Author(s)
Campeti, P., Komatsu, E., Baccigalupi, C., Ballardini, M., Bartolo, N., Carones, A., Errard, J., Finelli, F., Flauger, R., Galli, S., Galloni, G., Giardiello, S., Hazumi, M., Henrot-Versillé, S., Hergt, L.T., Kohri, K., Leloup, C., Lesgourgues, J., Macias-Perez, J., Martínez-González, E., Matarrese, S., Matsumura, T., Montier, L., Namikawa, T., Paoletti, D., Poletti, D., Remazeilles, M., Shiraishi, M., van Tent, B., Tristram, M., Vacher, L., Vittorio, N., Weymann-Despres, G., Anand, A., Aumont, J., Aurlien, R., Banday, A.J., Barreiro, R.B., Basyrov, A., Bersanelli, M., Blinov, D., Bortolami, M., Brinckmann, T., Calabrese, E., Carralot, F., Casas, F.J., Clermont, L., Columbro, F., Conenna, G., Coppolecchia, A., Cuttaia, F., D'Alessandro, G., de Bernardis, P., De Petris, M., Della Torre, S., Di Giorgi, E., Diego-Palazuelos, P., Eriksen, H.K., Franceschet, C., Fuskeland, U., Galloway, M., Georges, M., Gerbino, M., Gervasi, M., Ghigna, T., Gimeno-Amo, C., Gjerløw, E., Gruppuso, A., Gudmundsson, J., Krachmalnicoff, N., Lamagna, L., Lattanzi, M., Lembo, M., Lonappan, A.I., Masi, S., Massa, M., Micheli, S., Moggi, A., Monelli, M., Morgante, G., Mot, B., Mousset, L., Nagata, R., Natoli, P., Novelli, A., Obata, I., Pagano, L., Paiella, A., Pavlidou, V., Piacentini, F., Pinchera, M., Pisano, G., Puglisi, G., Raffuzzi, N., Ritacco, A., Rizzieri, A., Ruiz-Granda, M., Savini, G., Scott, D., Signorelli, G., Stever, S.L., Stutzer, N., Sullivan, R.M., Tartari, A., Tassis, K., Terenzi, L., Thompson, K.L., Vielva, P., Wehus, I.K., Zhou, Y.Abstract
We study the possibility of using the $LiteBIRD$ satellite $B$-mode survey to constrain models of inflation producing specific features in CMB angular power spectra. We explore a particular model example, i.e. spectator axion-SU(2) gauge field inflation. This model can source parity-violating gravitational waves from the amplification of gauge field fluctuations driven by a pseudoscalar "axionlike" field, rolling for a few e-folds during inflation. The sourced gravitational waves can exceed the vacuum contribution at reionization bump scales by about an order of magnitude and can be comparable to the vacuum contribution at recombination bump scales. We argue that a satellite mission with full sky coverage and access to the reionization bump scales is necessary to understand the origin of the primordial gravitational wave signal and distinguish among two production mechanisms: quantum vacuum fluctuations of spacetime and matter sources during inflation. We present the expected constraints on model parameters from $LiteBIRD$ satellite simulations, which complement and expand previous studies in the literature. We find that $LiteBIRD$ will be able to exclude with high significance standard single-field slow-roll models, such as the Starobinsky model, if the true model is the axion-SU(2) model with a feature at CMB scales. We further investigate the possibility of using the parity-violating signature of the model, such as the $TB$ and $EB$ angular power spectra, to disentangle it from the standard single-field slow-roll scenario. We find that most of the discriminating power of $LiteBIRD$ will reside in $BB$ angular power spectra rather than in $TB$ and $EB$ correlations.
Figures
$B$-mode power spectra, $D_{\ell}^{BB} = \ell(\ell + 1)C_{\ell}^{BB}/2\pi$, for the Starobinsky model with $r_{\rm vac}=0.00461$ and $n_{\rm t}=-r_{\rm vac}/8$ (black dotted line) and for axion-SU(2) inflation with two parameter sets (see section \ref{sec:theory}): one gives the ``high reionization bump'' model (dash-dotted orange) with parameters $r_*, \sigma, k_{\rm p}, r_{\rm vac}=[0.023, 1.1, 3.44\times10^{-4}\,\mathrm{Mpc}^{-1}, 0.00461]$; the other the ``low reionization bump'' model (dashed purple) with $r_*, \sigma, k_{\rm p}, r_{\rm vac}=[0.002, 1.9, 0.03\,\mathrm{Mpc}^{-1}, 0.002]$. The cosmic-variance-only (including primordial and lensing $B$-mode variance) and total {\sl LiteBIRD} $\pm 1\,\sigma$ binned error bars (including foreground residuals) are shown as the gray and blue regions, respectively.
Pipeline for inflationary model parameter constraints used in the paper. See sections \ref{sec:method}, \ref{sec:constraints} and \ref{sec:TBEB} for details.
: width=0.49\textwidth
: width=0.49\textwidth : Left panel: Binary mask ($f_{\rm sky}=47\,\%$) used for the large-scale power spectrum estimation (QML) at $N_{\rm side}=16$ resolution. Right panel: \textit{Planck} Galactic-plane apodized mask ($f_{\rm sky}=51\,\%$) at $N_{\rm side}=64$ used for intermediate/small-scale pseudo-$C_{\ell}$s estimation (see section \ref{sec:method} for details).
Correlation matrix for the BBBB covariance block. Here multipoles up to $\ell=35$ are unbinned, while larger multipoles are binned with $\Delta\ell=10$.
Histograms of the inferred vacuum tensor-to-scalar ratio $r_{\rm vac}$ values obtained from fitting an observed sky generated from the ``high reionization bump'' axion-SU(2) model (with parameters $r_*, \sigma, k_{\rm p}, r_{\rm vac}=[0.023, 1.1, 3.44\times10^{-4}\,\mathrm{Mpc}^{-1}, 0.00461]$) in three different ranges of multipoles: only the reionization bump range ($\ell=2-30$, in red), only the recombination bump range ($\ell=31-150$, in yellow) and the full range ($\ell=2-150$, light blue). We also show for reference the $r_{\rm vac}$ value for the Starobinsky model ($r_{\rm vac}=0.00461$).
FC construction for the 1-parameter fit (solid black lines), with $\sigma$ and $k_{\rm p}$ fixed to their ground truth. {\sl LiteBIRD} will be able to obtain a two-sided 95\,\% C.L. confidence interval $r_*=0.015^{+0.04}_{-0.008}$, if the observed sky has been generated from the ``high reionization bump'' model. The observed value $r_{*}^{\rm obs} = 0.015$ is indicated as a vertical solid red line, and its intersection with the confidence belt with two red dots. The color bar shows the distribution of $r_{*}^{\rm mle}$ obtained by fitting the simulations as a function of the input $r_{*}^{\rm in}$. See section \ref{sec:feldman} for details.
FC construction for the 1-parameter fit with $k_{\rm p}$ fixed to values different from its ground truth, i.e. $k_{\rm p}=[10^{-4},\, 5\times 10^{-4},\, 5\times 10^{-3}]\,\mathrm{Mpc}^{-1}$ (dotted orange, dot-dashed blue and dashed green, respecitvely), compared to the ground truth confidence belt (solid black, same as in Fig.~\ref{fig:beauty_full_1param}). We assume the ground truth for $\sigma$. The color bar shows the distribution of $r_{*}^{\rm mle}$ obtained by fitting the simulations (assuming the ground truth for $k_p$ and $\sigma$) as a function of the input $r_{*}^{\rm in}$. See section \ref{sec:robustness} for details.
FC construction for the 3-parameter fit (solid black lines) with free parameters $r_*$, $\sigma$ and $k_{\rm p}$. {\sl LiteBIRD} will be able to obtain a 95\,\% C.L. upper limit $r_{*}\leq 0.16$, if the observed sky has been generated from the ``high reionization bump'' model. The observed value $r_{*}^{\rm obs} = 0.05$ is indicated as a vertical solid red line. The color bar shows the distribution of $r_{*}^{\rm mle}$ obtained by fitting the simulations as a function of the input $r_{*}^{\rm in}$. See section \ref{sec:robustness} for details.
Comparison of $\Delta\chi^2$ (Eq.~\ref{eq:chi2}) between the axion-SU(2) and standard single-field slow-roll Starobinsky models from the full covariance matrix (top left panel), $BBBB$ (top right), $TBTB$ (bottom left) and $EBEB$ (bottom right) covariance blocks for {\sl LiteBIRD}, as a function of $r_*$ and $\sigma$ given $k_{\rm p}=3.44\times\,\mathrm{Mpc}^{-1}$. The contours show $1\,\sigma$, $3\,\sigma$, $5\,\sigma$ and $8\,\sigma$ significance (note that this $\sigma$, although named the same, is not the parameter of the axion-SU(2) model, which is instead plotted on the $x$-axis). The white area is excluded by current upper limits on the tensor-to-scalar ratio. The red $\star$ symbol in the upper right panel indicates the ``high reionization bump'' model. Note that the color scale changes in every panel.
Comparison of $\Delta\chi^2$ (Eq.~\ref{eq:chi2}) between the axion-SU(2) and standard single-field slow-roll Starobinsky models from the full covariance matrix (top left panel), $BBBB$ (top right), $TBTB$ (bottom left) and $EBEB$ (bottom right) covariance blocks for {\sl LiteBIRD}, as a function of $r_*$ and $\sigma$ given $k_{\rm p}=3.44\times\,\mathrm{Mpc}^{-1}$. The contours show $1\,\sigma$, $3\,\sigma$, $5\,\sigma$ and $8\,\sigma$ significance (note that this $\sigma$, although named the same, is not the parameter of the axion-SU(2) model, which is instead plotted on the $x$-axis). The white area is excluded by current upper limits on the tensor-to-scalar ratio. The red $\star$ symbol in the upper right panel indicates the ``high reionization bump'' model. Note that the color scale changes in every panel.
Comparison of $\Delta\chi^2$ (Eq.~\ref{eq:chi2}) between the axion-SU(2) and standard single-field slow-roll Starobinsky models from the full covariance matrix (top left panel), $BBBB$ (top right), $TBTB$ (bottom left) and $EBEB$ (bottom right) covariance blocks for {\sl LiteBIRD}, as a function of $r_*$ and $\sigma$ given $k_{\rm p}=3.44\times\,\mathrm{Mpc}^{-1}$. The contours show $1\,\sigma$, $3\,\sigma$, $5\,\sigma$ and $8\,\sigma$ significance (note that this $\sigma$, although named the same, is not the parameter of the axion-SU(2) model, which is instead plotted on the $x$-axis). The white area is excluded by current upper limits on the tensor-to-scalar ratio. The red $\star$ symbol in the upper right panel indicates the ``high reionization bump'' model. Note that the color scale changes in every panel.
Comparison of $\Delta\chi^2$ (Eq.~\ref{eq:chi2}) between the axion-SU(2) and standard single-field slow-roll Starobinsky models from the full covariance matrix (top left panel), $BBBB$ (top right), $TBTB$ (bottom left) and $EBEB$ (bottom right) covariance blocks for {\sl LiteBIRD}, as a function of $r_*$ and $\sigma$ given $k_{\rm p}=3.44\times\,\mathrm{Mpc}^{-1}$. The contours show $1\,\sigma$, $3\,\sigma$, $5\,\sigma$ and $8\,\sigma$ significance (note that this $\sigma$, although named the same, is not the parameter of the axion-SU(2) model, which is instead plotted on the $x$-axis). The white area is excluded by current upper limits on the tensor-to-scalar ratio. The red $\star$ symbol in the upper right panel indicates the ``high reionization bump'' model. Note that the color scale changes in every panel.
Same as Fig.~\ref{fig:delta_chi_onescale} but each panel has a different $k_{\rm p}$ and we use the full covariance matrix for all panels. Here we assume $r_{*}=5r_{\rm vac}$ in the top two and bottom left panels, while the bottom right panel assumes $r_{*}=r_{\rm vac}$, following Ref.~\cite{Ishiwata:2021yne}. Note that the color scale changes in every panel and $y$-axis range changes in the bottom right panel.
Same as Fig.~\ref{fig:delta_chi_onescale} but each panel has a different $k_{\rm p}$ and we use the full covariance matrix for all panels. Here we assume $r_{*}=5r_{\rm vac}$ in the top two and bottom left panels, while the bottom right panel assumes $r_{*}=r_{\rm vac}$, following Ref.~\cite{Ishiwata:2021yne}. Note that the color scale changes in every panel and $y$-axis range changes in the bottom right panel.
Same as Fig.~\ref{fig:delta_chi_onescale} but each panel has a different $k_{\rm p}$ and we use the full covariance matrix for all panels. Here we assume $r_{*}=5r_{\rm vac}$ in the top two and bottom left panels, while the bottom right panel assumes $r_{*}=r_{\rm vac}$, following Ref.~\cite{Ishiwata:2021yne}. Note that the color scale changes in every panel and $y$-axis range changes in the bottom right panel.
Same as Fig.~\ref{fig:delta_chi_onescale} but each panel has a different $k_{\rm p}$ and we use the full covariance matrix for all panels. Here we assume $r_{*}=5r_{\rm vac}$ in the top two and bottom left panels, while the bottom right panel assumes $r_{*}=r_{\rm vac}$, following Ref.~\cite{Ishiwata:2021yne}. Note that the color scale changes in every panel and $y$-axis range changes in the bottom right panel.
$BB$ power spectra for each of the parameter sets used in each panel of Fig.~\ref{fig:delta_chi_scales}. They correspond to spectra computed on a grid of 100 linearly spaced values of $r_*$ in the range $0.001-0.36$ and 50 values of $\sigma$ in the range $1-10$ at each fixed $k_{\rm p}$ value, excluding spectra not compatible with theoretical consistency arguments and observational bounds (see section \ref{sec:theory} for details). Darker color lines correspond to larger $r_*$ and $\sigma$ in this range. We also show for reference the $BB$ spectrum for standard single-field slow-roll inflation obtained for $r_{\rm vac}=0.037$ (solid red), saturating the current upper at scales $0.05\,\mathrm{Mpc}^{-1}$, the ``high reionization bump'' axion-SU(2) model (dot-dashed orange, see section\ref{sec:theory}) and the Starobinsky model (dotted black).
Same as Fig.~\ref{fig:plot_raphael} but for $|TB|$ power spectra. We also show for reference the $|TB|$ spectrum for the ``high reionization bump'' axion-SU(2) model (dot-dashed orange, see section~\ref{sec:theory}).
Same as Fig.~\ref{fig:plot_raphael_TB} but for $|EB|$ power spectra.
References
- [1] L.P. Grishchuk, Amplification of gravitational waves in an isotropic universe, Zh. Eksp. Teor. Fiz. 67 (1974) 825.
- [2] A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett. 30 (1979) 682.
- [3] V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuations and a Nonsingular Universe, JETP Lett. 33 (1981) 532.
- [4] S.W. Hawking, The Development of Irregularities in a Single Bubble Inflationary Universe, Phys. Lett. 115B (1982) 295. – 22 –
- [5] A.A. Starobinsky, Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations, Phys. Lett. 117B (1982) 175.
- [6] A.H. Guth and S.Y. Pi, Fluctuations in the New Inflationary Universe, Phys. Rev. Lett. 49 (1982) 1110.
- [7] J.M. Bardeen, P.J. Steinhardt and M.S. Turner, Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe, Phys. Rev. D 28 (1983) 679.
- [8] WMAP Science Team collaboration, Results from the Wilkinson Microwave Anisotropy Probe, PTEP 2014 (2014) 06B102 [1404.5415].
- [9] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [1807.06209].
- [10] Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [1807.06211].
- [11] Planck collaboration, Planck 2018 results. IX. Constraints on primordial non-Gaussianity, Astron. Astrophys. 641 (2020) A9 [1905.05697].
- [12] A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347.
- [13] K. Sato, First Order Phase Transition of a Vacuum and Expansion of the Universe, Mon. Not. Roy. Astron. Soc. 195 (1981) 467.
- [14] A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220.
- [15] A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389.
- [16] M. Kamionkowski, A. Kosowsky and A. Stebbins, A Probe of primordial gravity waves and vorticity, Phys. Rev. Lett. 78 (1997) 2058 [astro-ph/9609132].
- [17] U. Seljak and M. Zaldarriaga, Signature of gravity waves in polarization of the microwave background, Phys. Rev. Lett. 78 (1997) 2054 [astro-ph/9609169].
- [18] P. Campeti, E. Komatsu, D. Poletti and C. Baccigalupi, Measuring the spectrum of primordial gravitational waves with CMB, PTA and Laser Interferometers, JCAP 01 (2021) 012 [2007.04241].
- [19] NANOGrav collaboration, The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951 (2023) L8 [2306.16213].
- [20] NANOGrav collaboration, The NANOGrav 15 yr Data Set: Search for Signals from New Physics, Astrophys. J. Lett. 951 (2023) L11 [2306.16219].
- [21] EPTA, InPTA: collaboration, The second data release from the European Pulsar Timing Array - III. Search for gravitational wave signals, Astron. Astrophys. 678 (2023) A50 [2306.16214].
- [22] J. Antoniadis et al., The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe, 2306.16227.
- [23] D.J. Reardon et al., Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951 (2023) L6 [2306.16215].
- [24] H. Xu et al., Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I, Res. Astron. Astrophys. 23 (2023) 075024 [2306.16216]. – 23 –
- [25] T. Broadhurst, C. Chen, T. Liu and K.-F. Zheng, Binary Supermassive Black Holes Orbiting Dark Matter Solitons: From the Dual AGN in UGC4211 to NanoHertz Gravitational Waves, 2306.17821.
- [26] H. Middleton, A. Sesana, S. Chen, A. Vecchio, W. Del Pozzo and P.A. Rosado, Massive black hole binary systems and the NANOGrav 12.5 yr results, Mon. Not. Roy. Astron. Soc. 502 (2021) L99 [2011.01246].
- [27] NANOGrav collaboration, Astrophysics Milestones for Pulsar Timing Array Gravitational-wave Detection, Astrophys. J. Lett. 911 (2021) L34 [2010.11950].
- [28] C. Unal, A. Papageorgiou and I. Obata, Axion-Gauge Dynamics During Inflation as the Origin of Pulsar Timing Array Signals and Primordial Black Holes, 2307.02322.
- [29] K. Murai and W. Yin, A novel probe of supersymmetry in light of nanohertz gravitational waves, JHEP 10 (2023) 062 [2307.00628].
- [30] J. Ellis, M. Fairbairn, G. Franciolini, G. Hütsi, A. Iovino, M. Lewicki et al., What is the source of the PTA GW signal?, 2308.08546.
- [31] BICEP, Keck collaboration, Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season, Phys. Rev. Lett. 127 (2021) 151301 [2110.00483].
- [32] M. Tristram et al., Improved limits on the tensor-to-scalar ratio using BICEP and Planck data, Phys. Rev. D 105 (2022) 083524 [2112.07961].
- [33] D. Paoletti, F. Finelli, J. Valiviita and M. Hazumi, Planck and BICEP/Keck Array 2018 constraints on primordial gravitational waves and perspectives for future B-mode polarization measurements, Phys. Rev. D 106 (2022) 083528 [2208.10482].
- [34] D. Beck, A. Cukierman and W.L.K. Wu, Bias on tensor-to-scalar ratio inference with estimated covariance matrices, Mon. Not. Roy. Astron. Soc. 515 (2022) 229 [2202.05949].
- [35] P. Campeti and E. Komatsu, New Constraint on the Tensor-to-scalar Ratio from the Planck and BICEP/Keck Array Data Using the Profile Likelihood, Astrophys. J. 941 (2022) 110 [2205.05617].
- [36] G. Galloni, N. Bartolo, S. Matarrese, M. Migliaccio, A. Ricciardone and N. Vittorio, Updated constraints on amplitude and tilt of the tensor primordial spectrum, JCAP 04 (2023) 062 [2208.00188].
- [37] B. Westbrook et al., The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status, J. Low Temp. Phys. 193 (2018) 758 [2210.04117].
- [38] Simons Observatory collaboration, The Simons Observatory: Science goals and forecasts, JCAP 02 (2019) 056 [1808.07445].
- [39] L. Moncelsi et al., Receiver development for BICEP Array, a next-generation CMB polarimeter at the South Pole, Proc. SPIE Int. Soc. Opt. Eng. 11453 (2020) 1145314 [2012.04047].
- [40] K. Harrington et al., The Cosmology Large Angular Scale Surveyor, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 9914 (2016) 99141K [1608.08234].
- [41] CMB-S4 collaboration, CMB-S4 Science Book, First Edition, 1610.02743.
- [42] SPIDER collaboration, A Constraint on Primordial B-modes from the First Flight of the Spider Balloon-borne Telescope, Astrophys. J. 927 (2022) 174 [2103.13334].
- [43] LiteBIRD collaboration, Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey, PTEP 2023 (2023) 042F01 [2202.02773].
- [44] D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387]. – 24 –
- [45] E. Komatsu, New physics from the polarized light of the cosmic microwave background, Nature Rev. Phys. 4 (2022) 452 [2202.13919].
- [46] P. Campeti, O. Özsoy, I. Obata and M. Shiraishi, New constraints on axion-gauge field dynamics during inflation from Planck and BICEP/Keck data sets, JCAP 07 (2022) 039 [2203.03401].
- [47] P. Campeti, D. Poletti and C. Baccigalupi, Principal component analysis of the primordial tensor power spectrum, JCAP 09 (2019) 055 [1905.08200].
- [48] T. Hiramatsu, E. Komatsu, M. Hazumi and M. Sasaki, Reconstruction of primordial tensor power spectra from B-mode polarization of the cosmic microwave background, Phys. Rev. D 97 (2018) 123511 [1803.00176].
- [49] A. Lue, L.-M. Wang and M. Kamionkowski, Cosmological signature of new parity violating interactions, Phys. Rev. Lett. 83 (1999) 1506 [astro-ph/9812088].
- [50] N. Bartolo and G. Orlando, Parity breaking signatures from a Chern-Simons coupling during inflation: the case of non-Gaussian gravitational waves, JCAP 07 (2017) 034 [1706.04627].
- [51] N. Bartolo, G. Orlando and M. Shiraishi, Measuring chiral gravitational waves in Chern-Simons gravity with CMB bispectra, JCAP 01 (2019) 050 [1809.11170].
- [52] J.L. Cook and L. Sorbo, Particle production during inflation and gravitational waves detectable by ground-based interferometers, Phys. Rev. D 85 (2012) 023534 [1109.0022].
- [53] L. Senatore, E. Silverstein and M. Zaldarriaga, New Sources of Gravitational Waves during Inflation, JCAP 08 (2014) 016 [1109.0542].
- [54] M. Biagetti, M. Fasiello and A. Riotto, Enhancing Inflationary Tensor Modes through Spectator Fields, Phys. Rev. D 88 (2013) 103518 [1305.7241].
- [55] D. Carney, W. Fischler, E.D. Kovetz, D. Lorshbough and S. Paban, Rapid field excursions and the inflationary tensor spectrum, JHEP 11 (2012) 042 [1209.3848].
- [56] Y.-F. Cai, J. Jiang, M. Sasaki, V. Vardanyan and Z. Zhou, Beating the Lyth Bound by Parametric Resonance during Inflation, Phys. Rev. Lett. 127 (2021) 251301 [2105.12554].
- [57] LISA Cosmology Working Group collaboration, Cosmology with the Laser Interferometer Space Antenna, 2204.05434.
- [58] L.T. Hergt, F.J. Agocs, W.J. Handley, M.P. Hobson and A.N. Lasenby, Finite inflation in curved space, Phys. Rev. D 106 (2022) 063529 [2205.07374].
- [59] L.T. Hergt, W.J. Handley, M.P. Hobson and A.N. Lasenby, Case for kinetically dominated initial conditions for inflation, Phys. Rev. D 100 (2019) 023502 [1809.07185].
- [60] N. Barnaby and M. Peloso, Large Nongaussianity in Axion Inflation, Phys. Rev. Lett. 106 (2011) 181301 [1011.1500].
- [61] M. Mirbabayi, L. Senatore, E. Silverstein and M. Zaldarriaga, Gravitational Waves and the Scale of Inflation, Phys. Rev. D 91 (2015) 063518 [1412.0665].
- [62] R.Z. Ferreira and M.S. Sloth, Universal Constraints on Axions from Inflation, JHEP 12 (2014) 139 [1409.5799].
- [63] O. Özsoy, K. Sinha and S. Watson, How Well Can We Really Determine the Scale of Inflation?, Phys. Rev. D 91 (2015) 103509 [1410.0016].
- [64] R. Namba, M. Peloso, M. Shiraishi, L. Sorbo and C. Unal, Scale-dependent gravitational waves from a rolling axion, JCAP 1601 (2016) 041 [1509.07521].
- [65] R. Namba, E. Dimastrogiovanni and M. Peloso, Gauge-flation confronted with Planck, JCAP 11 (2013) 045 [1308.1366]. – 25 –
- [66] L. Sorbo, Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton, JCAP 06 (2011) 003 [1101.1525].
- [67] N. Barnaby, J. Moxon, R. Namba, M. Peloso, G. Shiu et al., Gravity waves and non-Gaussian features from particle production in a sector gravitationally coupled to the inflaton, Phys.Rev. D86 (2012) 103508 [1206.6117].
- [68] J.L. Cook and L. Sorbo, An inflationary model with small scalar and large tensor nongaussianities, JCAP 11 (2013) 047 [1307.7077].
- [69] M. Shiraishi, C. Hikage, R. Namba, T. Namikawa and M. Hazumi, Testing statistics of the CMB B -mode polarization toward unambiguously establishing quantum fluctuation of the vacuum, Phys. Rev. D 94 (2016) 043506 [1606.06082].
- [70] V. Domcke, M. Pieroni and P. Binétruy, Primordial gravitational waves for universality classes of pseudoscalar inflation, JCAP 06 (2016) 031 [1603.01287].
- [71] O. Özsoy, Synthetic Gravitational Waves from a Rolling Axion Monodromy, JCAP 04 (2021) 040 [2005.10280].
- [72] K. Choi, K.-Y. Choi, H. Kim and C.S. Shin, Primordial perturbations from dilaton-induced gauge fields, JCAP 10 (2015) 046 [1507.04977].
- [73] T. Fujita, I. Obata, T. Tanaka and S. Yokoyama, Statistically Anisotropic Tensor Modes from Inflation, JCAP 07 (2018) 023 [1801.02778].
- [74] M. Kawasaki, H. Nakatsuka and I. Obata, Generation of Primordial Black Holes and Gravitational Waves from Dilaton-Gauge Field Dynamics, JCAP 05 (2020) 007 [1912.09111].
- [75] O. Özsoy and Z. Lalak, Primordial black holes as dark matter and gravitational waves from bumpy axion inflation, JCAP 01 (2021) 040 [2008.07549].
- [76] A. Maleknejad and M.M. Sheikh-Jabbari, Gauge-flation: Inflation From Non-Abelian Gauge Fields, Phys. Lett. B 723 (2013) 224 [1102.1513].
- [77] A. Maleknejad and M.M. Sheikh-Jabbari, Non-Abelian Gauge Field Inflation, Phys. Rev. D 84 (2011) 043515 [1102.1932].
- [78] A. Maleknejad, M.M. Sheikh-Jabbari and J. Soda, Gauge Fields and Inflation, Phys. Rept. 528 (2013) 161 [1212.2921].
- [79] A. Maleknejad, Axion Inflation with an SU(2) Gauge Field: Detectable Chiral Gravity Waves, JHEP 07 (2016) 104 [1604.03327].
- [80] E. Dimastrogiovanni and M. Peloso, Stability analysis of chromo-natural inflation and possible evasion of Lyth’s bound, Phys. Rev. D 87 (2013) 103501 [1212.5184].
- [81] E. Dimastrogiovanni, M. Fasiello and T. Fujita, Primordial Gravitational Waves from Axion-Gauge Fields Dynamics, JCAP 01 (2017) 019 [1608.04216].
- [82] I. Obata and J. Soda, Chiral primordial Chiral primordial gravitational waves from dilaton induced delayed chromonatural inflation, Phys. Rev. D 93 (2016) 123502 [1602.06024].
- [83] A. Agrawal, T. Fujita and E. Komatsu, Large tensor non-Gaussianity from axion-gauge field dynamics, Phys. Rev. D 97 (2018) 103526 [1707.03023].
- [84] A. Agrawal, T. Fujita and E. Komatsu, Tensor Non-Gaussianity from Axion-Gauge-Fields Dynamics : Parameter Search, JCAP 06 (2018) 027 [1802.09284].
- [85] P. Adshead, E. Martinec and M. Wyman, Gauge fields and inflation: Chiral gravitational waves, fluctuations, and the Lyth bound, Phys. Rev. D 88 (2013) 021302 [1301.2598].
- [86] P. Adshead, E. Martinec and M. Wyman, Perturbations in Chromo-Natural Inflation, JHEP 09 (2013) 087 [1305.2930]. – 26 –
- [87] P. Adshead, E. Martinec, E.I. Sfakianakis and M. Wyman, Higgsed Chromo-Natural Inflation, JHEP 12 (2016) 137 [1609.04025].
- [88] P. Adshead and E.I. Sfakianakis, Higgsed Gauge-flation, JHEP 08 (2017) 130 [1705.03024].
- [89] Y. Watanabe and E. Komatsu, Gravitational Wave from Axion-SU(2) Gauge Fields: Effective Field Theory for Kinetically Driven Inflation, 2004.04350.
- [90] B. Thorne, T. Fujita, M. Hazumi, N. Katayama, E. Komatsu and M. Shiraishi, Finding the chiral gravitational wave background of an axion-SU(2) inflationary model using CMB observations and laser interferometers, Phys. Rev. D 97 (2018) 043506 [1707.03240].
- [91] T. Fujita, K. Murai and R. Namba, Universality of linear perturbations in SU(N) natural inflation, Phys. Rev. D 105 (2022) 103518 [2203.03977].
- [92] K. Ishiwata, E. Komatsu and I. Obata, Axion-gauge field dynamics with backreaction, JCAP 03 (2022) 010 [2111.14429].
- [93] S. Hamimeche and A. Lewis, Likelihood Analysis of CMB Temperature and Polarization Power Spectra, Phys. Rev. D 77 (2008) 103013 [0801.0554].
- [94] G.J. Feldman and R.D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021].
- [95] Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01.
- [96] L. Herold, E.G.M. Ferreira and E. Komatsu, New Constraint on Early Dark Energy from Planck and BOSS Data Using the Profile Likelihood, Astrophys. J. Lett. 929 (2022) L16 [2112.12140].
- [97] Planck collaboration, Planck intermediate results. XVI. Profile likelihoods for cosmological parameters, Astron. Astrophys. 566 (2014) A54 [1311.1657].
- [98] P. Adshead and M. Wyman, Chromo-Natural Inflation: Natural inflation on a steep potential with classical non-Abelian gauge fields, Phys. Rev. Lett. 108 (2012) 261302 [1202.2366].
- [99] A. Maleknejad and E. Erfani, Chromo-Natural Model in Anisotropic Background, JCAP 03 (2014) 016 [1311.3361].
- [100] V. Domcke, B. Mares, F. Muia and M. Pieroni, Emerging chromo-natural inflation, JCAP 04 (2019) 034 [1807.03358].
- [101] I. Wolfson, A. Maleknejad and E. Komatsu, How attractive is the isotropic attractor solution of axion-SU(2) inflation?, JCAP 09 (2020) 047 [2003.01617].
- [102] I. Wolfson, A. Maleknejad, T. Murata, E. Komatsu and T. Kobayashi, The isotropic attractor solution of axion-SU(2) inflation: universal isotropization in Bianchi type-I geometry, JCAP 09 (2021) 031 [2105.06259].
- [103] T. Fujita, E.I. Sfakianakis and M. Shiraishi, Tensor Spectra Templates for Axion-Gauge Fields Dynamics during Inflation, JCAP 05 (2019) 057 [1812.03667].
- [104] A. Maleknejad and E. Komatsu, Production and Backreaction of Spin-2 Particles of SU(2) Gauge Field during Inflation, JHEP 05 (2019) 174 [1808.09076].
- [105] K.D. Lozanov, A. Maleknejad and E. Komatsu, Schwinger Effect by an SU(2) Gauge Field during Inflation, JHEP 02 (2019) 041 [1805.09318].
- [106] V. Domcke, Y. Ema, K. Mukaida and R. Sato, Chiral Anomaly and Schwinger Effect in Non-Abelian Gauge Theories, JHEP 03 (2019) 111 [1812.08021].
- [107] L. Mirzagholi, A. Maleknejad and K.D. Lozanov, Production and backreaction of fermions from axion-SU(2) gauge fields during inflation, Phys. Rev. D 101 (2020) 083528 [1905.09258]. – 27 –
- [108] A. Maleknejad, Dark Fermions and Spontaneous CP violation in SU(2)-axion Inflation, JHEP 07 (2020) 154 [1909.11545].
- [109] T. Fujita, R. Namba and Y. Tada, Does the detection of primordial gravitational waves exclude low energy inflation?, Phys. Lett. B 778 (2018) 17 [1705.01533].
- [110] O. Iarygina, E.I. Sfakianakis, R. Sharma and A. Brandenburg, Backreaction of axion-SU(2) dynamics during inflation, 2311.07557.
- [111] A. Papageorgiou, M. Peloso and C. Unal, Nonlinear perturbations from the coupling of the inflaton to a non-Abelian gauge field, with a focus on Chromo-Natural Inflation, JCAP 09 (2018) 030 [1806.08313].
- [112] A. Papageorgiou, M. Peloso and C. Unal, Nonlinear perturbations from axion-gauge fields dynamics during inflation, JCAP 07 (2019) 004 [1904.01488].
- [113] E. Komatsu, Hunting for Primordial Non-Gaussianity in the Cosmic Microwave Background, Class. Quant. Grav. 27 (2010) 124010 [1003.6097].
- [114] A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. 91B (1980) 99.
- [115] J. Hamann and A. Malhotra, Constraining primordial tensor features with the anisotropies of the cosmic microwave background, JCAP 12 (2022) 015 [2209.00827].
- [116] K.M. Górski, E. Hivon, A.J. Banday, B.D. Wandelt, F.K. Hansen, M. Reinecke et al., HEALPix - A Framework for high resolution discretization, and fast analysis of data distributed on the sphere, Astrophys. J. 622 (2005) 759 [astro-ph/0409513].
- [117] B. Thorne, J. Dunkley, D. Alonso and S. Naess, The Python Sky Model: software for simulating the Galactic microwave sky, Mon. Not. Roy. Astron. Soc. 469 (2017) 2821 [1608.02841].
- [118] A. Zonca, B. Thorne, N. Krachmalnicoff and J. Borrill, The Python Sky Model 3 software, J. Open Source Softw. 6 (2021) 3783 [2108.01444].
- [119] Planck collaboration, Planck 2015 results. X. Diffuse component separation: Foreground maps, Astron. Astrophys. 594 (2016) A10 [1502.01588].
- [120] M. Remazeilles, C. Dickinson, A.J. Banday, M.A. Bigot-Sazy and T. Ghosh, An improved source-subtracted and destriped 408 MHz all-sky map, Mon. Not. Roy. Astron. Soc. 451 (2015) 4311 [1411.3628].
- [121] WMAP collaboration, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, Astrophys. J. Suppl. 208 (2013) 20 [1212.5225].
- [122] M.A. Miville-Deschenes, N. Ysard, A. Lavabre, N. Ponthieu, J.F. Macias-Perez, J. Aumont et al., Separation of anomalous and synchrotron emissions using WMAP polarization data, Astron. Astrophys. 490 (2008) 1093 [0802.3345].
- [123] R. Stompor, S.M. Leach, F. Stivoli and C. Baccigalupi, Maximum Likelihood algorithm for parametric component separation in CMB experiments, Mon. Not. Roy. Astron. Soc. 392 (2009) 216 [0804.2645].
- [124] J. Errard and R. Stompor, Characterizing bias on large scale CMB B-modes after galactic foregrounds cleaning, Phys. Rev. D 99 (2019) 043529 [1811.00479].
- [125] R. Stompor, J. Errard and D. Poletti, Forecasting performance of CMB experiments in the presence of complex foreground contaminations, Phys. Rev. D 94 (2016) 083526 [1609.03807].
- [126] M. Tristram et al., Planck constraints on the tensor-to-scalar ratio, Astron. Astrophys. 647 (2021) A128 [2010.01139].
- [127] LSST Dark Energy Science collaboration, A unified pseudo-Cℓ framework, Mon. Not. Roy. Astron. Soc. 484 (2019) 4127 [1809.09603]. – 28 –
- [128] M. Tegmark and A. de Oliveira-Costa, How to measure CMB polarization power spectra without losing information, Phys. Rev. D 64 (2001) 063001 [astro-ph/0012120].
- [129] S. Vanneste, S. Henrot-Versillé, T. Louis and M. Tristram, Quadratic estimator for CMB cross-correlation, Phys. Rev. D 98 (2018) 103526 [1807.02484].
- [130] J. Grain, M. Tristram and R. Stompor, Polarized CMB spectrum estimation using the pure pseudo cross-spectrum approach, Phys. Rev. D 79 (2009) 123515 [0903.2350].
- [131] J. Grain, M. Tristram and R. Stompor, CMB EB and TB cross-spectrum estimation via pseudo-spectrum techniques, Phys. Rev. D 86 (2012) 076005 [1207.5344].
- [132] A. Mangilli, S. Plaszczynski and M. Tristram, Large-scale cosmic microwave background temperature and polarization cross-spectra likelihoods, Mon. Not. Roy. Astron. Soc. 453 (2015) 3174 [1503.01347].
- [133] E. Sellentin and A.F. Heavens, Parameter inference with estimated covariance matrices, Mon. Not. Roy. Astron. Soc. 456 (2016) L132 [1511.05969].
- [134] J. Neyman, Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability, Philosophical Transactions of the Royal Society of London Series A 236 (1937) 333.
- [135] ATLAS collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb−1 of proton-proton collision data, Report ATLAS-CONF-2013-014 (3, 2013).
- [136] J. Hamann, S. Hannestad, G.G. Raffelt and Y.Y.Y. Wong, Observational bounds on the cosmic radiation density, JCAP 08 (2007) 021 [0705.0440].
- [137] K. Cranmer, Statistical Challenges for Searches for New Physics at the LHC, in Statistical Problems in Particle Physics, Astrophysics and Cosmology, L. Lyons and M. Karagöz Ünel, eds., p. 112, Jan., 2006, DOI [physics/0511028].
- [138] S. Saito, K. Ichiki and A. Taruya, Probing polarization states of primordial gravitational waves with CMB anisotropies, JCAP 09 (2007) 002 [0705.3701].
- [139] V. Gluscevic and M. Kamionkowski, Testing Parity-Violating Mechanisms with Cosmic Microwave Background Experiments, Phys. Rev. D 81 (2010) 123529 [1002.1308].
- [140] M. Gerbino, A. Gruppuso, P. Natoli, M. Shiraishi and A. Melchiorri, Testing chirality of primordial gravitational waves with Planck and future CMB data: no hope from angular power spectra, JCAP 07 (2016) 044 [1605.09357].
- [141] R. de Belsunce, S. Gratton and G. Efstathiou, B-mode constraints from Planck low-multipole polarization data, Mon. Not. Roy. Astron. Soc. 518 (2022) 3675 [2207.04903].
- [142] A. Caravano, E. Komatsu, K.D. Lozanov and J. Weller, Lattice simulations of Abelian gauge fields coupled to axions during inflation, Phys. Rev. D 105 (2022) 123530 [2110.10695].
- [143] A. Caravano, E. Komatsu, K.D. Lozanov and J. Weller, Lattice simulations of axion-U(1) inflation, Phys. Rev. D 108 (2023) 043504 [2204.12874].
- [144] T. Fujita, Y. Minami, M. Shiraishi and S. Yokoyama, Can primordial parity violation explain the observed cosmic birefringence?, Phys. Rev. D 106 (2022) 103529 [2208.08101].
- [145] Y. Minami and E. Komatsu, New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data, Phys. Rev. Lett. 125 (2020) 221301 [2011.11254].
- [146] P. Diego-Palazuelos et al., Cosmic Birefringence from the Planck Data Release 4, Phys. Rev. Lett. 128 (2022) 091302 [2201.07682].
- [147] J.R. Eskilt, Frequency-dependent constraints on cosmic birefringence from the LFI and HFI Planck Data Release 4, Astron. Astrophys. 662 (2022) A10 [2201.13347]. – 29 –
- [148] J.R. Eskilt and E. Komatsu, Improved constraints on cosmic birefringence from the WMAP and Planck cosmic microwave background polarization data, Phys. Rev. D 106 (2022) 063503 [2205.13962]. – 30 –