astrophys Rev 18:279–315. https://doi.org/10.1007/s00159-010-0029-x. arXiv:1003.4404 [astroph.CO] Volonteri M, Habouzit M, Colpi M (2021) The origins of massive black holes. Nature Rev Phys 3(11):732–743. https://doi.org/10.1038/s42254-021-00364-9. arXiv:2110.10175 [astro-ph.GA] von Zeipel H (1910) Sur l’application des séries de M. Lindstedt à l’étude du mouvement des comètes périodiques. Astronomische Nachrichten 183(22):345. https://doi.org/ 10.1002/asna.19091832202 Vos J, Mościbrodzka MA, Wielgus M (2022) Polarimetric signatures of hot spots in black hole accretion flows. Astron. Astrophys.668:A185. https://doi.org/10.1051/ 0004-6361/202244840. arXiv:2209.09931 [astro-ph.HE] Waisberg I, Dexter J, Gillessen S, Pfuhl O, Eisenhauer F, Plewa PM, Bauböck M, Jimenez-Rosales A, Habibi M, Ott T, von Fellenberg S, Gao F, Widmann F, Genzel R (2018) What stellar orbit is needed to measure the spin of the Galactic centre 150 The ngEHT Fundamental Physics SWG black hole from astrometric data? Mon. Not. R. Astron. Soc.476(3):3600–3610. https: //doi.org/10.1093/mnras/sty476. arXiv:1802.08198 [astro-ph.GA] Wald RM (1999) Gravitational Collapse and Cosmic Censorship, Springer Netherlands, Dordrecht, pp 69–86. https://doi.org/10.1007/978-94-017-0934-7_5, URL https:// doi.org/10.1007/978-94-017-0934-7_5 Walker M, Penrose R (1970) On quadratic first integrals of the geodesic equations for type { 22} spacetimes. Communications in Mathematical Physics 18(4):265–274. https://doi.org/10.1007/BF01649445 Walker RC, Hardee PE, Davies F, Ly C, Junor W, Mertens F, Lobanov A (2016)
- [gr-qc] Volonteri M (2010) Formation of Supermassive Black Holes. Astron Astrophys Rev 18:279–315. https://doi.org/10.1007/s00159-010-0029-x. arXiv:1003.4404 [astroph.CO] Volonteri M, Habouzit M, Colpi M (2021) The origins of massive black holes. Nature Rev Phys 3(11):732–743. https://doi.org/10.1038/s42254-021-00364-9. arXiv:2110.10175 [astro-ph.GA] von Zeipel H (1910) Sur l’application des séries de M. Lindstedt à l’étude du mouvement des comètes périodiques. Astronomische Nachrichten 183(22):345. https://doi.org/ 10.1002/asna.19091832202 Vos J, Mościbrodzka MA, Wielgus M (2022) Polarimetric signatures of hot spots in black hole accretion flows. Astron. Astrophys.668:A185. https://doi.org/10.1051/ 0004-6361/202244840. arXiv:2209.09931 [astro-ph.HE] Waisberg I, Dexter J, Gillessen S, Pfuhl O, Eisenhauer F, Plewa PM, Bauböck M, Jimenez-Rosales A, Habibi M, Ott T, von Fellenberg S, Gao F, Widmann F, Genzel R (2018) What stellar orbit is needed to measure the spin of the Galactic centre 150 The ngEHT Fundamental Physics SWG black hole from astrometric data? Mon. Not. R. Astron. Soc.476(3):3600–3610. https: //doi.org/10.1093/mnras/sty476. arXiv:1802.08198 [astro-ph.GA] Wald RM (1999) Gravitational Collapse and Cosmic Censorship, Springer Netherlands, Dordrecht, pp 69–86. https://doi.org/10.1007/978-94-017-0934-7_5, URL https:// doi.org/10.1007/978-94-017-0934-7_5 Walker M, Penrose R (1970) On quadratic first integrals of the geodesic equations for type { 22} spacetimes. Communications in Mathematical Physics 18(4):265–274. https://doi.org/10.1007/BF01649445 Walker RC, Hardee PE, Davies F, Ly C, Junor W, Mertens F, Lobanov A (2016)
- [gr-qc] Volonteri M (2010) Formation of Supermassive Black Holes. Astron Astrophys Rev 18:279–315. https://doi.org/10.1007/s00159-010-0029-x. arXiv:1003.4404 [astroph.CO] Volonteri M, Habouzit M, Colpi M (2021) The origins of massive black holes. Nature Rev Phys 3(11):732–743. https://doi.org/10.1038/s42254-021-00364-9. arXiv:2110.10175 [astro-ph.GA] von Zeipel H (1910) Sur l’application des séries de M. Lindstedt à l’étude du mouvement des comètes périodiques. Astronomische Nachrichten 183(22):345. https://doi.org/ 10.1002/asna.19091832202 Vos J, Mościbrodzka MA, Wielgus M (2022) Polarimetric signatures of hot spots in black hole accretion flows. Astron. Astrophys.668:A185. https://doi.org/10.1051/ 0004-6361/202244840. arXiv:2209.09931 [astro-ph.HE] Waisberg I, Dexter J, Gillessen S, Pfuhl O, Eisenhauer F, Plewa PM, Bauböck M, Jimenez-Rosales A, Habibi M, Ott T, von Fellenberg S, Gao F, Widmann F, Genzel R (2018) What stellar orbit is needed to measure the spin of the Galactic centre 150 The ngEHT Fundamental Physics SWG black hole from astrometric data? Mon. Not. R. Astron. Soc.476(3):3600–3610. https: //doi.org/10.1093/mnras/sty476. arXiv:1802.08198 [astro-ph.GA] Wald RM (1999) Gravitational Collapse and Cosmic Censorship, Springer Netherlands, Dordrecht, pp 69–86. https://doi.org/10.1007/978-94-017-0934-7_5, URL https:// doi.org/10.1007/978-94-017-0934-7_5 Walker M, Penrose R (1970) On quadratic first integrals of the geodesic equations for type { 22} spacetimes. Communications in Mathematical Physics 18(4):265–274. https://doi.org/10.1007/BF01649445 Walker RC, Hardee PE, Davies F, Ly C, Junor W, Mertens F, Lobanov A (2016)
- [gr-qc] Volonteri M (2010) Formation of Supermassive Black Holes. Astron Astrophys Rev 18:279–315. https://doi.org/10.1007/s00159-010-0029-x. arXiv:1003.4404 [astroph.CO] Volonteri M, Habouzit M, Colpi M (2021) The origins of massive black holes. Nature Rev Phys 3(11):732–743. https://doi.org/10.1038/s42254-021-00364-9. arXiv:2110.10175 [astro-ph.GA] von Zeipel H (1910) Sur l’application des séries de M. Lindstedt à l’étude du mouvement des comètes périodiques. Astronomische Nachrichten 183(22):345. https://doi.org/ 10.1002/asna.19091832202 Vos J, Mościbrodzka MA, Wielgus M (2022) Polarimetric signatures of hot spots in black hole accretion flows. Astron. Astrophys.668:A185. https://doi.org/10.1051/ 0004-6361/202244840. arXiv:2209.09931 [astro-ph.HE] Waisberg I, Dexter J, Gillessen S, Pfuhl O, Eisenhauer F, Plewa PM, Bauböck M, Jimenez-Rosales A, Habibi M, Ott T, von Fellenberg S, Gao F, Widmann F, Genzel R (2018) What stellar orbit is needed to measure the spin of the Galactic centre 150 The ngEHT Fundamental Physics SWG black hole from astrometric data? Mon. Not. R. Astron. Soc.476(3):3600–3610. https: //doi.org/10.1093/mnras/sty476. arXiv:1802.08198 [astro-ph.GA] Wald RM (1999) Gravitational Collapse and Cosmic Censorship, Springer Netherlands, Dordrecht, pp 69–86. https://doi.org/10.1007/978-94-017-0934-7_5, URL https:// doi.org/10.1007/978-94-017-0934-7_5 Walker M, Penrose R (1970) On quadratic first integrals of the geodesic equations for type { 22} spacetimes. Communications in Mathematical Physics 18(4):265–274. https://doi.org/10.1007/BF01649445 Walker RC, Hardee PE, Davies F, Ly C, Junor W, Mertens F, Lobanov A (2016)
- [gr-qc] Volonteri M (2010) Formation of Supermassive Black Holes. Astron Astrophys Rev 18:279–315. https://doi.org/10.1007/s00159-010-0029-x. arXiv:1003.4404 [astroph.CO] Volonteri M, Habouzit M, Colpi M (2021) The origins of massive black holes. Nature Rev Phys 3(11):732–743. https://doi.org/10.1038/s42254-021-00364-9. arXiv:2110.10175 [astro-ph.GA] von Zeipel H (1910) Sur l’application des séries de M. Lindstedt à l’étude du mouvement des comètes périodiques. Astronomische Nachrichten 183(22):345. https://doi.org/ 10.1002/asna.19091832202 Vos J, Mościbrodzka MA, Wielgus M (2022) Polarimetric signatures of hot spots in black hole accretion flows. Astron. Astrophys.668:A185. https://doi.org/10.1051/ 0004-6361/202244840. arXiv:2209.09931 [astro-ph.HE] Waisberg I, Dexter J, Gillessen S, Pfuhl O, Eisenhauer F, Plewa PM, Bauböck M, Jimenez-Rosales A, Habibi M, Ott T, von Fellenberg S, Gao F, Widmann F, Genzel R (2018) What stellar orbit is needed to measure the spin of the Galactic centre 150 The ngEHT Fundamental Physics SWG black hole from astrometric data? Mon. Not. R. Astron. Soc.476(3):3600–3610. https: //doi.org/10.1093/mnras/sty476. arXiv:1802.08198 [astro-ph.GA] Wald RM (1999) Gravitational Collapse and Cosmic Censorship, Springer Netherlands, Dordrecht, pp 69–86. https://doi.org/10.1007/978-94-017-0934-7_5, URL https:// doi.org/10.1007/978-94-017-0934-7_5 Walker M, Penrose R (1970) On quadratic first integrals of the geodesic equations for type { 22} spacetimes. Communications in Mathematical Physics 18(4):265–274. https://doi.org/10.1007/BF01649445 Walker RC, Hardee PE, Davies F, Ly C, Junor W, Mertens F, Lobanov A (2016)
- [gr-qc] Volonteri M (2010) Formation of Supermassive Black Holes. Astron Astrophys Rev 18:279–315. https://doi.org/10.1007/s00159-010-0029-x. arXiv:1003.4404 [astroph.CO] Volonteri M, Habouzit M, Colpi M (2021) The origins of massive black holes. Nature Rev Phys 3(11):732–743. https://doi.org/10.1038/s42254-021-00364-9. arXiv:2110.10175 [astro-ph.GA] von Zeipel H (1910) Sur l’application des séries de M. Lindstedt à l’étude du mouvement des comètes périodiques. Astronomische Nachrichten 183(22):345. https://doi.org/ 10.1002/asna.19091832202 Vos J, Mościbrodzka MA, Wielgus M (2022) Polarimetric signatures of hot spots in black hole accretion flows. Astron. Astrophys.668:A185. https://doi.org/10.1051/ 0004-6361/202244840. arXiv:2209.09931 [astro-ph.HE] Waisberg I, Dexter J, Gillessen S, Pfuhl O, Eisenhauer F, Plewa PM, Bauböck M, Jimenez-Rosales A, Habibi M, Ott T, von Fellenberg S, Gao F, Widmann F, Genzel R (2018) What stellar orbit is needed to measure the spin of the Galactic centre 150 The ngEHT Fundamental Physics SWG black hole from astrometric data? Mon. Not. R. Astron. Soc.476(3):3600–3610. https: //doi.org/10.1093/mnras/sty476. arXiv:1802.08198 [astro-ph.GA] Wald RM (1999) Gravitational Collapse and Cosmic Censorship, Springer Netherlands, Dordrecht, pp 69–86. https://doi.org/10.1007/978-94-017-0934-7_5, URL https:// doi.org/10.1007/978-94-017-0934-7_5 Walker M, Penrose R (1970) On quadratic first integrals of the geodesic equations for type { 22} spacetimes. Communications in Mathematical Physics 18(4):265–274. https://doi.org/10.1007/BF01649445 Walker RC, Hardee PE, Davies F, Ly C, Junor W, Mertens F, Lobanov A (2016)
- [gr-qc] Volonteri M (2010) Formation of Supermassive Black Holes. Astron Astrophys Rev 18:279–315. https://doi.org/10.1007/s00159-010-0029-x. arXiv:1003.4404 [astroph.CO] Volonteri M, Habouzit M, Colpi M (2021) The origins of massive black holes. Nature Rev Phys 3(11):732–743. https://doi.org/10.1038/s42254-021-00364-9. arXiv:2110.10175 [astro-ph.GA] von Zeipel H (1910) Sur l’application des séries de M. Lindstedt à l’étude du mouvement des comètes périodiques. Astronomische Nachrichten 183(22):345. https://doi.org/ 10.1002/asna.19091832202 Vos J, Mościbrodzka MA, Wielgus M (2022) Polarimetric signatures of hot spots in black hole accretion flows. Astron. Astrophys.668:A185. https://doi.org/10.1051/ 0004-6361/202244840. arXiv:2209.09931 [astro-ph.HE] Waisberg I, Dexter J, Gillessen S, Pfuhl O, Eisenhauer F, Plewa PM, Bauböck M, Jimenez-Rosales A, Habibi M, Ott T, von Fellenberg S, Gao F, Widmann F, Genzel R (2018) What stellar orbit is needed to measure the spin of the Galactic centre 150 The ngEHT Fundamental Physics SWG black hole from astrometric data? Mon. Not. R. Astron. Soc.476(3):3600–3610. https: //doi.org/10.1093/mnras/sty476. arXiv:1802.08198 [astro-ph.GA] Wald RM (1999) Gravitational Collapse and Cosmic Censorship, Springer Netherlands, Dordrecht, pp 69–86. https://doi.org/10.1007/978-94-017-0934-7_5, URL https:// doi.org/10.1007/978-94-017-0934-7_5 Walker M, Penrose R (1970) On quadratic first integrals of the geodesic equations for type { 22} spacetimes. Communications in Mathematical Physics 18(4):265–274. https://doi.org/10.1007/BF01649445 Walker RC, Hardee PE, Davies F, Ly C, Junor W, Mertens F, Lobanov A (2016)
- [gr-qc] Volonteri M (2010) Formation of Supermassive Black Holes. Astron Astrophys Rev 18:279–315. https://doi.org/10.1007/s00159-010-0029-x. arXiv:1003.4404 [astroph.CO] Volonteri M, Habouzit M, Colpi M (2021) The origins of massive black holes. Nature Rev Phys 3(11):732–743. https://doi.org/10.1038/s42254-021-00364-9. arXiv:2110.10175 [astro-ph.GA] von Zeipel H (1910) Sur l’application des séries de M. Lindstedt à l’étude du mouvement des comètes périodiques. Astronomische Nachrichten 183(22):345. https://doi.org/ 10.1002/asna.19091832202 Vos J, Mościbrodzka MA, Wielgus M (2022) Polarimetric signatures of hot spots in black hole accretion flows. Astron. Astrophys.668:A185. https://doi.org/10.1051/ 0004-6361/202244840. arXiv:2209.09931 [astro-ph.HE] Waisberg I, Dexter J, Gillessen S, Pfuhl O, Eisenhauer F, Plewa PM, Bauböck M, Jimenez-Rosales A, Habibi M, Ott T, von Fellenberg S, Gao F, Widmann F, Genzel R (2018) What stellar orbit is needed to measure the spin of the Galactic centre 150 The ngEHT Fundamental Physics SWG black hole from astrometric data? Mon. Not. R. Astron. Soc.476(3):3600–3610. https: //doi.org/10.1093/mnras/sty476. arXiv:1802.08198 [astro-ph.GA] Wald RM (1999) Gravitational Collapse and Cosmic Censorship, Springer Netherlands, Dordrecht, pp 69–86. https://doi.org/10.1007/978-94-017-0934-7_5, URL https:// doi.org/10.1007/978-94-017-0934-7_5 Walker M, Penrose R (1970) On quadratic first integrals of the geodesic equations for type { 22} spacetimes. Communications in Mathematical Physics 18(4):265–274. https://doi.org/10.1007/BF01649445 Walker RC, Hardee PE, Davies F, Ly C, Junor W, Mertens F, Lobanov A (2016)
- [gr-qc] Wang X, Li PC, Zhang CY, Guo M (2020) Novel shadows from the asymmetric thinshell wormhole. Phys Lett B 811:135930. https://doi.org/10.1016/j.physletb.2020. 135930. arXiv:2007.03327
- [gr-qc] Wang Z, Broderick AE (2023) Constraining the Existence of Axion Clouds in M87* with Closure Trace Analyses. arXiv e-prints arXiv:2311.01565 [astro-ph.HE] Wei SW, Liu YX (2021) Testing the nature of Gauss-Bonnet gravity by fourdimensional rotating black hole shadow. Eur Phys J Plus 136(4):436. https://doi. org/10.1140/epjp/s13360-021-01398-9. arXiv:2003.07769
- [gr-qc] Wang Z, Broderick AE (2023) Constraining the Existence of Axion Clouds in M87* with Closure Trace Analyses. arXiv e-prints arXiv:2311.01565 [astro-ph.HE] Wei SW, Liu YX (2021) Testing the nature of Gauss-Bonnet gravity by fourdimensional rotating black hole shadow. Eur Phys J Plus 136(4):436. https://doi. org/10.1140/epjp/s13360-021-01398-9. arXiv:2003.07769
- [gr-qc] Weinberg NN, Milosavljević M, Ghez AM (2005) Stellar Dynamics at the Galactic Center with an Extremely Large Telescope. The Astrophysical Journal 622(2):878– 891. https://doi.org/10.1086/428079. arXiv:astro-ph/0404407
- [astro-ph] Weinberg S (1978) A New Light Boson? Phys Rev Lett 40:223–226. https://doi.org/ 10.1103/PhysRevLett.40.223 Weinberger R, Springel V, Pakmor R, Nelson D, Genel S, Pillepich A, Vogelsberger M, Marinacci F, Naiman J, Torrey P, Hernquist L (2018) Supermassive black holes and their feedback effects in the IllustrisTNG simulation. Mon. Not. R. Astron. Soc.479(3):4056–4072. https://doi.org/10.1093/mnras/ sty1733. arXiv:1710.04659 [astro-ph.GA] Weltman A, et al. (2020) Fundamental physics with the Square Kilometre Array. Publ Astron Soc Austral 37:e002. https://doi.org/10.1017/pasa.2019.42. arXiv:1810.02680 [astro-ph.CO] Wharton RS, Chatterjee S, Cordes JM, Deneva JS, Lazio TJW (2012) Multiwavelength Constraints on Pulsar Populations in the Galactic Center. The Astrophysical Journal 753(2):108. https://doi.org/10.1088/0004-637X/753/2/108. arXiv:1111.4216 [astroph.HE] Wielgus M (2021) Photon rings of spherically symmetric black holes and robust tests of non-Kerr metrics. Phys Rev D 104(12):124058. https://doi.org/10.1103/PhysRevD. 104.124058. arXiv:2109.10840
- [astro-ph] Weinberg S (1978) A New Light Boson? Phys Rev Lett 40:223–226. https://doi.org/ 10.1103/PhysRevLett.40.223 Weinberger R, Springel V, Pakmor R, Nelson D, Genel S, Pillepich A, Vogelsberger M, Marinacci F, Naiman J, Torrey P, Hernquist L (2018) Supermassive black holes and their feedback effects in the IllustrisTNG simulation. Mon. Not. R. Astron. Soc.479(3):4056–4072. https://doi.org/10.1093/mnras/ sty1733. arXiv:1710.04659 [astro-ph.GA] Weltman A, et al. (2020) Fundamental physics with the Square Kilometre Array. Publ Astron Soc Austral 37:e002. https://doi.org/10.1017/pasa.2019.42. arXiv:1810.02680 [astro-ph.CO] Wharton RS, Chatterjee S, Cordes JM, Deneva JS, Lazio TJW (2012) Multiwavelength Constraints on Pulsar Populations in the Galactic Center. The Astrophysical Journal 753(2):108. https://doi.org/10.1088/0004-637X/753/2/108. arXiv:1111.4216 [astroph.HE] Wielgus M (2021) Photon rings of spherically symmetric black holes and robust tests of non-Kerr metrics. Phys Rev D 104(12):124058. https://doi.org/10.1103/PhysRevD. 104.124058. arXiv:2109.10840
- [astro-ph] Weinberg S (1978) A New Light Boson? Phys Rev Lett 40:223–226. https://doi.org/ 10.1103/PhysRevLett.40.223 Weinberger R, Springel V, Pakmor R, Nelson D, Genel S, Pillepich A, Vogelsberger M, Marinacci F, Naiman J, Torrey P, Hernquist L (2018) Supermassive black holes and their feedback effects in the IllustrisTNG simulation. Mon. Not. R. Astron. Soc.479(3):4056–4072. https://doi.org/10.1093/mnras/ sty1733. arXiv:1710.04659 [astro-ph.GA] Weltman A, et al. (2020) Fundamental physics with the Square Kilometre Array. Publ Astron Soc Austral 37:e002. https://doi.org/10.1017/pasa.2019.42. arXiv:1810.02680 [astro-ph.CO] Wharton RS, Chatterjee S, Cordes JM, Deneva JS, Lazio TJW (2012) Multiwavelength Constraints on Pulsar Populations in the Galactic Center. The Astrophysical Journal 753(2):108. https://doi.org/10.1088/0004-637X/753/2/108. arXiv:1111.4216 [astroph.HE] Wielgus M (2021) Photon rings of spherically symmetric black holes and robust tests of non-Kerr metrics. Phys Rev D 104(12):124058. https://doi.org/10.1103/PhysRevD. 104.124058. arXiv:2109.10840
- [astro-ph] Weinberg S (1978) A New Light Boson? Phys Rev Lett 40:223–226. https://doi.org/ 10.1103/PhysRevLett.40.223 Weinberger R, Springel V, Pakmor R, Nelson D, Genel S, Pillepich A, Vogelsberger M, Marinacci F, Naiman J, Torrey P, Hernquist L (2018) Supermassive black holes and their feedback effects in the IllustrisTNG simulation. Mon. Not. R. Astron. Soc.479(3):4056–4072. https://doi.org/10.1093/mnras/ sty1733. arXiv:1710.04659 [astro-ph.GA] Weltman A, et al. (2020) Fundamental physics with the Square Kilometre Array. Publ Astron Soc Austral 37:e002. https://doi.org/10.1017/pasa.2019.42. arXiv:1810.02680 [astro-ph.CO] Wharton RS, Chatterjee S, Cordes JM, Deneva JS, Lazio TJW (2012) Multiwavelength Constraints on Pulsar Populations in the Galactic Center. The Astrophysical Journal 753(2):108. https://doi.org/10.1088/0004-637X/753/2/108. arXiv:1111.4216 [astroph.HE] Wielgus M (2021) Photon rings of spherically symmetric black holes and robust tests of non-Kerr metrics. Phys Rev D 104(12):124058. https://doi.org/10.1103/PhysRevD. 104.124058. arXiv:2109.10840
- [astro-ph] Weinberg S (1978) A New Light Boson? Phys Rev Lett 40:223–226. https://doi.org/ 10.1103/PhysRevLett.40.223 Weinberger R, Springel V, Pakmor R, Nelson D, Genel S, Pillepich A, Vogelsberger M, Marinacci F, Naiman J, Torrey P, Hernquist L (2018) Supermassive black holes and their feedback effects in the IllustrisTNG simulation. Mon. Not. R. Astron. Soc.479(3):4056–4072. https://doi.org/10.1093/mnras/ sty1733. arXiv:1710.04659 [astro-ph.GA] Weltman A, et al. (2020) Fundamental physics with the Square Kilometre Array. Publ Astron Soc Austral 37:e002. https://doi.org/10.1017/pasa.2019.42. arXiv:1810.02680 [astro-ph.CO] Wharton RS, Chatterjee S, Cordes JM, Deneva JS, Lazio TJW (2012) Multiwavelength Constraints on Pulsar Populations in the Galactic Center. The Astrophysical Journal 753(2):108. https://doi.org/10.1088/0004-637X/753/2/108. arXiv:1111.4216 [astroph.HE] Wielgus M (2021) Photon rings of spherically symmetric black holes and robust tests of non-Kerr metrics. Phys Rev D 104(12):124058. https://doi.org/10.1103/PhysRevD. 104.124058. arXiv:2109.10840
- [gr-qc] Wielgus M, et al (2022) Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophys. J. Lett.930(2):L19. https: //doi.org/10.3847/2041-8213/ac6428 Wielgus M, Akiyama K, et al (2020) Monitoring the Morphology of M87* in 2009-2017 with the Event Horizon Telescope. Astrophys. J.901(1):67. https://doi.org/10.3847/ 1538-4357/abac0d. arXiv:2009.11842 [astro-ph.HE] Fundamental Physics Opportunities with the ngEHT 151 Wielgus M, Horak J, Vincent F, Abramowicz M (2020) Reflection-asymmetric wormholes and their double shadows. Phys Rev D 102(8):084044. https://doi.org/10.1103/ PhysRevD.102.084044. arXiv:2008.10130
- [gr-qc] Wielgus M, et al (2022) Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophys. J. Lett.930(2):L19. https: //doi.org/10.3847/2041-8213/ac6428 Wielgus M, Akiyama K, et al (2020) Monitoring the Morphology of M87* in 2009-2017 with the Event Horizon Telescope. Astrophys. J.901(1):67. https://doi.org/10.3847/ 1538-4357/abac0d. arXiv:2009.11842 [astro-ph.HE] Fundamental Physics Opportunities with the ngEHT 151 Wielgus M, Horak J, Vincent F, Abramowicz M (2020) Reflection-asymmetric wormholes and their double shadows. Phys Rev D 102(8):084044. https://doi.org/10.1103/ PhysRevD.102.084044. arXiv:2008.10130
- [gr-qc] Wielgus M, et al (2022) Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophys. J. Lett.930(2):L19. https: //doi.org/10.3847/2041-8213/ac6428 Wielgus M, Akiyama K, et al (2020) Monitoring the Morphology of M87* in 2009-2017 with the Event Horizon Telescope. Astrophys. J.901(1):67. https://doi.org/10.3847/ 1538-4357/abac0d. arXiv:2009.11842 [astro-ph.HE] Fundamental Physics Opportunities with the ngEHT 151 Wielgus M, Horak J, Vincent F, Abramowicz M (2020) Reflection-asymmetric wormholes and their double shadows. Phys Rev D 102(8):084044. https://doi.org/10.1103/ PhysRevD.102.084044. arXiv:2008.10130
- [gr-qc] Wielgus M, Moscibrodzka M, Vos J, Gelles Z, Martí-Vidal I, Farah J, Marchili N, Goddi C, Messias H (2022) Orbital motion near Sagittarius A∗ . Constraints from polarimetric ALMA observations. Astron. Astrophys.665:L6. https://doi.org/10.1051/ 0004-6361/202244493. arXiv:2209.09926 [astro-ph.HE] Wilczek F (1978) Problem of Strong P and T Invariance in the Presence of Instantons. Phys Rev Lett 40:279–282. https://doi.org/10.1103/PhysRevLett.40.279 Will CM (2008) Testing the general relativistic no-hair theorems using the Galactic center black hole SgrA*. Astrophys J Lett 674:L25–L28. https://doi.org/10.1086/ 528847. arXiv:0711.1677
- [gr-qc] Wielgus M, Moscibrodzka M, Vos J, Gelles Z, Martí-Vidal I, Farah J, Marchili N, Goddi C, Messias H (2022) Orbital motion near Sagittarius A∗ . Constraints from polarimetric ALMA observations. Astron. Astrophys.665:L6. https://doi.org/10.1051/ 0004-6361/202244493. arXiv:2209.09926 [astro-ph.HE] Wilczek F (1978) Problem of Strong P and T Invariance in the Presence of Instantons. Phys Rev Lett 40:279–282. https://doi.org/10.1103/PhysRevLett.40.279 Will CM (2008) Testing the general relativistic no-hair theorems using the Galactic center black hole SgrA*. Astrophys J Lett 674:L25–L28. https://doi.org/10.1086/ 528847. arXiv:0711.1677
- [gr-qc] Wielgus M, Moscibrodzka M, Vos J, Gelles Z, Martí-Vidal I, Farah J, Marchili N, Goddi C, Messias H (2022) Orbital motion near Sagittarius A∗ . Constraints from polarimetric ALMA observations. Astron. Astrophys.665:L6. https://doi.org/10.1051/ 0004-6361/202244493. arXiv:2209.09926 [astro-ph.HE] Wilczek F (1978) Problem of Strong P and T Invariance in the Presence of Instantons. Phys Rev Lett 40:279–282. https://doi.org/10.1103/PhysRevLett.40.279 Will CM (2008) Testing the general relativistic no-hair theorems using the Galactic center black hole SgrA*. Astrophys J Lett 674:L25–L28. https://doi.org/10.1086/ 528847. arXiv:0711.1677
- [astro-ph] Will CM (2014) The Confrontation between General Relativity and Experiment. Living Rev Rel 17:4. https://doi.org/10.12942/lrr-2014-4. arXiv:1403.7377
- [gr-qc] Witzel G, Eckart A, Bremer M, Zamaninasab M, Shahzamanian B, Valencia-S M, Schödel R, Karas V, Lenzen R, Marchili N, Sabha N, Garcia-Marin M, Buchholz RM, Kunneriath D, Straubmeier C (2012) Source-intrinsic Near-infrared Properties of Sgr A*: Total Intensity Measurements. Astrophys. J. Suppl.203(2):18. https:// doi.org/10.1088/0067-0049/203/2/18. arXiv:1208.5836 [astro-ph.HE] Witzel G, et al. (2012) Source-intrinsic near-infrared properties of Sgr A*: Total intensity measurements. Astrophys J Suppl 203:18. https://doi.org/10.1088/0067-0049/ 203/2/18. arXiv:1208.5836 [astro-ph.HE] Wong GN (2021) Black Hole Glimmer Signatures of Mass, Spin, and Inclination. Astrophys. J.909(2):217. https://doi.org/10.3847/1538-4357/abdd2d. arXiv:2009.06641 [astro-ph.HE] Wong GN (2021) Black Hole Glimmer Signatures of Mass, Spin, and Inclination. Astrophys J 909(2):217. https://doi.org/10.3847/1538-4357/abdd2d. arXiv:2009.06641 [astro-ph.HE] Wong GN, Prather BS, Dhruv V, Ryan BR, Moscibrodzka M, Chan Ck, Joshi AV, Yarza R, Ricarte A, Shiokawa H, Dolence JC, Noble SC, McKinney JC, Gammie CF (2022) PATOKA: Simulating Electromagnetic Observables of Black Hole Accretion. arXiv e-prints arXiv:2202.11721. arXiv:2202.11721 [astro-ph.HE] Workman RL, et al. (2022) Review of Particle Physics. PTEP 2022:083C01. https: //doi.org/10.1093/ptep/ptac097 Xie Y, Zhang J, Silva HO, de Rham C, Witek H, Yunes N (2021) Square Peg in a Circular Hole: Choosing the Right Ansatz for Isolated Black Holes in Generic Gravitational Theories. Phys Rev Lett 126(24):241104. https://doi.org/10.1103/PhysRevLett.126. 241104. arXiv:2103.03925
- [gr-qc] Witzel G, Eckart A, Bremer M, Zamaninasab M, Shahzamanian B, Valencia-S M, Schödel R, Karas V, Lenzen R, Marchili N, Sabha N, Garcia-Marin M, Buchholz RM, Kunneriath D, Straubmeier C (2012) Source-intrinsic Near-infrared Properties of Sgr A*: Total Intensity Measurements. Astrophys. J. Suppl.203(2):18. https:// doi.org/10.1088/0067-0049/203/2/18. arXiv:1208.5836 [astro-ph.HE] Witzel G, et al. (2012) Source-intrinsic near-infrared properties of Sgr A*: Total intensity measurements. Astrophys J Suppl 203:18. https://doi.org/10.1088/0067-0049/ 203/2/18. arXiv:1208.5836 [astro-ph.HE] Wong GN (2021) Black Hole Glimmer Signatures of Mass, Spin, and Inclination. Astrophys. J.909(2):217. https://doi.org/10.3847/1538-4357/abdd2d. arXiv:2009.06641 [astro-ph.HE] Wong GN (2021) Black Hole Glimmer Signatures of Mass, Spin, and Inclination. Astrophys J 909(2):217. https://doi.org/10.3847/1538-4357/abdd2d. arXiv:2009.06641 [astro-ph.HE] Wong GN, Prather BS, Dhruv V, Ryan BR, Moscibrodzka M, Chan Ck, Joshi AV, Yarza R, Ricarte A, Shiokawa H, Dolence JC, Noble SC, McKinney JC, Gammie CF (2022) PATOKA: Simulating Electromagnetic Observables of Black Hole Accretion. arXiv e-prints arXiv:2202.11721. arXiv:2202.11721 [astro-ph.HE] Workman RL, et al. (2022) Review of Particle Physics. PTEP 2022:083C01. https: //doi.org/10.1093/ptep/ptac097 Xie Y, Zhang J, Silva HO, de Rham C, Witek H, Yunes N (2021) Square Peg in a Circular Hole: Choosing the Right Ansatz for Isolated Black Holes in Generic Gravitational Theories. Phys Rev Lett 126(24):241104. https://doi.org/10.1103/PhysRevLett.126. 241104. arXiv:2103.03925
- [gr-qc] Witzel G, Eckart A, Bremer M, Zamaninasab M, Shahzamanian B, Valencia-S M, Schödel R, Karas V, Lenzen R, Marchili N, Sabha N, Garcia-Marin M, Buchholz RM, Kunneriath D, Straubmeier C (2012) Source-intrinsic Near-infrared Properties of Sgr A*: Total Intensity Measurements. Astrophys. J. Suppl.203(2):18. https:// doi.org/10.1088/0067-0049/203/2/18. arXiv:1208.5836 [astro-ph.HE] Witzel G, et al. (2012) Source-intrinsic near-infrared properties of Sgr A*: Total intensity measurements. Astrophys J Suppl 203:18. https://doi.org/10.1088/0067-0049/ 203/2/18. arXiv:1208.5836 [astro-ph.HE] Wong GN (2021) Black Hole Glimmer Signatures of Mass, Spin, and Inclination. Astrophys. J.909(2):217. https://doi.org/10.3847/1538-4357/abdd2d. arXiv:2009.06641 [astro-ph.HE] Wong GN (2021) Black Hole Glimmer Signatures of Mass, Spin, and Inclination. Astrophys J 909(2):217. https://doi.org/10.3847/1538-4357/abdd2d. arXiv:2009.06641 [astro-ph.HE] Wong GN, Prather BS, Dhruv V, Ryan BR, Moscibrodzka M, Chan Ck, Joshi AV, Yarza R, Ricarte A, Shiokawa H, Dolence JC, Noble SC, McKinney JC, Gammie CF (2022) PATOKA: Simulating Electromagnetic Observables of Black Hole Accretion. arXiv e-prints arXiv:2202.11721. arXiv:2202.11721 [astro-ph.HE] Workman RL, et al. (2022) Review of Particle Physics. PTEP 2022:083C01. https: //doi.org/10.1093/ptep/ptac097 Xie Y, Zhang J, Silva HO, de Rham C, Witek H, Yunes N (2021) Square Peg in a Circular Hole: Choosing the Right Ansatz for Isolated Black Holes in Generic Gravitational Theories. Phys Rev Lett 126(24):241104. https://doi.org/10.1103/PhysRevLett.126. 241104. arXiv:2103.03925
- [gr-qc] Witzel G, Eckart A, Bremer M, Zamaninasab M, Shahzamanian B, Valencia-S M, Schödel R, Karas V, Lenzen R, Marchili N, Sabha N, Garcia-Marin M, Buchholz RM, Kunneriath D, Straubmeier C (2012) Source-intrinsic Near-infrared Properties of Sgr A*: Total Intensity Measurements. Astrophys. J. Suppl.203(2):18. https:// doi.org/10.1088/0067-0049/203/2/18. arXiv:1208.5836 [astro-ph.HE] Witzel G, et al. (2012) Source-intrinsic near-infrared properties of Sgr A*: Total intensity measurements. Astrophys J Suppl 203:18. https://doi.org/10.1088/0067-0049/ 203/2/18. arXiv:1208.5836 [astro-ph.HE] Wong GN (2021) Black Hole Glimmer Signatures of Mass, Spin, and Inclination. Astrophys. J.909(2):217. https://doi.org/10.3847/1538-4357/abdd2d. arXiv:2009.06641 [astro-ph.HE] Wong GN (2021) Black Hole Glimmer Signatures of Mass, Spin, and Inclination. Astrophys J 909(2):217. https://doi.org/10.3847/1538-4357/abdd2d. arXiv:2009.06641 [astro-ph.HE] Wong GN, Prather BS, Dhruv V, Ryan BR, Moscibrodzka M, Chan Ck, Joshi AV, Yarza R, Ricarte A, Shiokawa H, Dolence JC, Noble SC, McKinney JC, Gammie CF (2022) PATOKA: Simulating Electromagnetic Observables of Black Hole Accretion. arXiv e-prints arXiv:2202.11721. arXiv:2202.11721 [astro-ph.HE] Workman RL, et al. (2022) Review of Particle Physics. PTEP 2022:083C01. https: //doi.org/10.1093/ptep/ptac097 Xie Y, Zhang J, Silva HO, de Rham C, Witek H, Yunes N (2021) Square Peg in a Circular Hole: Choosing the Right Ansatz for Isolated Black Holes in Generic Gravitational Theories. Phys Rev Lett 126(24):241104. https://doi.org/10.1103/PhysRevLett.126. 241104. arXiv:2103.03925
- [gr-qc] Witzel G, Eckart A, Bremer M, Zamaninasab M, Shahzamanian B, Valencia-S M, Schödel R, Karas V, Lenzen R, Marchili N, Sabha N, Garcia-Marin M, Buchholz RM, Kunneriath D, Straubmeier C (2012) Source-intrinsic Near-infrared Properties of Sgr A*: Total Intensity Measurements. Astrophys. J. Suppl.203(2):18. https:// doi.org/10.1088/0067-0049/203/2/18. arXiv:1208.5836 [astro-ph.HE] Witzel G, et al. (2012) Source-intrinsic near-infrared properties of Sgr A*: Total intensity measurements. Astrophys J Suppl 203:18. https://doi.org/10.1088/0067-0049/ 203/2/18. arXiv:1208.5836 [astro-ph.HE] Wong GN (2021) Black Hole Glimmer Signatures of Mass, Spin, and Inclination. Astrophys. J.909(2):217. https://doi.org/10.3847/1538-4357/abdd2d. arXiv:2009.06641 [astro-ph.HE] Wong GN (2021) Black Hole Glimmer Signatures of Mass, Spin, and Inclination. Astrophys J 909(2):217. https://doi.org/10.3847/1538-4357/abdd2d. arXiv:2009.06641 [astro-ph.HE] Wong GN, Prather BS, Dhruv V, Ryan BR, Moscibrodzka M, Chan Ck, Joshi AV, Yarza R, Ricarte A, Shiokawa H, Dolence JC, Noble SC, McKinney JC, Gammie CF (2022) PATOKA: Simulating Electromagnetic Observables of Black Hole Accretion. arXiv e-prints arXiv:2202.11721. arXiv:2202.11721 [astro-ph.HE] Workman RL, et al. (2022) Review of Particle Physics. PTEP 2022:083C01. https: //doi.org/10.1093/ptep/ptac097 Xie Y, Zhang J, Silva HO, de Rham C, Witek H, Yunes N (2021) Square Peg in a Circular Hole: Choosing the Right Ansatz for Isolated Black Holes in Generic Gravitational Theories. Phys Rev Lett 126(24):241104. https://doi.org/10.1103/PhysRevLett.126. 241104. arXiv:2103.03925
- [gr-qc] Witzel G, Eckart A, Bremer M, Zamaninasab M, Shahzamanian B, Valencia-S M, Schödel R, Karas V, Lenzen R, Marchili N, Sabha N, Garcia-Marin M, Buchholz RM, Kunneriath D, Straubmeier C (2012) Source-intrinsic Near-infrared Properties of Sgr A*: Total Intensity Measurements. Astrophys. J. Suppl.203(2):18. https:// doi.org/10.1088/0067-0049/203/2/18. arXiv:1208.5836 [astro-ph.HE] Witzel G, et al. (2012) Source-intrinsic near-infrared properties of Sgr A*: Total intensity measurements. Astrophys J Suppl 203:18. https://doi.org/10.1088/0067-0049/ 203/2/18. arXiv:1208.5836 [astro-ph.HE] Wong GN (2021) Black Hole Glimmer Signatures of Mass, Spin, and Inclination. Astrophys. J.909(2):217. https://doi.org/10.3847/1538-4357/abdd2d. arXiv:2009.06641 [astro-ph.HE] Wong GN (2021) Black Hole Glimmer Signatures of Mass, Spin, and Inclination. Astrophys J 909(2):217. https://doi.org/10.3847/1538-4357/abdd2d. arXiv:2009.06641 [astro-ph.HE] Wong GN, Prather BS, Dhruv V, Ryan BR, Moscibrodzka M, Chan Ck, Joshi AV, Yarza R, Ricarte A, Shiokawa H, Dolence JC, Noble SC, McKinney JC, Gammie CF (2022) PATOKA: Simulating Electromagnetic Observables of Black Hole Accretion. arXiv e-prints arXiv:2202.11721. arXiv:2202.11721 [astro-ph.HE] Workman RL, et al. (2022) Review of Particle Physics. PTEP 2022:083C01. https: //doi.org/10.1093/ptep/ptac097 Xie Y, Zhang J, Silva HO, de Rham C, Witek H, Yunes N (2021) Square Peg in a Circular Hole: Choosing the Right Ansatz for Isolated Black Holes in Generic Gravitational Theories. Phys Rev Lett 126(24):241104. https://doi.org/10.1103/PhysRevLett.126. 241104. arXiv:2103.03925
- [gr-qc] Witzel G, Eckart A, Bremer M, Zamaninasab M, Shahzamanian B, Valencia-S M, Schödel R, Karas V, Lenzen R, Marchili N, Sabha N, Garcia-Marin M, Buchholz RM, Kunneriath D, Straubmeier C (2012) Source-intrinsic Near-infrared Properties of Sgr A*: Total Intensity Measurements. Astrophys. J. Suppl.203(2):18. https:// doi.org/10.1088/0067-0049/203/2/18. arXiv:1208.5836 [astro-ph.HE] Witzel G, et al. (2012) Source-intrinsic near-infrared properties of Sgr A*: Total intensity measurements. Astrophys J Suppl 203:18. https://doi.org/10.1088/0067-0049/ 203/2/18. arXiv:1208.5836 [astro-ph.HE] Wong GN (2021) Black Hole Glimmer Signatures of Mass, Spin, and Inclination. Astrophys. J.909(2):217. https://doi.org/10.3847/1538-4357/abdd2d. arXiv:2009.06641 [astro-ph.HE] Wong GN (2021) Black Hole Glimmer Signatures of Mass, Spin, and Inclination. Astrophys J 909(2):217. https://doi.org/10.3847/1538-4357/abdd2d. arXiv:2009.06641 [astro-ph.HE] Wong GN, Prather BS, Dhruv V, Ryan BR, Moscibrodzka M, Chan Ck, Joshi AV, Yarza R, Ricarte A, Shiokawa H, Dolence JC, Noble SC, McKinney JC, Gammie CF (2022) PATOKA: Simulating Electromagnetic Observables of Black Hole Accretion. arXiv e-prints arXiv:2202.11721. arXiv:2202.11721 [astro-ph.HE] Workman RL, et al. (2022) Review of Particle Physics. PTEP 2022:083C01. https: //doi.org/10.1093/ptep/ptac097 Xie Y, Zhang J, Silva HO, de Rham C, Witek H, Yunes N (2021) Square Peg in a Circular Hole: Choosing the Right Ansatz for Isolated Black Holes in Generic Gravitational Theories. Phys Rev Lett 126(24):241104. https://doi.org/10.1103/PhysRevLett.126. 241104. arXiv:2103.03925
- [gr-qc] Yadav J, Das M, Barway S, Combes F (2021) A triple active galactic nucleus in the NGC 7733-7734 merging group. Astron. Astrophys.651:L9. https://doi.org/10.1051/ 0004-6361/202141210 Yagi K, Yunes N, Tanaka T (2012) Slowly Rotating Black Holes in Dynamical ChernSimons Gravity: Deformation Quadratic in the Spin. Phys Rev D 86:044037. https: //doi.org/10.1103/PhysRevD.86.044037, [Erratum: Phys.Rev.D 89, 049902 (2014)]. arXiv:1206.6130
- [gr-qc] Yadav J, Das M, Barway S, Combes F (2021) A triple active galactic nucleus in the NGC 7733-7734 merging group. Astron. Astrophys.651:L9. https://doi.org/10.1051/ 0004-6361/202141210 Yagi K, Yunes N, Tanaka T (2012) Slowly Rotating Black Holes in Dynamical ChernSimons Gravity: Deformation Quadratic in the Spin. Phys Rev D 86:044037. https: //doi.org/10.1103/PhysRevD.86.044037, [Erratum: Phys.Rev.D 89, 049902 (2014)]. arXiv:1206.6130
- [gr-qc] Yadav J, Das M, Barway S, Combes F (2021) A triple active galactic nucleus in the NGC 7733-7734 merging group. Astron. Astrophys.651:L9. https://doi.org/10.1051/ 0004-6361/202141210 Yagi K, Yunes N, Tanaka T (2012) Slowly Rotating Black Holes in Dynamical ChernSimons Gravity: Deformation Quadratic in the Spin. Phys Rev D 86:044037. https: //doi.org/10.1103/PhysRevD.86.044037, [Erratum: Phys.Rev.D 89, 049902 (2014)]. arXiv:1206.6130
- [gr-qc] Yang H, Zimmerman A, Zenginoğlu A, Zhang F, Berti E, Chen Y (2013) Quasinormal modes of nearly extremal Kerr spacetimes: spectrum bifurcation and power-law ringdown. Phys Rev D 88(4):044047. https://doi.org/10.1103/PhysRevD.88.044047. arXiv:1307.8086
- [gr-qc] 152 The ngEHT Fundamental Physics SWG Yang SC, Luo H, Zhang YH, Zhang C (2022) Measurement of the Central Galactic Black Hole by Extremely Large Mass-Ratio Inspirals. Symmetry 14(12):2558. https: //doi.org/10.3390/sym14122558. arXiv:2207.01977
- [gr-qc] Yoshino H, Kodama H (2012) Bosenova collapse of axion cloud around a rotating black hole. Prog Theor Phys 128:153–190. https://doi.org/10.1143/PTP.128.153. arXiv:1203.5070
- [gr-qc] Younsi Z (2024) Imaging black holes with the Event Horizon Telescope: an introduction. Contemporary Physics Younsi Z, Wu K (2015) Variations in emission from episodic plasmoid ejecta around black holes. Mon. Not. R. Astron. Soc.454(3):3283–3298. https://doi.org/10.1093/ mnras/stv2203. arXiv:1510.01700 [astro-ph.HE] Younsi Z, Wu K, Fuerst SV (2012) General relativistic radiative transfer: formulation and emission from structured tori around black holes. Astron. Astrophys.545:A13. https://doi.org/10.1051/0004-6361/201219599. arXiv:1207.4234 [astro-ph.HE] Younsi Z, Zhidenko A, Rezzolla L, Konoplya R, Mizuno Y (2016) New method for shadow calculations: Application to parametrized axisymmetric black holes. Phys. Rev. D94(8):084025. https://doi.org/10.1103/PhysRevD.94.084025. arXiv:1607.05767
- [gr-qc] Younsi Z (2024) Imaging black holes with the Event Horizon Telescope: an introduction. Contemporary Physics Younsi Z, Wu K (2015) Variations in emission from episodic plasmoid ejecta around black holes. Mon. Not. R. Astron. Soc.454(3):3283–3298. https://doi.org/10.1093/ mnras/stv2203. arXiv:1510.01700 [astro-ph.HE] Younsi Z, Wu K, Fuerst SV (2012) General relativistic radiative transfer: formulation and emission from structured tori around black holes. Astron. Astrophys.545:A13. https://doi.org/10.1051/0004-6361/201219599. arXiv:1207.4234 [astro-ph.HE] Younsi Z, Zhidenko A, Rezzolla L, Konoplya R, Mizuno Y (2016) New method for shadow calculations: Application to parametrized axisymmetric black holes. Phys. Rev. D94(8):084025. https://doi.org/10.1103/PhysRevD.94.084025. arXiv:1607.05767
- [gr-qc] Younsi Z (2024) Imaging black holes with the Event Horizon Telescope: an introduction. Contemporary Physics Younsi Z, Wu K (2015) Variations in emission from episodic plasmoid ejecta around black holes. Mon. Not. R. Astron. Soc.454(3):3283–3298. https://doi.org/10.1093/ mnras/stv2203. arXiv:1510.01700 [astro-ph.HE] Younsi Z, Wu K, Fuerst SV (2012) General relativistic radiative transfer: formulation and emission from structured tori around black holes. Astron. Astrophys.545:A13. https://doi.org/10.1051/0004-6361/201219599. arXiv:1207.4234 [astro-ph.HE] Younsi Z, Zhidenko A, Rezzolla L, Konoplya R, Mizuno Y (2016) New method for shadow calculations: Application to parametrized axisymmetric black holes. Phys. Rev. D94(8):084025. https://doi.org/10.1103/PhysRevD.94.084025. arXiv:1607.05767
- [gr-qc] Younsi Z, Psaltis D, Özel F (2023) Black Hole Images as Tests of General Relativity: Effects of Spacetime Geometry. Astrophys. J.942(1):47. https://doi.org/10.3847/ 1538-4357/aca58a. arXiv:2111.01752 [astro-ph.HE] Yu Q, Zhang F, Lu Y (2016) Prospects for Constraining the Spin of the Massive Black Hole at the Galactic Center via the Relativistic Motion of a Surrounding Star. Astrophys. J.827(2):114. https://doi.org/10.3847/0004-637X/827/2/114. arXiv:1606.07725 [astro-ph.HE] Yu Z, Jiang Q, Abdikamalov AB, Ayzenberg D, Bambi C, Liu H, Nampalliwar S, Tripathi A (2021) Constraining the Konoplya-Rezzolla-Zhidenko deformation parameters. II. Limits from stellar-mass black hole x-ray data. Phys Rev D 104(8):084035. https://doi.org/10.1103/PhysRevD.104.084035. arXiv:2106.11658 [astro-ph.HE] Yuan GW, Xia ZQ, Tang C, Zhao Y, Cai YF, Chen Y, Shu J, Yuan Q (2021) Testing the ALP-photon coupling with polarization measurements of Sagittarius A∗ . JCAP 03:018. https://doi.org/10.1088/1475-7516/2021/03/018. arXiv:2008.13662 [astroph.HE] Yuan GW, Shen ZQ, Tsai YLS, Yuan Q, Fan YZ (2022) Constraining ultralight bosonic dark matter with Keck observations of S2’s orbit and kinematics. Phys Rev D 106(10):103024. https://doi.org/10.1103/PhysRevD.106.103024. arXiv:2205.04970 [astro-ph.HE] Yuan Q, Zhang M, Liu X, Jiang PF, Kokhirova GI (2023) Correlation Analysis between OJ 287 Radio Jet Observables. Astrophys. J.949(1):20. https://doi.org/10. 3847/1538-4357/acc5ec Yunes N, Pretorius F (2009) Dynamical Chern-Simons Modified Gravity. I. Spinning Black Holes in the Slow-Rotation Approximation. Phys Rev D 79:084043. https: //doi.org/10.1103/PhysRevD.79.084043. arXiv:0902.4669
- [gr-qc] Younsi Z, Psaltis D, Özel F (2023) Black Hole Images as Tests of General Relativity: Effects of Spacetime Geometry. Astrophys. J.942(1):47. https://doi.org/10.3847/ 1538-4357/aca58a. arXiv:2111.01752 [astro-ph.HE] Yu Q, Zhang F, Lu Y (2016) Prospects for Constraining the Spin of the Massive Black Hole at the Galactic Center via the Relativistic Motion of a Surrounding Star. Astrophys. J.827(2):114. https://doi.org/10.3847/0004-637X/827/2/114. arXiv:1606.07725 [astro-ph.HE] Yu Z, Jiang Q, Abdikamalov AB, Ayzenberg D, Bambi C, Liu H, Nampalliwar S, Tripathi A (2021) Constraining the Konoplya-Rezzolla-Zhidenko deformation parameters. II. Limits from stellar-mass black hole x-ray data. Phys Rev D 104(8):084035. https://doi.org/10.1103/PhysRevD.104.084035. arXiv:2106.11658 [astro-ph.HE] Yuan GW, Xia ZQ, Tang C, Zhao Y, Cai YF, Chen Y, Shu J, Yuan Q (2021) Testing the ALP-photon coupling with polarization measurements of Sagittarius A∗ . JCAP 03:018. https://doi.org/10.1088/1475-7516/2021/03/018. arXiv:2008.13662 [astroph.HE] Yuan GW, Shen ZQ, Tsai YLS, Yuan Q, Fan YZ (2022) Constraining ultralight bosonic dark matter with Keck observations of S2’s orbit and kinematics. Phys Rev D 106(10):103024. https://doi.org/10.1103/PhysRevD.106.103024. arXiv:2205.04970 [astro-ph.HE] Yuan Q, Zhang M, Liu X, Jiang PF, Kokhirova GI (2023) Correlation Analysis between OJ 287 Radio Jet Observables. Astrophys. J.949(1):20. https://doi.org/10. 3847/1538-4357/acc5ec Yunes N, Pretorius F (2009) Dynamical Chern-Simons Modified Gravity. I. Spinning Black Holes in the Slow-Rotation Approximation. Phys Rev D 79:084043. https: //doi.org/10.1103/PhysRevD.79.084043. arXiv:0902.4669
- [gr-qc] Younsi Z, Psaltis D, Özel F (2023) Black Hole Images as Tests of General Relativity: Effects of Spacetime Geometry. Astrophys. J.942(1):47. https://doi.org/10.3847/ 1538-4357/aca58a. arXiv:2111.01752 [astro-ph.HE] Yu Q, Zhang F, Lu Y (2016) Prospects for Constraining the Spin of the Massive Black Hole at the Galactic Center via the Relativistic Motion of a Surrounding Star. Astrophys. J.827(2):114. https://doi.org/10.3847/0004-637X/827/2/114. arXiv:1606.07725 [astro-ph.HE] Yu Z, Jiang Q, Abdikamalov AB, Ayzenberg D, Bambi C, Liu H, Nampalliwar S, Tripathi A (2021) Constraining the Konoplya-Rezzolla-Zhidenko deformation parameters. II. Limits from stellar-mass black hole x-ray data. Phys Rev D 104(8):084035. https://doi.org/10.1103/PhysRevD.104.084035. arXiv:2106.11658 [astro-ph.HE] Yuan GW, Xia ZQ, Tang C, Zhao Y, Cai YF, Chen Y, Shu J, Yuan Q (2021) Testing the ALP-photon coupling with polarization measurements of Sagittarius A∗ . JCAP 03:018. https://doi.org/10.1088/1475-7516/2021/03/018. arXiv:2008.13662 [astroph.HE] Yuan GW, Shen ZQ, Tsai YLS, Yuan Q, Fan YZ (2022) Constraining ultralight bosonic dark matter with Keck observations of S2’s orbit and kinematics. Phys Rev D 106(10):103024. https://doi.org/10.1103/PhysRevD.106.103024. arXiv:2205.04970 [astro-ph.HE] Yuan Q, Zhang M, Liu X, Jiang PF, Kokhirova GI (2023) Correlation Analysis between OJ 287 Radio Jet Observables. Astrophys. J.949(1):20. https://doi.org/10. 3847/1538-4357/acc5ec Yunes N, Pretorius F (2009) Dynamical Chern-Simons Modified Gravity. I. Spinning Black Holes in the Slow-Rotation Approximation. Phys Rev D 79:084043. https: //doi.org/10.1103/PhysRevD.79.084043. arXiv:0902.4669
- [gr-qc] Younsi Z, Psaltis D, Özel F (2023) Black Hole Images as Tests of General Relativity: Effects of Spacetime Geometry. Astrophys. J.942(1):47. https://doi.org/10.3847/ 1538-4357/aca58a. arXiv:2111.01752 [astro-ph.HE] Yu Q, Zhang F, Lu Y (2016) Prospects for Constraining the Spin of the Massive Black Hole at the Galactic Center via the Relativistic Motion of a Surrounding Star. Astrophys. J.827(2):114. https://doi.org/10.3847/0004-637X/827/2/114. arXiv:1606.07725 [astro-ph.HE] Yu Z, Jiang Q, Abdikamalov AB, Ayzenberg D, Bambi C, Liu H, Nampalliwar S, Tripathi A (2021) Constraining the Konoplya-Rezzolla-Zhidenko deformation parameters. II. Limits from stellar-mass black hole x-ray data. Phys Rev D 104(8):084035. https://doi.org/10.1103/PhysRevD.104.084035. arXiv:2106.11658 [astro-ph.HE] Yuan GW, Xia ZQ, Tang C, Zhao Y, Cai YF, Chen Y, Shu J, Yuan Q (2021) Testing the ALP-photon coupling with polarization measurements of Sagittarius A∗ . JCAP 03:018. https://doi.org/10.1088/1475-7516/2021/03/018. arXiv:2008.13662 [astroph.HE] Yuan GW, Shen ZQ, Tsai YLS, Yuan Q, Fan YZ (2022) Constraining ultralight bosonic dark matter with Keck observations of S2’s orbit and kinematics. Phys Rev D 106(10):103024. https://doi.org/10.1103/PhysRevD.106.103024. arXiv:2205.04970 [astro-ph.HE] Yuan Q, Zhang M, Liu X, Jiang PF, Kokhirova GI (2023) Correlation Analysis between OJ 287 Radio Jet Observables. Astrophys. J.949(1):20. https://doi.org/10. 3847/1538-4357/acc5ec Yunes N, Pretorius F (2009) Dynamical Chern-Simons Modified Gravity. I. Spinning Black Holes in the Slow-Rotation Approximation. Phys Rev D 79:084043. https: //doi.org/10.1103/PhysRevD.79.084043. arXiv:0902.4669
- [gr-qc] Younsi Z, Psaltis D, Özel F (2023) Black Hole Images as Tests of General Relativity: Effects of Spacetime Geometry. Astrophys. J.942(1):47. https://doi.org/10.3847/ 1538-4357/aca58a. arXiv:2111.01752 [astro-ph.HE] Yu Q, Zhang F, Lu Y (2016) Prospects for Constraining the Spin of the Massive Black Hole at the Galactic Center via the Relativistic Motion of a Surrounding Star. Astrophys. J.827(2):114. https://doi.org/10.3847/0004-637X/827/2/114. arXiv:1606.07725 [astro-ph.HE] Yu Z, Jiang Q, Abdikamalov AB, Ayzenberg D, Bambi C, Liu H, Nampalliwar S, Tripathi A (2021) Constraining the Konoplya-Rezzolla-Zhidenko deformation parameters. II. Limits from stellar-mass black hole x-ray data. Phys Rev D 104(8):084035. https://doi.org/10.1103/PhysRevD.104.084035. arXiv:2106.11658 [astro-ph.HE] Yuan GW, Xia ZQ, Tang C, Zhao Y, Cai YF, Chen Y, Shu J, Yuan Q (2021) Testing the ALP-photon coupling with polarization measurements of Sagittarius A∗ . JCAP 03:018. https://doi.org/10.1088/1475-7516/2021/03/018. arXiv:2008.13662 [astroph.HE] Yuan GW, Shen ZQ, Tsai YLS, Yuan Q, Fan YZ (2022) Constraining ultralight bosonic dark matter with Keck observations of S2’s orbit and kinematics. Phys Rev D 106(10):103024. https://doi.org/10.1103/PhysRevD.106.103024. arXiv:2205.04970 [astro-ph.HE] Yuan Q, Zhang M, Liu X, Jiang PF, Kokhirova GI (2023) Correlation Analysis between OJ 287 Radio Jet Observables. Astrophys. J.949(1):20. https://doi.org/10. 3847/1538-4357/acc5ec Yunes N, Pretorius F (2009) Dynamical Chern-Simons Modified Gravity. I. Spinning Black Holes in the Slow-Rotation Approximation. Phys Rev D 79:084043. https: //doi.org/10.1103/PhysRevD.79.084043. arXiv:0902.4669
- [gr-qc] Younsi Z, Psaltis D, Özel F (2023) Black Hole Images as Tests of General Relativity: Effects of Spacetime Geometry. Astrophys. J.942(1):47. https://doi.org/10.3847/ 1538-4357/aca58a. arXiv:2111.01752 [astro-ph.HE] Yu Q, Zhang F, Lu Y (2016) Prospects for Constraining the Spin of the Massive Black Hole at the Galactic Center via the Relativistic Motion of a Surrounding Star. Astrophys. J.827(2):114. https://doi.org/10.3847/0004-637X/827/2/114. arXiv:1606.07725 [astro-ph.HE] Yu Z, Jiang Q, Abdikamalov AB, Ayzenberg D, Bambi C, Liu H, Nampalliwar S, Tripathi A (2021) Constraining the Konoplya-Rezzolla-Zhidenko deformation parameters. II. Limits from stellar-mass black hole x-ray data. Phys Rev D 104(8):084035. https://doi.org/10.1103/PhysRevD.104.084035. arXiv:2106.11658 [astro-ph.HE] Yuan GW, Xia ZQ, Tang C, Zhao Y, Cai YF, Chen Y, Shu J, Yuan Q (2021) Testing the ALP-photon coupling with polarization measurements of Sagittarius A∗ . JCAP 03:018. https://doi.org/10.1088/1475-7516/2021/03/018. arXiv:2008.13662 [astroph.HE] Yuan GW, Shen ZQ, Tsai YLS, Yuan Q, Fan YZ (2022) Constraining ultralight bosonic dark matter with Keck observations of S2’s orbit and kinematics. Phys Rev D 106(10):103024. https://doi.org/10.1103/PhysRevD.106.103024. arXiv:2205.04970 [astro-ph.HE] Yuan Q, Zhang M, Liu X, Jiang PF, Kokhirova GI (2023) Correlation Analysis between OJ 287 Radio Jet Observables. Astrophys. J.949(1):20. https://doi.org/10. 3847/1538-4357/acc5ec Yunes N, Pretorius F (2009) Dynamical Chern-Simons Modified Gravity. I. Spinning Black Holes in the Slow-Rotation Approximation. Phys Rev D 79:084043. https: //doi.org/10.1103/PhysRevD.79.084043. arXiv:0902.4669
- [gr-qc] Younsi Z, Psaltis D, Özel F (2023) Black Hole Images as Tests of General Relativity: Effects of Spacetime Geometry. Astrophys. J.942(1):47. https://doi.org/10.3847/ 1538-4357/aca58a. arXiv:2111.01752 [astro-ph.HE] Yu Q, Zhang F, Lu Y (2016) Prospects for Constraining the Spin of the Massive Black Hole at the Galactic Center via the Relativistic Motion of a Surrounding Star. Astrophys. J.827(2):114. https://doi.org/10.3847/0004-637X/827/2/114. arXiv:1606.07725 [astro-ph.HE] Yu Z, Jiang Q, Abdikamalov AB, Ayzenberg D, Bambi C, Liu H, Nampalliwar S, Tripathi A (2021) Constraining the Konoplya-Rezzolla-Zhidenko deformation parameters. II. Limits from stellar-mass black hole x-ray data. Phys Rev D 104(8):084035. https://doi.org/10.1103/PhysRevD.104.084035. arXiv:2106.11658 [astro-ph.HE] Yuan GW, Xia ZQ, Tang C, Zhao Y, Cai YF, Chen Y, Shu J, Yuan Q (2021) Testing the ALP-photon coupling with polarization measurements of Sagittarius A∗ . JCAP 03:018. https://doi.org/10.1088/1475-7516/2021/03/018. arXiv:2008.13662 [astroph.HE] Yuan GW, Shen ZQ, Tsai YLS, Yuan Q, Fan YZ (2022) Constraining ultralight bosonic dark matter with Keck observations of S2’s orbit and kinematics. Phys Rev D 106(10):103024. https://doi.org/10.1103/PhysRevD.106.103024. arXiv:2205.04970 [astro-ph.HE] Yuan Q, Zhang M, Liu X, Jiang PF, Kokhirova GI (2023) Correlation Analysis between OJ 287 Radio Jet Observables. Astrophys. J.949(1):20. https://doi.org/10. 3847/1538-4357/acc5ec Yunes N, Pretorius F (2009) Dynamical Chern-Simons Modified Gravity. I. Spinning Black Holes in the Slow-Rotation Approximation. Phys Rev D 79:084043. https: //doi.org/10.1103/PhysRevD.79.084043. arXiv:0902.4669
- [gr-qc] Yunes N, Siemens X (2013) Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar Timing-Arrays. Living Rev Rel 16:9. https: //doi.org/10.12942/lrr-2013-9. arXiv:1304.3473
- [gr-qc] Yunes N, Stein LC (2011) Non-Spinning Black Holes in Alternative Theories of Gravity. Phys Rev D 83:104002. https://doi.org/10.1103/PhysRevD.83.104002. arXiv:1101.2921
- [gr-qc] Fundamental Physics Opportunities with the ngEHT 153 Zajaček M, Tursunov A, Eckart A, Britzen S (2018) On the charge of the Galactic centre black hole. Mon Not Roy Astron Soc 480(4):4408–4423. https://doi.org/10. 1093/mnras/sty2182. arXiv:1808.07327 [astro-ph.GA] Zamaninasab M, Eckart A, Meyer L, Schödel R, Dovciak M, Karas V, Kunneriath D, Witzel G, Gießübel R, König S, Straubmeier C, Zensus A (2008) An evolving hot spot orbiting around Sgr A*. In: Journal of Physics Conference Series. Journal of Physics Conference Series, vol 131. p 012008. https://doi.org/10.1088/1742-6596/ 131/1/012008. arXiv:0810.0138
- [gr-qc] Fundamental Physics Opportunities with the ngEHT 153 Zajaček M, Tursunov A, Eckart A, Britzen S (2018) On the charge of the Galactic centre black hole. Mon Not Roy Astron Soc 480(4):4408–4423. https://doi.org/10. 1093/mnras/sty2182. arXiv:1808.07327 [astro-ph.GA] Zamaninasab M, Eckart A, Meyer L, Schödel R, Dovciak M, Karas V, Kunneriath D, Witzel G, Gießübel R, König S, Straubmeier C, Zensus A (2008) An evolving hot spot orbiting around Sgr A*. In: Journal of Physics Conference Series. Journal of Physics Conference Series, vol 131. p 012008. https://doi.org/10.1088/1742-6596/ 131/1/012008. arXiv:0810.0138
- [astro-ph] Zanotti O, Rezzolla L, Del Zanna L, Palenzuela C (2010) Electromagnetic counterparts of recoiling black holes: general relativistic simulations of nonKeplerian discs. Astronomy & Astrophysics 523(1):A8. https://doi.org/10.1051/ 0004-6361/201014969, URL https://www.aanda.org/articles/aa/full_html/2010/ 15/aa14969-10/aa14969-10.html, publisher: EDP Sciences Zel’dovich YB (1971) Generation of Waves by a Rotating Body. Soviet Journal of Experimental and Theoretical Physics Letters 14:180 Zeng XX, Zhang HQ, Zhang H (2020) Shadows and photon spheres with spherical accretions in the four-dimensional Gauss–Bonnet black hole. Eur Phys J C 80(9):872. https://doi.org/10.1140/epjc/s10052-020-08449-y. arXiv:2004.12074
- [astro-ph] Zanotti O, Rezzolla L, Del Zanna L, Palenzuela C (2010) Electromagnetic counterparts of recoiling black holes: general relativistic simulations of nonKeplerian discs. Astronomy & Astrophysics 523(1):A8. https://doi.org/10.1051/ 0004-6361/201014969, URL https://www.aanda.org/articles/aa/full_html/2010/ 15/aa14969-10/aa14969-10.html, publisher: EDP Sciences Zel’dovich YB (1971) Generation of Waves by a Rotating Body. Soviet Journal of Experimental and Theoretical Physics Letters 14:180 Zeng XX, Zhang HQ, Zhang H (2020) Shadows and photon spheres with spherical accretions in the four-dimensional Gauss–Bonnet black hole. Eur Phys J C 80(9):872. https://doi.org/10.1140/epjc/s10052-020-08449-y. arXiv:2004.12074
- [gr-qc] Zhang F, Lu Y, Yu Q (2015) ON TESTING THE KERR METRIC OF THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER VIA STELLAR ORBITAL MOTION: FULL GENERAL RELATIVISTIC TREATMENT. The Astrophysical Journal 809(2):127. https://doi.org/10.1088/0004-637x/809/2/127, URL https://doi.org/10.1088/0004-637x/809/2/127 Zhao GY, Gómez JL, Fuentes A, Krichbaum TP, Traianou E, Lico R, Cho I, Ros E, Komossa S, Akiyama K, Asada K, Blackburn L, Britzen S, Bruni G, Crew GB, Dahale R, Dey L, Gold R, Gopakumar A, Issaoun S, Janssen M, Jorstad S, Kim JY, Koay JY, Kovalev YY, Koyama S, Lobanov AP, Loinard L, Lu RS, Markoff S, Marscher AP, Martí-Vidal I, Mizuno Y, Park J, Savolainen T, Toscano T (2022) Unraveling the Innermost Jet Structure of OJ 287 with the First GMVA + ALMA Observations. Astrophys. J.932(1):72. https://doi.org/10.3847/1538-4357/ac6b9c. arXiv:2205.00554 [astro-ph.HE] Zhu T, Wu Q, Jamil M, Jusufi K (2019) Shadows and deflection angle of charged and slowly rotating black holes in Einstein-Æther theory. Phys Rev D 100(4):044055. https://doi.org/10.1103/PhysRevD.100.044055. arXiv:1906.05673
- [gr-qc] Zhang F, Lu Y, Yu Q (2015) ON TESTING THE KERR METRIC OF THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER VIA STELLAR ORBITAL MOTION: FULL GENERAL RELATIVISTIC TREATMENT. The Astrophysical Journal 809(2):127. https://doi.org/10.1088/0004-637x/809/2/127, URL https://doi.org/10.1088/0004-637x/809/2/127 Zhao GY, Gómez JL, Fuentes A, Krichbaum TP, Traianou E, Lico R, Cho I, Ros E, Komossa S, Akiyama K, Asada K, Blackburn L, Britzen S, Bruni G, Crew GB, Dahale R, Dey L, Gold R, Gopakumar A, Issaoun S, Janssen M, Jorstad S, Kim JY, Koay JY, Kovalev YY, Koyama S, Lobanov AP, Loinard L, Lu RS, Markoff S, Marscher AP, Martí-Vidal I, Mizuno Y, Park J, Savolainen T, Toscano T (2022) Unraveling the Innermost Jet Structure of OJ 287 with the First GMVA + ALMA Observations. Astrophys. J.932(1):72. https://doi.org/10.3847/1538-4357/ac6b9c. arXiv:2205.00554 [astro-ph.HE] Zhu T, Wu Q, Jamil M, Jusufi K (2019) Shadows and deflection angle of charged and slowly rotating black holes in Einstein-Æther theory. Phys Rev D 100(4):044055. https://doi.org/10.1103/PhysRevD.100.044055. arXiv:1906.05673
- [gr-qc] Zhang F, Lu Y, Yu Q (2015) ON TESTING THE KERR METRIC OF THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER VIA STELLAR ORBITAL MOTION: FULL GENERAL RELATIVISTIC TREATMENT. The Astrophysical Journal 809(2):127. https://doi.org/10.1088/0004-637x/809/2/127, URL https://doi.org/10.1088/0004-637x/809/2/127 Zhao GY, Gómez JL, Fuentes A, Krichbaum TP, Traianou E, Lico R, Cho I, Ros E, Komossa S, Akiyama K, Asada K, Blackburn L, Britzen S, Bruni G, Crew GB, Dahale R, Dey L, Gold R, Gopakumar A, Issaoun S, Janssen M, Jorstad S, Kim JY, Koay JY, Kovalev YY, Koyama S, Lobanov AP, Loinard L, Lu RS, Markoff S, Marscher AP, Martí-Vidal I, Mizuno Y, Park J, Savolainen T, Toscano T (2022) Unraveling the Innermost Jet Structure of OJ 287 with the First GMVA + ALMA Observations. Astrophys. J.932(1):72. https://doi.org/10.3847/1538-4357/ac6b9c. arXiv:2205.00554 [astro-ph.HE] Zhu T, Wu Q, Jamil M, Jusufi K (2019) Shadows and deflection angle of charged and slowly rotating black holes in Einstein-Æther theory. Phys Rev D 100(4):044055. https://doi.org/10.1103/PhysRevD.100.044055. arXiv:1906.05673
- [gr-qc] Zhang F, Lu Y, Yu Q (2015) ON TESTING THE KERR METRIC OF THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER VIA STELLAR ORBITAL MOTION: FULL GENERAL RELATIVISTIC TREATMENT. The Astrophysical Journal 809(2):127. https://doi.org/10.1088/0004-637x/809/2/127, URL https://doi.org/10.1088/0004-637x/809/2/127 Zhao GY, Gómez JL, Fuentes A, Krichbaum TP, Traianou E, Lico R, Cho I, Ros E, Komossa S, Akiyama K, Asada K, Blackburn L, Britzen S, Bruni G, Crew GB, Dahale R, Dey L, Gold R, Gopakumar A, Issaoun S, Janssen M, Jorstad S, Kim JY, Koay JY, Kovalev YY, Koyama S, Lobanov AP, Loinard L, Lu RS, Markoff S, Marscher AP, Martí-Vidal I, Mizuno Y, Park J, Savolainen T, Toscano T (2022) Unraveling the Innermost Jet Structure of OJ 287 with the First GMVA + ALMA Observations. Astrophys. J.932(1):72. https://doi.org/10.3847/1538-4357/ac6b9c. arXiv:2205.00554 [astro-ph.HE] Zhu T, Wu Q, Jamil M, Jusufi K (2019) Shadows and deflection angle of charged and slowly rotating black holes in Einstein-Æther theory. Phys Rev D 100(4):044055. https://doi.org/10.1103/PhysRevD.100.044055. arXiv:1906.05673
- [gr-qc] Zilberman N, Casals M, Ori A, Ottewill AC (2022a) Quantum Fluxes at the Inner Horizon of a Spinning Black Hole. Phys. Rev. Lett.129(26):261102. https://doi.org/ 10.1103/PhysRevLett.129.261102. arXiv:2203.08502
- [gr-qc] Zilberman N, Casals M, Ori A, Ottewill AC (2022b) Two-point function of a quantum scalar field in the interior region of a Kerr black hole. Phys. Rev. D106(12):125011. https://doi.org/10.1103/PhysRevD.106.125011. arXiv:2203.07780
- [gr-qc] Zulianello A, Carballo-Rubio R, Liberati S, Ansoldi S (2021) Electromagnetic tests of horizonless rotating black hole mimickers. Phys Rev D 103(6):064071. https://doi. org/10.1103/PhysRevD.103.064071. arXiv:2005.01837
- [gr-qc]