Author(s)
Auclair, Pierre, Blanco-Pillado, Jose J., Figueroa, Daniel G., Jenkins, Alexander C., Lewicki, Marek, Sakellariadou, Mairi, Sanidas, Sotiris, Sousa, Lara, Steer, Danièle A., Wachter, Jeremy M., Kuroyanagi, SachikoAbstract
Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the properties of the string network. In this paper we analyze the ability of the Laser Interferometer Space Antenna (LISA) to measure this background, considering leading models of the string networks. We find that LISA will be able to probe cosmic strings with tensions Gμ >rsim 𝒪(10−17), improving by about 6 orders of magnitude current pulsar timing arrays (PTA) constraints, and potentially 3 orders of magnitude with respect to expected constraints from next generation PTA observatories. We include in our analysis possible modifications of the SGWB spectrum due to different hypotheses regarding cosmic history and the underlying physics of the string network. These include possible modifications in the SGWB spectrum due to changes in the number of relativistic degrees of freedom in the early Universe, the presence of a non-standard equation of state before the onset of radiation domination, or changes to the network dynamics due to a string inter-commutation probability less than unity. In the event of a detection, LISA's frequency band is well-positioned to probe such cosmic events. Our results constitute a thorough exploration of the cosmic string science that will be accessible to LISA.
Figures
0.5cm
Cosmic string SGWB curves (all in red) near various relevant values of $G\mu$. The dashed orange curve is the EPTA sensitivity, and the darkest red curve just below is for $G\mu=10^{-10}$. The dash-dotted dark orange curve is the (projected) SKA sensitivity, and the dark red curve just below is for $G\mu=10^{-13}$. The dotted black curve is the LISA PLS; the red curve whose peak passes through it, and the light red curve just below, are for $G\mu=10^{-15}$ and $10^{-17}$ respectively. The $P_n$ are inferred from simulation~\cite{Blanco-Pillado:2017oxo}, and the loop number density is from Model II.
Idem as figure~\ref{fig:fiducialSGWB}, but with $P_n\propto n^{-4/3}$ and using the loop number density from Model III~\cite{Lorenz:2010sm}.
Examples of spectra for several values of $G\mu$ and $\alpha=10^{-1}$ using both the full VOS solution (with {\it VOS} superscript) and assuming the network is always in scaling through eqs.~(\ref{eqn:VOSrad},\ref{eqn:VOSmat}) (with {\it scaling} superscript). The gray area indicates LISA sensitivity.
Examples of spectra with $G\mu=10^{-11}$ assuming a constant number of degrees of freedom (black solid line) and standard cosmology with SM particle content (blue dashed line). The gray area indicates LISA sensitivity.
Examples of spectra with $G\mu=10^{-11}$ in standard cosmology (black solid line) and several spectra in cosmological evolution with $\Delta g_*=100$ new degrees of freedom annihilating at at the range of temperatures of interest for LISA. The gray area indicates LISA sensitivity.
Examples of spectra with $G\mu=10^{-11}$ in standard cosmology (black solid line) and several spectra in cosmological evolution with a period of early matter domination as well as kination ending in the range of temperatures of interest for LISA. The black dashed line indicates LISA sensitivity.
How the SGWB of a loop network (solid blue curves) shifts through the LISA sensitivity band (dotted black curve) as the string tension varies. We assume $P_n\propto n^{-4/3}$ for this figure, but other spectra exhibit similar behavior.
A comparison of the LISA sensitivity curve to the SGWB predicted by all three models using $G\mu=10^{-17}$, $P_n\propto n^{-4/3}$. Models I and II are effectively identical in this regime, due to $\alpha\gg\mathrm{\Gamma} G\mu$. We therefore see that we expect that LISA could only constrain string tensions higher than $G\mu\approx 10^{-17}$.
The stochastic gravitational wave background generated by cosmic string networks with $G\mu=10^{-10}$ and different values of the loop-size parameter $\alpha$. The shaded area represents the LISA sensitivity window. In these plots, we consider only the fundamental mode of emission and we did not include the change in the effective number of degrees of freedom.
The stochastic gravitational wave background generated by cosmic string networks with $\alpha=10^{-1}$ (solid lines) and $\alpha=10^{-5}$ (dash-dotted lines) for different values of $G\mu$. The shaded area represents the LISA sensitivity window. In these plots, we consider only the fundamental mode of emission and we did not include the change in the effective number of degrees of freedom.
The stochastic gravitational wave background generated by cosmic string networks with $G\mu=10^{-10}$ (solid lines) and $G\mu=10^{-12}$ (dash-dotted lines) for different values of the loop-size parameter $\alpha$ in the small-loop regime. The shaded area represents the LISA sensitivity window. In these plots, we consider only the fundamental mode of emission and we did not include the change in the effective number of degrees of freedom.
Projected constraints on $G\mu$ of the LISA mission for cosmic string scenarios characterized by different loop-size parameter $\alpha$ for $n_*=1$ (dashed line) and $n_*=10^5$, with $q=4/3$ (dash-dotted line). The shaded area corresponds to the region of the $(\alpha,G\mu)$ parameter space that will be fully available for exploration with LISA. The dotted line corresponds to scenarios for which $\alpha=\Gamma G\mu$, so that the region above this line corresponds to cosmic string models in which loops are small, while the region bellow corresponds to the large loop regime.
References
- LIGO Scientific, Virgo collaborations, 2016 Observation of gravitational waves from a binary black hole merger, https://doi.org/10.1103/PhysRevLett.116.061102 Phys. Rev. Lett. 116 061102 [1602.03837]
- LIGO Scientific, Virgo collaborations, 2016 GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence, https://doi.org/10.1103/PhysRevLett.116.241103 Phys. Rev. Lett. 116 241103 [1606.04855]
- LIGO Scientific, VIRGO collaborations, 2017 GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2, https://doi.org/10.1103/PhysRevLett.118.221101 Phys. Rev. Lett. 118 221101 [Erratum ibid 121 (2018) 129901] [1706.01812]
- LIGO Scientific, Virgo collaborations, 2017 GW170608: observation of a 19-solar-mass binary black hole coalescence, https://doi.org/10.3847/2041-8213/aa9f0c Astrophys. J. 851 L35 [1711.05578]
- LIGO Scientific, Virgo collaborations, 2017 GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence, https://doi.org/10.1103/PhysRevLett.119.141101 Phys. Rev. Lett. 119 141101 [1709.09660]
- V.A. Rubakov, M.V. Sazhin and A.V. Veryaskin, 1982 Graviton creation in the inflationary universe and the grand unification scale, https://doi.org/10.1016/0370-2693(82)90641-4 Phys. Lett. 115B189
- R. Fabbri and M.d. Pollock, 1983 The effect of primordially produced gravitons upon the anisotropy of the cosmological microwave background radiation, https://doi.org/10.1016/0370-2693(83)91322-9 Phys. Lett. 125B445
- E. Pajer and M. Peloso, 2013 A review of axion inflation in the era of Planck, https://doi.org/10.1088/0264-9381/30/21/214002 Class. Quant. Grav. 30 214002 [1305.3557]
- P. Adshead, E. Martinec and M. Wyman, 2013 Gauge fields and inflation: chiral gravitational waves, fluctuations and the Lyth bound, https://doi.org/10.1103/PhysRevD.88.021302 Phys. Rev. D 88 021302 [1301.2598]
- R.R. Caldwell and C. Devulder, 2018 Axion gauge field inflation and gravitational leptogenesis: a lower bound on B modes from the matter-antimatter asymmetry of the universe, https://doi.org/10.1103/PhysRevD.97.023532 Phys. Rev. D 97 023532 [1706.03765]
- M. Giovannini, 1998 Gravitational waves constraints on postinflationary phases stiffer than radiation, https://doi.org/10.1103/PhysRevD.58.083504 Phys. Rev. D 58 083504 [hep-ph/9806329]
- M. Giovannini, 1999 Production and detection of relic gravitons in quintessential inflationary models, https://doi.org/10.1103/PhysRevD.60.123511 Phys. Rev. D 60 123511 [astro-ph/9903004]
- L.A. Boyle and A. Buonanno, 2008 Relating gravitational wave constraints from primordial nucleosynthesis, pulsar timing, laser interferometers and the CMB: implications for the early Universe, https://doi.org/10.1103/PhysRevD.78.043531 Phys. Rev. D 78 043531 [0708.2279]
- J. García-Bellido and D.G. Figueroa, 2007 A stochastic background of gravitational waves from hybrid preheating, https://doi.org/10.1103/PhysRevLett.98.061302 Phys. Rev. Lett. 98 061302 [astro-ph/0701014]
- J. García-Bellido, D.G. Figueroa and A. Sastre, 2008 A gravitational wave background from reheating after hybrid inflation, https://doi.org/10.1103/PhysRevD.77.043517 Phys. Rev. D 77 043517 [0707.0839]
- J.F. Dufaux, A. Bergman, G.N. Felder, L. Kofman and J.-P. Uzan, 2007 Theory and numerics of gravitational waves from preheating after inflation, https://doi.org/10.1103/PhysRevD.76.123517 Phys. Rev. D 76 123517 [0707.0875]
- J.-F. Dufaux, D.G. Figueroa and J. García-Bellido, 2010 Gravitational waves from abelian gauge fields and cosmic strings at preheating, https://doi.org/10.1103/PhysRevD.82.083518 Phys. Rev. D 82 083518 [1006.0217]
- P. Adshead, J.T. Giblin and Z.J. Weiner, 2018 Gravitational waves from gauge preheating, https://doi.org/10.1103/PhysRevD.98.043525 Phys. Rev. D 98 043525 [1805.04550]
- S. Antusch, F. Cefala and S. Orani, 2017 Gravitational waves from oscillons after inflation, https://doi.org/10.1103/PhysRevLett.120.219901 Phys. Rev. Lett. 118 011303 [Erratum ibid 120 (2018) 219901] [1607.01314]
- J. Liu, Z.-K. Guo, R.-G. Cai and G. Shiu, 2018 Gravitational waves from oscillons with cuspy potentials, https://doi.org/10.1103/PhysRevLett.120.031301 Phys. Rev. Lett. 120 031301 [1707.09841]
- M.A. Amin et al., 2018 Gravitational waves from asymmetric oscillon dynamics?, https://doi.org/10.1103/PhysRevD.98.024040 Phys. Rev. D 98 024040 [1803.08047]
- M. Kamionkowski, A. Kosowsky and M.S. Turner, 1994 Gravitational radiation from first order phase transitions, https://doi.org/10.1103/PhysRevD.49.2837 Phys. Rev. D 49 2837 [astro-ph/9310044]
- C. Caprini, R. Durrer and G. Servant, 2008 Gravitational wave generation from bubble collisions in first-order phase transitions: an analytic approach, https://doi.org/10.1103/PhysRevD.77.124015 Phys. Rev. D 77 124015 [0711.2593]
- M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, 2014 Gravitational waves from the sound of a first order phase transition, https://doi.org/10.1103/PhysRevLett.112.041301 Phys. Rev. Lett. 112 041301 [1304.2433]
- M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, 2015 Numerical simulations of acoustically generated gravitational waves at a first order phase transition, https://doi.org/10.1103/PhysRevD.92.123009 Phys. Rev. D 92 123009 [1504.03291]
- D. Cutting, M. Hindmarsh and D.J. Weir, 2018 Gravitational waves from vacuum first-order phase transitions: from the envelope to the lattice, https://doi.org/10.1103/PhysRevD.97.123513 Phys. Rev. D 97 123513 [1802.05712]
- T. Vachaspati and A. Vilenkin, 1985 Gravitational radiation from cosmic strings, https://doi.org/10.1103/PhysRevD.31.3052 Phys. Rev. D 31 3052
- M. Sakellariadou, 1990 Gravitational waves emitted from infinite strings, https://doi.org/10.1103/PhysRevD.42.354 Phys. Rev. D 42 354 [Erratum ibid D 43 (1991) 4150]
- T. Damour and A. Vilenkin, 2000 Gravitational wave bursts from cosmic strings, https://doi.org/10.1103/PhysRevLett.85.3761 Phys. Rev. Lett. 85 3761 [gr-qc/0004075]
- T. Damour and A. Vilenkin, 2001 Gravitational wave bursts from cusps and kinks on cosmic strings, https://doi.org/10.1103/PhysRevD.64.064008 Phys. Rev. D 64 064008 [gr-qc/0104026]
- T. Damour and A. Vilenkin, 2005 Gravitational radiation from cosmic (super)strings: bursts, stochastic background and observational windows, https://doi.org/10.1103/PhysRevD.71.063510 Phys. Rev. D 71 063510 [hep-th/0410222]
- D.G. Figueroa, M. Hindmarsh and J. Urrestilla, 2013 Exact scale-invariant background of gravitational waves from cosmic defects, https://doi.org/10.1103/PhysRevLett.110.101302 Phys. Rev. Lett. 110 101302 [1212.5458]
- J.J. Blanco-Pillado and K.D. Olum, 2017 Stochastic gravitational wave background from smoothed cosmic string loops, https://doi.org/10.1103/PhysRevD.96.104046 Phys. Rev. D 96 104046 [1709.02693]
- C. Caprini and D.G. Figueroa, 2018 Cosmological backgrounds of gravitational waves, https://doi.org/10.1088/1361-6382/aac608 Class. Quant. Grav. 35 163001 [1801.04268]
- H.B. Nielsen and P. Olesen, 1973 Vortex line models for dual strings, https://doi.org/10.1016/0550-3213(73)90350-7 Nucl. Phys. B 61 45
- T.W.B. Kibble, 1976 Topology of cosmic domains and strings, https://doi.org/10.1088/0305-4470/9/8/029 J. Phys. A 9 1387
- R. Jeannerot, J. Rocher and M. Sakellariadou, 2003 How generic is cosmic string formation in SUSY GUTs, https://doi.org/10.1103/PhysRevD.68.103514 Phys. Rev. D 68 103514 [hep-ph/0308134]
- Planck collaboration, 2014 Planck 2013 results. XXV. Searches for cosmic strings and other topological defects, https://doi.org/10.1051/0004-6361/201321621 Astron. Astrophys. 571 A25 [1303.5085]
- T. Charnock, A. Avgoustidis, E.J. Copeland and A. Moss, 2016 CMB constraints on cosmic strings and superstrings, https://doi.org/10.1103/PhysRevD.93.123503 Phys. Rev. D 93 123503 [1603.01275]
- C. Ringeval, 2010 Cosmic strings and their induced non-Gaussianities in the cosmic microwave background, https://doi.org/10.1155/2010/380507 Adv. Astron. 2010380507 [1005.4842]
- A. Vilenkin, 1984 Cosmic strings as gravitational lenses, https://doi.org/10.1086/184303 Astrophys. J. 282 L51
- J.K. Bloomfield and D.F. Chernoff, 2014 Cosmic string loop microlensing, https://doi.org/10.1103/PhysRevD.89.124003 Phys. Rev. D 89 124003 [1311.7132]
- R.H. Brandenberger, 1987 On the decay of cosmic string loops, https://doi.org/10.1016/0550-3213(87)90092-7 Nucl. Phys. B 293 812
- M. Srednicki and S. Theisen, 1987 Nongravitational decay of cosmic strings, https://doi.org/10.1016/0370-2693(87)90648-4 Phys. Lett. B 189 397
- P. Bhattacharjee, C.T. Hill and D.N. Schramm, 1992 Grand unified theories, topological defects and ultrahigh-energy cosmic rays, https://doi.org/10.1103/PhysRevLett.69.567 Phys. Rev. Lett. 69 567
- T. Damour and A. Vilenkin, 1997 Cosmic strings and the string dilaton, https://doi.org/10.1103/PhysRevLett.78.2288 Phys. Rev. Lett. 78 2288 [gr-qc/9610005]
- U.F. Wichoski, J.H. MacGibbon and R.H. Brandenberger, 2002 High-energy neutrinos, photons and cosmic ray fluxes from VHS cosmic strings, https://doi.org/10.1103/PhysRevD.65.063005 Phys. Rev. D 65 063005 [hep-ph/9805419]
- M. Peloso and L. Sorbo, 2003 Moduli from cosmic strings, https://doi.org/10.1016/S0550-3213(02)01020-9 Nucl. Phys. B 649 88 [hep-ph/0205063]
- E. Sabancilar, 2010 Cosmological constraints on strongly coupled moduli from cosmic strings, https://doi.org/10.1103/PhysRevD.81.123502 Phys. Rev. D 81 123502 [0910.5544]
- T. Vachaspati, 2010 Cosmic rays from cosmic strings with condensates, https://doi.org/10.1103/PhysRevD.81.043531 Phys. Rev. D 81 043531 [0911.2655]
- M.B. Hindmarsh and T.W.B. Kibble, 1995 Cosmic strings, https://doi.org/10.1088/0034-4885/58/5/001 Rept. Prog. Phys. 58 477 [hep-ph/9411342]
- M. Sakellariadou, 2007 Cosmic strings, https://doi.org/10.1007/3-540-70859-610 Lect. Notes Phys. 718 247 [hep-th/0602276]
- T. Vachaspati, L. Pogosian and D. Steer, 2015 Cosmic strings, https://doi.org/10.4249/scholarpedia.31682 Scholarpedia 10 31682 [1506.04039]
- J.J. Blanco-Pillado, K.D. Olum and X. Siemens, 2018 New limits on cosmic strings from gravitational wave observation, https://doi.org/10.1016/j.physletb.2018.01.050 Phys. Lett. B 778 392 [1709.02434]
- LIGO Scientific, Virgo collaborations, 2019 Search for the isotropic stochastic background using data from Advanced LIGO's second observing run, https://doi.org/10.1103/PhysRevD.100.061101 Phys. Rev. D 100 061101 [1903.02886]
- LIGO Scientific, Virgo collaborations, 2018 Constraints on cosmic strings using data from the first Advanced LIGO observing run, https://doi.org/10.1103/PhysRevD.97.102002 Phys. Rev. D 97 102002 [1712.01168]
- N. Turok, 1984 Grand unified strings and galaxy formation, https://doi.org/10.1016/0550-3213(84)90407-3 Nucl. Phys. B 242 520
- LIGO Scientific, VIRGO collaborations, 2014 Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors, https://doi.org/10.1103/PhysRevLett.112.131101 Phys. Rev. Lett. 112 131101 [1310.2384]
- A. Vilenkin, 1981 Gravitational radiation from cosmic strings, https://doi.org/10.1016/0370-2693(81)91144-8 Phys. Lett. 107B47
- C.J. Hogan and M.J. Rees, 1984 Gravitational interactions of cosmic strings, https://doi.org/10.1038/311109a0 Nature 311109
- F.S. Accetta and L.M. Krauss, 1989 The stochastic gravitational wave spectrum resulting from cosmic string evolution, https://doi.org/10.1016/0550-3213(89)90628-7 Nucl. Phys. B 319 747
- D.P. Bennett and F.R. Bouchet, 1991 Constraints on the gravity wave background generated by cosmic strings, https://doi.org/10.1103/PhysRevD.43.2733 Phys. Rev. D 43 2733
- R.R. Caldwell and B. Allen, 1992 Cosmological constraints on cosmic string gravitational radiation, https://doi.org/10.1103/PhysRevD.45.3447 Phys. Rev. D 45 3447
- X. Siemens, V. Mandic and J. Creighton, 2007 Gravitational wave stochastic background from cosmic (super)strings, https://doi.org/10.1103/PhysRevLett.98.111101 Phys. Rev. Lett. 98 111101 [astro-ph/0610920]
- M.R. DePies and C.J. Hogan, 2007 Stochastic gravitational wave background from light cosmic strings, https://doi.org/10.1103/PhysRevD.75.125006 Phys. Rev. D 75 125006 [astro-ph/0702335]
- S. Olmez, V. Mandic and X. Siemens, 2010 Gravitational-wave stochastic background from kinks and cusps on cosmic strings, https://doi.org/10.1103/PhysRevD.81.104028 Phys. Rev. D 81 104028 [1004.0890]
- S.A. Sanidas, R.A. Battye and B.W. Stappers, 2012 Constraints on cosmic string tension imposed by the limit on the stochastic gravitational wave background from the European Pulsar Timing Array, https://doi.org/10.1103/PhysRevD.85.122003 Phys. Rev. D 85 122003 [1201.2419]
- S.A. Sanidas, R.A. Battye and B.W. Stappers, 2013 Projected constraints on the cosmic (super)string tension with future gravitational wave detection experiments, https://doi.org/10.1088/0004-637X/764/1/108 Astrophys. J. 764 108 [1211.5042]
- S. Kuroyanagi, K. Miyamoto, T. Sekiguchi, K. Takahashi and J. Silk, 2012 Forecast constraints on cosmic string parameters from gravitational wave direct detection experiments, https://doi.org/10.1103/PhysRevD.86.023503 Phys. Rev. D 86 023503 [1202.3032]
- S. Kuroyanagi, K. Miyamoto, T. Sekiguchi, K. Takahashi and J. Silk, 2013 Forecast constraints on cosmic strings from future CMB, pulsar timing and gravitational wave direct detection experiments, https://doi.org/10.1103/PhysRevD.87.069903 Phys. Rev. D 87 023522 [Erratum ibid D 87 (2013) 069903] [1210.2829]
- L. Sousa and P.P. Avelino, 2013 Stochastic gravitational wave background generated by cosmic string networks: velocity-dependent one-scale model versus scale-invariant evolution, https://doi.org/10.1103/PhysRevD.88.023516 Phys. Rev. D 88 023516 [1304.2445]
- J.J. Blanco-Pillado, K.D. Olum and B. Shlaer, 2014 The number of cosmic string loops, https://doi.org/10.1103/PhysRevD.89.023512 Phys. Rev. D 89 023512 [1309.6637]
- L. Sousa and P.P. Avelino, 2014 Stochastic gravitational wave background generated by cosmic string networks: the small-loop regime, https://doi.org/10.1103/PhysRevD.89.083503 Phys. Rev. D 89 083503 [1403.2621]
- A.C. Jenkins and M. Sakellariadou, 2018 Anisotropies in the stochastic gravitational-wave background: Formalism and the cosmic string case, https://doi.org/10.1103/PhysRevD.98.063509 Phys. Rev. D 98 063509 [1802.06046]
- G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, 2018 MicrOMEGAs5.0 : freeze-in, https://doi.org/10.1016/j.cpc.2018.04.027 Comput. Phys. Commun. 231 173 [1801.03509]
- D.P. Bennett and F.R. Bouchet, 1988 Evidence for a scaling solution in cosmic string evolution, https://doi.org/10.1103/PhysRevLett.60.257 Phys. Rev. Lett. 60 257
- A. Albrecht and N. Turok, 1989 Evolution of cosmic string networks, https://doi.org/10.1103/PhysRevD.40.973 Phys. Rev. D 40 973
- B. Allen and E.P.S. Shellard, 1990 Cosmic string evolution: a numerical simulation, https://doi.org/10.1103/PhysRevLett.64.119 Phys. Rev. Lett. 64 119
- J.J. Blanco-Pillado, K.D. Olum and B. Shlaer, 2011 Large parallel cosmic string simulations: new results on loop production, https://doi.org/10.1103/PhysRevD.83.083514 Phys. Rev. D 83 083514 [1101.5173]
- E.J. Copeland, T.W.B. Kibble and D.A. Steer, 1998 The evolution of a network of cosmic string loops, https://doi.org/10.1103/PhysRevD.58.043508 Phys. Rev. D 58 043508 [hep-ph/9803414]
- D.P. Bennett, 1986 The evolution of cosmic strings, https://doi.org/10.1103/PhysRevD.34.3932.2 Phys. Rev. D 33 872 [Erratum ibid D 34 (1986) 3932]
- D.P. Bennett, 1986 Evolution of cosmic strings. 2., https://doi.org/10.1103/PhysRevD.34.3592 Phys. Rev. D 34 3592
- C.J. Burden, 1985 Gravitational radiation from a particular class of cosmic strings, https://doi.org/10.1016/0370-2693(85)90326-0 Phys. Lett. 164B277
- D. Garfinkle and T. Vachaspati, 1987 Radiation from kinky, cuspless cosmic loops, https://doi.org/10.1103/PhysRevD.36.2229 Phys. Rev. D 36 2229
- T.W.B. Kibble, 1985 Evolution of a system of cosmic strings, https://doi.org/10.1016/0550-3213(85)90439-0 Nucl. Phys. B 252 227 [Erratum ibid B 261 (1985) 750]
- C.J.A.P. Martins and E.P.S. Shellard, 1996 Quantitative string evolution, https://doi.org/10.1103/PhysRevD.54.2535 Phys. Rev. D 54 2535 [hep-ph/9602271]
- C.J.A.P. Martins and E.P.S. Shellard, 2002 Extending the velocity dependent one scale string evolution model, https://doi.org/10.1103/PhysRevD.65.043514 Phys. Rev. D 65 043514 [hep-ph/0003298]
- C.J.A.P. Martins, J.N. Moore and E.P.S. Shellard, 2004 A Unified model for vortex string network evolution, https://doi.org/10.1103/PhysRevLett.92.251601 Phys. Rev. Lett. 92 251601 [hep-ph/0310255]
- J.N. Moore, E.P.S. Shellard and C.J. A.P. Martins, 2002 On the evolution of Abelian-Higgs string networks, https://doi.org/10.1103/PhysRevD.65.023503 Phys. Rev. D 65 023503 [hep-ph/0107171]
- J.M. Quashnock and T. Piran, 1991 Effects of gravitational back reaction on small scale structure of cosmic strings, https://doi.org/10.1103/PhysRevD.43.R3785 Phys. Rev. D 43 R3785
- T.W.B. Kibble and E.J. Copeland, 1991 Evolution of small scale structure on cosmic strings, https://doi.org/10.1088/0031-8949/1991/T36/017 Phys. Scripta T 36 153
- D. Austin, E.J. Copeland and T.W.B. Kibble, 1993 Evolution of cosmic string configurations, https://doi.org/10.1103/PhysRevD.48.5594 Phys. Rev. D 48 5594 [hep-ph/9307325]
- C.J.A.P. Martins, E.P.S. Shellard and J.P.P. Vieira, 2014 Models for small-scale structure on cosmic strings: mathematical formalism, https://doi.org/10.1103/PhysRevD.90.043518 Phys. Rev. D 90 043518 [1405.7722]
- E.J. Copeland, J. Magueijo and D.A. Steer, 2000 Cosmological parameter dependence in local string theories of structure formation, https://doi.org/10.1103/PhysRevD.61.063505 Phys. Rev. D 61 063505 [astro-ph/9903174]
- J. Polchinski and J.V. Rocha, 2006 Analytic study of small scale structure on cosmic strings, https://doi.org/10.1103/PhysRevD.74.083504 Phys. Rev. D 74 083504 [hep-ph/0606205]
- J. Polchinski and J.V. Rocha, 2007 Cosmic string structure at the gravitational radiation scale, https://doi.org/10.1103/PhysRevD.75.123503 Phys. Rev. D 75 123503 [gr-qc/0702055]
- F. Dubath, J. Polchinski and J.V. Rocha, 2008 Cosmic string loops, large and small, https://doi.org/10.1103/PhysRevD.77.123528 Phys. Rev. D 77 123528 [0711.0994]
- R.L. Davis and E.P.S. Shellard, 1989 Do axions need inflation?, https://doi.org/10.1016/0550-3213(89)90187-9 Nucl. Phys. B 324 167
- K.D. Olum and J.J. Blanco-Pillado, 2000 Radiation from cosmic string standing waves, https://doi.org/10.1103/PhysRevLett.84.4288 Phys. Rev. Lett. 84 4288 [astro-ph/9910354]
- K.D. Olum and J.J. Blanco-Pillado, 1999 Field theory simulation of Abelian Higgs cosmic string cusps, https://doi.org/10.1103/PhysRevD.60.023503 Phys. Rev. D 60 023503 [gr-qc/9812040]
- D. Matsunami, L. Pogosian, A. Saurabh and T. Vachaspati, 2019 Decay of cosmic string loops due to particle radiation, https://doi.org/10.1103/PhysRevLett.122.201301 Phys. Rev. Lett. 122 201301 [1903.05102]
- G. Vincent, N.D. Antunes and M. Hindmarsh, 1998 Numerical simulations of string networks in the Abelian Higgs model, https://doi.org/10.1103/PhysRevLett.80.2277 Phys. Rev. Lett. 80 2277 [hep-ph/9708427]
- M. Hindmarsh, S. Stuckey and N. Bevis, 2009 Abelian Higgs cosmic strings: small scale structure and loops, https://doi.org/10.1103/PhysRevD.79.123504 Phys. Rev. D 79 123504 [0812.1929]
- D. Daverio, M. Hindmarsh, M. Kunz, J. Lizarraga and J. Urrestilla, 2016 Energy-momentum correlations for Abelian Higgs cosmic strings, https://doi.org/10.1103/PhysRevD.95.049903 Phys. Rev. D 93 085014 [Erratum ibid D 95 (2017) 049903] [1510.05006]
- M. Hindmarsh, J. Lizarraga, J. Urrestilla, D. Daverio and M. Kunz, 2017 Scaling from gauge and scalar radiation in Abelian Higgs string networks, https://doi.org/10.1103/PhysRevD.96.023525 Phys. Rev. D 96 023525 [1703.06696]
- B. Allen and E.P.S. Shellard, 1992 Gravitational radiation from cosmic strings, https://doi.org/10.1103/PhysRevD.45.1898 Phys. Rev. D 45 1898
- P. Binetruy, A. Bohe, T. Hertog and D.A. Steer, 2009 Gravitational wave bursts from cosmic superstrings with Y-junctions, https://doi.org/10.1103/PhysRevD.80.123510 Phys. Rev. D 80 123510 [0907.4522]
- J.J. Blanco-Pillado, K.D. Olum and B. Shlaer, 2015 Cosmic string loop shapes, https://doi.org/10.1103/PhysRevD.92.063528 Phys. Rev. D 92 063528 [1508.02693]
- J.M. Wachter and K.D. Olum, 2017 Gravitational backreaction on piecewise linear cosmic string loops, https://doi.org/10.1103/PhysRevD.95.023519 Phys. Rev. D 95 023519 [1609.01685]
- J.J. Blanco-Pillado, K.D. Olum and J.M. Wachter, 2018 Gravitational backreaction near cosmic string kinks and cusps, https://doi.org/10.1103/PhysRevD.98.123507 Phys. Rev. D 98 123507 [1808.08254]
- D.F. Chernoff, E.E. Flanagan and B. Wardell, 2019 Gravitational backreaction on a cosmic string: formalism, https://doi.org/10.1103/PhysRevD.99.084036 Phys. Rev. D 99 084036 [1808.08631]
- J.J. Blanco-Pillado, K.D. Olum and J.M. Wachter, 2019 Gravitational backreaction simulations of simple cosmic string loops, https://doi.org/10.1103/PhysRevD.100.023535 Phys. Rev. D 100 023535 [1903.06079]
- T. Regimbau, S. Giampanis, X. Siemens and V. Mandic, 2012 The stochastic background from cosmic (super)strings: popcorn and (Gaussian) continuous regimes, https://doi.org/10.1103/PhysRevD.85.066001 Phys. Rev. D 85 066001 [1111.6638]
- T. Helfer, J.C. Aurrekoetxea and E.A. Lim, 2019 Cosmic string loop collapse in full general relativity, https://doi.org/10.1103/PhysRevD.99.104028 Phys. Rev. D 99 104028 [1808.06678]
- L.M. Krauss, 1992 Gravitational waves from global phase transitions, https://doi.org/10.1016/0370-2693(92)90425-4 Phys. Lett. B 284 229
- K. Jones-Smith, L.M. Krauss and H. Mathur, 2008 A nearly scale invariant spectrum of gravitational radiation from global phase transitions, https://doi.org/10.1103/PhysRevLett.100.131302 Phys. Rev. Lett. 100 131302 [0712.0778]
- M. Sakellariadou and A. Vilenkin, 1990 Cosmic-string evolution in flat space-time, https://doi.org/10.1103/PhysRevD.42.349 Phys. Rev. D 42 349
- M. Hindmarsh, 1990 Gravitational radiation from kinky infinite strings, https://doi.org/10.1016/0370-2693(90)90226-V Phys. Lett. B 251 28
- Y. Matsui and S. Kuroyanagi, 2019 Gravitational wave background from kink-kink collisions on infinite cosmic strings, https://doi.org/10.1103/PhysRevD.100.123515 Phys. Rev. D 100 123515 [1902.09120]
- M. Krämer and D.J. Champion, 2013 The european pulsar timing array and the large european array for pulsars, https://doi.org/10.1088/0264-9381/30/22/224009 Class. Quant. Grav. 30 224009
- F. Hajkarim, J. Schaffner-Bielich, S. Wystub and M.M. Wygas, 2019 Effects of the QCD equation of state and lepton asymmetry on primordial gravitational waves, https://doi.org/10.1103/PhysRevD.99.103527 Phys. Rev. D 99 103527 [1904.01046]
- R.R. Caldwell, T.L. Smith and D.G.E. Walker, 2019 Using a primordial gravitational wave background to illuminate new physics, https://doi.org/10.1103/PhysRevD.100.043513 Phys. Rev. D 100 043513 [1812.07577]
- T. Moroi and L. Randall, 2000 Wino cold dark matter from anomaly mediated SUSY breaking, https://doi.org/10.1016/S0550-3213(99)00748-8 Nucl. Phys. B 570 455 [hep-ph/9906527]
- M. Joyce and T. Prokopec, 1998 Turning around the sphaleron bound: electroweak baryogenesis in an alternative postinflationary cosmology, https://doi.org/10.1103/PhysRevD.57.6022 Phys. Rev. D 57 6022 [hep-ph/9709320]
- P. Salati, 2003 Quintessence and the relic density of neutralinos, https://doi.org/10.1016/j.physletb.2003.07.073 Phys. Lett. B 571 121 [astro-ph/0207396]
- D.J.H. Chung, L.L. Everett and K.T. Matchev, 2007 Inflationary cosmology connecting dark energy and dark matter, https://doi.org/10.1103/PhysRevD.76.103530 Phys. Rev. D 76 103530 [0704.3285]
- V. Poulin, T.L. Smith, D. Grin, T. Karwal and M. Kamionkowski, 2018 Cosmological implications of ultralight axionlike fields, https://doi.org/10.1103/PhysRevD.98.083525 Phys. Rev. D 98 083525 [1806.10608]
- N. Bernal and F. Hajkarim, 2019 Primordial gravitational waves in nonstandard cosmologies, https://doi.org/10.1103/PhysRevD.100.063502 Phys. Rev. D 100 063502 [1905.10410]
- G.S.F. Guedes, P.P. Avelino and L. Sousa, 2018 Signature of inflation in the stochastic gravitational wave background generated by cosmic string networks, https://doi.org/10.1103/PhysRevD.98.123505 Phys. Rev. D 98 123505 [1809.10802]
- S. Henrot-Versille et al., 2015 Improved constraint on the primordial gravitational-wave density using recent cosmological data and its impact on cosmic string models, https://doi.org/10.1088/0264-9381/32/4/045003 Class. Quant. Grav. 32 045003 [1408.5299]
- E. Thrane and J.D. Romano, 2013 Sensitivity curves for searches for gravitational-wave backgrounds, https://doi.org/10.1103/PhysRevD.88.124032 Phys. Rev. D 88 124032 [1310.5300]
- L. Lentati et al., 2015 European pulsar timing array limits on an isotropic stochastic gravitational-wave background, https://doi.org/10.1093/mnras/stv1538 Mon. Not. Roy. Astron. Soc. 453 2576 [1504.03692]
- NANOGRAV collaboration, 2018 The NANOGrav 11-year data set: pulsar-timing constraints on the stochastic gravitational-wave background, https://doi.org/10.3847/1538-4357/aabd3b Astrophys. J. 859 47 [1801.02617]
- G.R. Vincent, M. Hindmarsh and M. Sakellariadou, 1997 Correlations in cosmic string networks, https://doi.org/10.1103/PhysRevD.55.573 Phys. Rev. D 55 573 [astro-ph/9606137]
- E.P.S. Shellard, 1987 Cosmic string interactions, https://doi.org/10.1016/0550-3213(87)90290-2 Nucl. Phys. B 283 624
- G.J. Verbiest and A. Achucarro, 2011 High speed collision and reconnection of Abelian Higgs strings in the deep type-II regime, https://doi.org/10.1103/PhysRevD.84.105036 Phys. Rev. D 84 105036 [1106.4666]
- P. Salmi, A. Achucarro, E.J. Copeland, T.W.B. Kibble, R. de Putter and D.A. Steer, 2008 Kinematic constraints on formation of bound states of cosmic strings: field theoretical approach, https://doi.org/10.1103/PhysRevD.77.041701 Phys. Rev. D 77 041701 [0712.1204]
- N. Bevis et al., 2009 Evolution and stability of cosmic string loops with Y-junctions, https://doi.org/10.1103/PhysRevD.80.125030 Phys. Rev. D 80 125030 [0904.2127]
- N.T. Jones, H. Stoica and S.H.H. Tye, 2003 The production, spectrum and evolution of cosmic strings in brane inflation, https://doi.org/10.1016/S0370-2693(03)00592-6 Phys. Lett. B 563 6 [hep-th/0303269]
- A. Avgoustidis and E.P.S. Shellard, 2006 Effect of reconnection probability on cosmic (super)string network density, https://doi.org/10.1103/PhysRevD.73.041301 Phys. Rev. D 73 041301 [astro-ph/0512582]
- P.P. Avelino and L. Sousa, 2012 Scaling laws for weakly interacting cosmic (super)string and p-brane networks, https://doi.org/10.1103/PhysRevD.85.083525 Phys. Rev. D 85 083525 [1202.6298]
- L. Sousa and P.P. Avelino, 2016 Probing cosmic superstrings with gravitational waves, https://doi.org/10.1103/PhysRevD.94.063529 Phys. Rev. D 94 063529 [1606.05585]
- E.J. Copeland, T.W.B. Kibble and D.A. Steer, 2006 Collisions of strings with Y junctions, https://doi.org/10.1103/PhysRevLett.97.021602 Phys. Rev. Lett. 97 021602 [hep-th/0601153]
- E.J. Copeland, T.W.B. Kibble and D.A. Steer, 2007 Constraints on string networks with junctions, https://doi.org/10.1103/PhysRevD.75.065024 Phys. Rev. D 75 065024 [hep-th/0611243]
- E.J. Copeland, H. Firouzjahi, T.W.B. Kibble and D.A. Steer, 2008 On the collision of cosmic superstrings, https://doi.org/10.1103/PhysRevD.77.063521 Phys. Rev. D 77 063521 [0712.0808]
- A. Avgoustidis and E.P.S. Shellard, 2008 Velocity-dependent models for non-abelian/entangled string networks, https://doi.org/10.1103/PhysRevD.78.103510 Phys. Rev. D 78 103510 [Erratum ibid D 80 (2009) 129907] [0705.3395]
- A. Avgoustidis and E.J. Copeland, 2010 The effect of kinematic constraints on multi-tension string network evolution, https://doi.org/10.1103/PhysRevD.81.063517 Phys. Rev. D 81 063517 [0912.4004]
- A. Avgoustidis, A. Pourtsidou and M. Sakellariadou, 2015 Zipping and unzipping in string networks: dynamics of Y-junctions, https://doi.org/10.1103/PhysRevD.91.025022 Phys. Rev. D 91 025022 [1411.7959]
- A. Pourtsidou, A. Avgoustidis, E.J. Copeland, L. Pogosian and D.A. Steer, 2011 Scaling configurations of cosmic superstring networks and their cosmological implications, https://doi.org/10.1103/PhysRevD.83.063525 Phys. Rev. D 83 063525 [1012.5014]
- T. Elghozi, W. Nelson and M. Sakellariadou, 2014 Cusps and pseudocusps in strings with Y-junctions, https://doi.org/10.1103/PhysRevD.90.123517 Phys. Rev. D 90 123517 [1403.3225]
- P. Adshead and E.A. Lim, 2010 3-pt statistics of cosmological stochastic gravitational waves, https://doi.org/10.1103/PhysRevD.82.024023 Phys. Rev. D 82 024023 [0912.1615]
- N. Bartolo, V. De Luca, G. Franciolini, A. Lewis, M. Peloso and A. Riotto, 2019 Primordial black hole dark matter: LISA serendipity, https://doi.org/10.1103/PhysRevLett.122.211301 Phys. Rev. Lett. 122 211301 [1810.12218]
- N. Bartolo, V. De Luca, G. Franciolini, M. Peloso, D. Racco and A. Riotto, 2019 Testing primordial black holes as dark matter with LISA, https://doi.org/10.1103/PhysRevD.99.103521 Phys. Rev. D 99 103521 [1810.12224]
- J.J. Blanco-Pillado, K.D. Olum and J.M. Wachter, 2019 Energy-conservation constraints on cosmic string loop production and distribution functions, https://doi.org/10.1103/PhysRevD.100.123526 Phys. Rev. D 100 123526 [1907.09373]
- M.R. Adams and N.J. Cornish, 2014 Detecting a stochastic gravitational wave background in the presence of a galactic foreground and instrument noise, https://doi.org/10.1103/PhysRevD.89.022001 Phys. Rev. D 89 022001 [1307.4116]
- J.M. Quashnock and D.N. Spergel, 1990 Gravitational selfinteractions of cosmic strings, https://doi.org/10.1103/PhysRevD.42.2505 Phys. Rev. D 42 2505