Primordial Black Holes and Gravitational Waves in the $U(1)_{B-L}$ Extended Inert Doublet Model: A First-Order Phase Transition Perspective

Author(s)

Banerjee, Indra Kumar, Dey, Ujjal Kumar, Khalil, Shaaban

Abstract

We conduct an analysis of a $U(1)_{B-L}$ extended inert doublet model and obtained the parameter space allowing strong first order phase transitions. We show that a large part of the parameter space can cause double first-order phase transitions. Whereas both of these phase transitions can generate a detectable stochastic gravitational wave background, one of them can create primordial black holes with appreciable abundance. The primordial black holes generated at the high scale transition can account for the dark matter maintaining the correct relic abundance. We also show specific benchmark cases and their consequences from the aspect of primordial black holes and gravitational waves.

Figures

Dependence of (left) $\alpha$ and (right) $\beta/H$ values on $g_{B-L}$ for $y_{1,2,3}=0.1,~0.2$. In this case $v_{\chi}=10^8\mathrm{~GeV}$.

Dependence of (left) $\alpha$ and (right) $\beta/H$ values on $g_{B-L}$ for $y_{1,2,3}=0.1,~0.2$. In this case $v_{\chi}=10^8\mathrm{~GeV}$.


Dependence of (left) $\alpha$ and (right) $\beta/H$ values on $g_{B-L}$ for $y_{1,2,3}=0.1,~0.2$. In this case $v_{\chi}=10^8\mathrm{~GeV}$.

Dependence of (left) $\alpha$ and (right) $\beta/H$ values on $g_{B-L}$ for $y_{1,2,3}=0.1,~0.2$. In this case $v_{\chi}=10^8\mathrm{~GeV}$.


Dependence of (left) $\alpha$ and (right) $\beta/H$ on the coupling $g_{B-L}$ for $v_{\chi}=10^7\mathrm{~GeV},~10^8\mathrm{~GeV}$. In both the cases $y_{1,2,3}=0.2$.

Dependence of (left) $\alpha$ and (right) $\beta/H$ on the coupling $g_{B-L}$ for $v_{\chi}=10^7\mathrm{~GeV},~10^8\mathrm{~GeV}$. In both the cases $y_{1,2,3}=0.2$.


Dependence of (left) $\alpha$ and (right) $\beta/H$ on the coupling $g_{B-L}$ for $v_{\chi}=10^7\mathrm{~GeV},~10^8\mathrm{~GeV}$. In both the cases $y_{1,2,3}=0.2$.

Dependence of (left) $\alpha$ and (right) $\beta/H$ on the coupling $g_{B-L}$ for $v_{\chi}=10^7\mathrm{~GeV},~10^8\mathrm{~GeV}$. In both the cases $y_{1,2,3}=0.2$.


Dependence of (left) $\alpha$ and (right) $\beta/H$ on $m_{H}$ with $\lambda_{356}=5,~8$. In both the cases $m_A=1000\mathrm{~GeV}$, $m_{H^{\pm}}=800\mathrm{~GeV}$ and $\lambda_2=2$.

Dependence of (left) $\alpha$ and (right) $\beta/H$ on $m_{H}$ with $\lambda_{356}=5,~8$. In both the cases $m_A=1000\mathrm{~GeV}$, $m_{H^{\pm}}=800\mathrm{~GeV}$ and $\lambda_2=2$.


Dependence of (left) $\alpha$ and (right) $\beta/H$ on $m_{H}$ with $\lambda_{356}=5,~8$. In both the cases $m_A=1000\mathrm{~GeV}$, $m_{H^{\pm}}=800\mathrm{~GeV}$ and $\lambda_2=2$.

Dependence of (left) $\alpha$ and (right) $\beta/H$ on $m_{H}$ with $\lambda_{356}=5,~8$. In both the cases $m_A=1000\mathrm{~GeV}$, $m_{H^{\pm}}=800\mathrm{~GeV}$ and $\lambda_2=2$.


The GW spectrum resulting from the two benchmark cases shown in Tab. 1. Relevant sensitivity curves have also been shown.

The GW spectrum resulting from the two benchmark cases shown in Tab. 1. Relevant sensitivity curves have also been shown.


References
  • [1] Y.B. Zel’dovich and I.D. Novikov, The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model, Sov. Astron. 10 (1967) 602.
  • [2] B.J. Carr and S.W. Hawking, Black holes in the early Universe, Mon. Not. Roy. Astron. Soc. 168 (1974) 399.
  • [3] H. Niikura et al., Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations, Nature Astron. 3 (2019) 524 [1701.02151].
  • [4] K. Griest, A.M. Cieplak and M.J. Lehner, New Limits on Primordial Black Hole Dark Matter from an Analysis of Kepler Source Microlensing Data, Phys. Rev. Lett. 111 (2013) 181302.
  • [5] H. Niikura, M. Takada, S. Yokoyama, T. Sumi and S. Masaki, Constraints on Earth-mass primordial black holes from OGLE 5-year microlensing events, Phys. Rev. D 99 (2019) 083503 [1901.07120].
  • [6] Macho collaboration, MACHO project limits on black hole dark matter in the 1-30 solar mass range, Astrophys. J. Lett. 550 (2001) L169 [astro-ph/0011506].
  • [7] EROS-2 collaboration, Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds, Astron. Astrophys. 469 (2007) 387 [astro-ph/0607207].
  • [8] M. Zumalacarregui and U. Seljak, Limits on stellar-mass compact objects as dark matter from gravitational lensing of type Ia supernovae, Phys. Rev. Lett. 121 (2018) 141101 [1712.02240].
  • [9] V. Poulin, P.D. Serpico, F. Calore, S. Clesse and K. Kohri, CMB bounds on disk-accreting massive primordial black holes, Phys. Rev. D 96 (2017) 083524 [1707.04206].
  • [10] LIGO Scientific, Virgo collaboration, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [1602.03837].
  • [11] NANOGrav collaboration, The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951 (2023) L8 [2306.16213].
  • [12] NANOGrav collaboration, The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars, Astrophys. J. Lett. 951 (2023) L9 [2306.16217].
  • [13] EPTA, InPTA: collaboration, The second data release from the European Pulsar Timing Array - III. Search for gravitational wave signals, Astron. Astrophys. 678 (2023) A50 [2306.16214].
  • [14] EPTA collaboration, The second data release from the European Pulsar Timing Array - I. The dataset and timing analysis, Astron. Astrophys. 678 (2023) A48 [2306.16224].
  • [15] EPTA collaboration, The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe, 2306.16227.
  • [16] D.J. Reardon et al., Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951 (2023) L6 [2306.16215].
  • [17] A. Zic et al., The Parkes Pulsar Timing Array third data release, Publ. Astron. Soc. Austral. 40 (2023) e049 [2306.16230].
  • [18] D.J. Reardon et al., The Gravitational-wave Background Null Hypothesis: Characterizing Noise in Millisecond Pulsar Arrival Times with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951 (2023) L7 [2306.16229].
  • [19] H. Xu et al., Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I, Res. Astron. Astrophys. 23 (2023) 075024 [2306.16216].
  • [20] J. Ellis, M. Fairbairn, G. Franciolini, G. Hütsi, A. Iovino, M. Lewicki et al., What is the source of the PTA GW signal?, Phys. Rev. D 109 (2024) 023522 [2308.08546].
  • [21] A.F. Grillo, Primordial Black Holes and Baryon Production in Grand Unified Theories, Phys. Lett. B 94 (1980) 364.
  • [22] M.Y. Khlopov and A.G. Polnarev, PRIMORDIAL BLACK HOLES AS A COSMOLOGICAL TEST OF GRAND UNIFICATION, Phys. Lett. B 97 (1980) 383.
  • [23] M.Y. Khlopov, B.A. Malomed, I.B. Zeldovich and Y.B. Zeldovich, Gravitational instability of scalar fields and formation of primordial black holes, Mon. Not. Roy. Astron. Soc. 215 (1985) 575.
  • [24] B.J. Carr, J.H. Gilbert and J.E. Lidsey, Black hole relics and inflation: Limits on blue perturbation spectra, Phys. Rev. D 50 (1994) 4853 [astro-ph/9405027].
  • [25] A. Chakraborty, P.K. Chanda, K.L. Pandey and S. Das, Formation and Abundance of Late-forming Primordial Black Holes as Dark Matter, Astrophys. J. 932 (2022) 119 [2204.09628].
  • [26] B.J. Carr and J.E. Lidsey, Primordial black holes and generalized constraints on chaotic inflation, Phys. Rev. D 48 (1993) 543.
  • [27] J.S. Bullock and J.R. Primack, NonGaussian fluctuations and primordial black holes from inflation, Phys. Rev. D 55 (1997) 7423 [astro-ph/9611106].
  • [28] R. Saito, J. Yokoyama and R. Nagata, Single-field inflation, anomalous enhancement of superhorizon fluctuations, and non-Gaussianity in primordial black hole formation, JCAP 06 (2008) 024 [0804.3470].
  • [29] S. Kawai and J. Kim, Primordial black holes from Gauss-Bonnet-corrected single field inflation, Phys. Rev. D 104 (2021) 083545 [2108.01340].
  • [30] S. Kawai and J. Kim, CMB from a Gauss-Bonnet-induced de Sitter fixed point, Phys. Rev. D 104 (2021) 043525 [2105.04386].
  • [31] S. Choudhury, S. Panda and M. Sami, Galileon inflation evades the no-go for PBH formation in the single-field framework, JCAP 08 (2023) 078 [2304.04065].
  • [32] L. Randall, M. Soljacic and A.H. Guth, Supernatural inflation: Inflation from supersymmetry with no (very) small parameters, Nucl. Phys. B 472 (1996) 377 [hep-ph/9512439].
  • [33] J. Garcia-Bellido, M. Peloso and C. Unal, Gravitational waves at interferometer scales and primordial black holes in axion inflation, JCAP 12 (2016) 031 [1610.03763].
  • [34] M. Braglia, D.K. Hazra, F. Finelli, G.F. Smoot, L. Sriramkumar and A.A. Starobinsky, Generating PBHs and small-scale GWs in two-field models of inflation, JCAP 08 (2020) 001 [2005.02895].
  • [35] S. Kawai and J. Kim, Primordial black holes and gravitational waves from nonminimally coupled supergravity inflation, Phys. Rev. D 107 (2023) 043523 [2209.15343].
  • [36] S.W. Hawking, Black Holes From Cosmic Strings, Phys. Lett. B 231 (1989) 237.
  • [37] D. Borah, S. Jyoti Das, R. Roshan and R. Samanta, Imprint of PBH domination on gravitational waves generated by cosmic strings, Phys. Rev. D 108 (2023) 023531 [2304.11844].
  • [38] M. Crawford and D.N. Schramm, Spontaneous Generation of Density Perturbations in the Early Universe, Nature 298 (1982) 538.
  • [39] K. Kawana and K.-P. Xie, Primordial black holes from a cosmic phase transition: The collapse of Fermi-balls, Phys. Lett. B 824 (2022) 136791 [2106.00111].
  • [40] M.J. Baker, M. Breitbach, J. Kopp and L. Mittnacht, Primordial Black Holes from First-Order Cosmological Phase Transitions, 2105.07481.
  • [41] P. Huang and K.-P. Xie, Primordial black holes from an electroweak phase transition, Phys. Rev. D 105 (2022) 115033 [2201.07243].
  • [42] K. Kawana, T. Kim and P. Lu, PBH formation from overdensities in delayed vacuum transitions, Phys. Rev. D 108 (2023) 103531 [2212.14037].
  • [43] J. Liu, L. Bian, R.-G. Cai, Z.-K. Guo and S.-J. Wang, Primordial black hole production during first-order phase transitions, Phys. Rev. D 105 (2022) L021303 [2106.05637].
  • [44] Y. Gouttenoire and T. Volansky, Primordial Black Holes from Supercooled Phase Transitions, 2305.04942.
  • [45] M. Lewicki, P. Toczek and V. Vaskonen, Primordial black holes from strong first-order phase transitions, JHEP 09 (2023) 092 [2305.04924].
  • [46] S. Matarrese, O. Pantano and D. Saez, General relativistic dynamics of irrotational dust: Cosmological implications, Phys. Rev. Lett. 72 (1994) 320 [astro-ph/9310036].
  • [47] S. Matarrese and S. Mollerach, The Stochastic gravitational wave background produced by nonlinear cosmological perturbations, in ERE - Spanish Relativity Conference, 9, 1996 [astro-ph/9705168].
  • [48] S. Matarrese, S. Mollerach and M. Bruni, Second order perturbations of the Einstein-de Sitter universe, Phys. Rev. D 58 (1998) 043504 [astro-ph/9707278].
  • [49] S.Y. Khlebnikov and I.I. Tkachev, Relic gravitational waves produced after preheating, Phys. Rev. D 56 (1997) 653 [hep-ph/9701423].
  • [50] R. Easther, J.T. Giblin, Jr. and E.A. Lim, Gravitational Wave Production At The End Of Inflation, Phys. Rev. Lett. 99 (2007) 221301 [astro-ph/0612294].
  • [51] R. Easther, J.T. Giblin and E.A. Lim, Gravitational Waves From the End of Inflation: Computational Strategies, Phys. Rev. D 77 (2008) 103519 [0712.2991].
  • [52] S. Choudhury and A. Mazumdar, Primordial blackholes and gravitational waves for an inflection-point model of inflation, Phys. Lett. B 733 (2014) 270 [1307.5119].
  • [53] P. Binetruy, S. Chadha and P. Sikivie, On Pseudogoldstone Boson Masses From Broken Gauge Interactions, Phys. Lett. B 107 (1981) 425.
  • [54] T. Vachaspati and A. Vilenkin, Gravitational Radiation from Cosmic Strings, Phys. Rev. D 31 (1985) 3052.
  • [55] M.B. Hindmarsh and T.W.B. Kibble, Cosmic strings, Rept. Prog. Phys. 58 (1995) 477 [hep-ph/9411342].
  • [56] E. Witten, Cosmic Separation of Phases, Phys. Rev. D 30 (1984) 272.
  • [57] C.J. Hogan, Gravitational radiation from cosmological phase transitions, Mon. Not. Roy. Astron. Soc. 218 (1986) 629.
  • [58] N.G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev. D 18 (1978) 2574.
  • [59] E. Ma, Common origin of neutrino mass, dark matter, and baryogenesis, Mod. Phys. Lett. A 21 (2006) 1777 [hep-ph/0605180].
  • [60] E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225].
  • [61] R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188].
  • [62] L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP 02 (2007) 028 [hep-ph/0612275].
  • [63] S.J. Huber and T. Konstandin, Gravitational Wave Production by Collisions: More Bubbles, JCAP 09 (2008) 022 [0806.1828].
  • [64] C. Caprini and D.G. Figueroa, Cosmological Backgrounds of Gravitational Waves, Class. Quant. Grav. 35 (2018) 163001 [1801.04268].
  • [65] I.K. Banerjee and U.K. Dey, Spinning Primordial Black Holes from First Order Phase Transition, 2311.03406.
  • [66] J. Liu, L. Bian, R.-G. Cai, Z.-K. Guo and S.-J. Wang, Constraining First-Order Phase Transitions with Curvature Perturbations, Phys. Rev. Lett. 130 (2023) 051001 [2208.14086].
  • [67] S. Young, I. Musco and C.T. Byrnes, Primordial black hole formation and abundance: contribution from the non-linear relation between the density and curvature perturbation, JCAP 11 (2019) 012 [1904.00984].
  • [68] I. Musco, V. De Luca, G. Franciolini and A. Riotto, Threshold for primordial black holes. II. A simple analytic prescription, Phys. Rev. D 103 (2021) 063538 [2011.03014].
  • [69] W.-H. Ruan, Z.-K. Guo, R.-G. Cai and Y.-Z. Zhang, Taiji program: Gravitational-wave sources, Int. J. Mod. Phys. A 35 (2020) 2050075 [1807.09495].
  • [70] LISA collaboration, Laser Interferometer Space Antenna, 1702.00786.
  • [71] KAGRA collaboration, Detector configuration of KAGRA: The Japanese cryogenic gravitational-wave detector, Class. Quant. Grav. 29 (2012) 124007 [1111.7185].
  • [72] LIGO Scientific collaboration, Advanced LIGO, Class. Quant. Grav. 32 (2015) 074001 [1411.4547].
  • [73] D. Reitze et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO, Bull. Am. Astron. Soc. 51 (2019) 035 [1907.04833].
  • [74] M. Punturo et al., The Einstein Telescope: A third-generation gravitational wave observatory, Class. Quant. Grav. 27 (2010) 194002.
  • [75] S. Kawamura et al., The Japanese space gravitational wave antenna: DECIGO, Class. Quant. Grav. 28 (2011) 094011.
  • [76] S.P. et al., The Big Bang Observer: Direct detection of gravitational waves from the birth of the Universe to the Present,, NASA Mission Concept Study (2004) .
  • [77] N. Benincasa, L. Delle Rose, K. Kannike and L. Marzola, Multi-step phase transitions and gravitational waves in the inert doublet model, JCAP 12 (2022) 025 [2205.06669].