Author(s)
Quelquejay Leclere, Hippolyte, Auclair, Pierre, Babak, Stanislav, Chalumeau, Aurélien, Steer, Danièle A., Antoniadis, J., Nielsen, A.-S. Bak, Bassa, C.G., Berthereau, A., Bonetti, M., Bortolas, E., Brook, P.R., Burgay, M., Caballero, R.N., Champion, D.J., Chanlaridis, S., Chen, S., Cognard, I., Desvignes, G., Falxa, M., Ferdman, R.D., Franchini, A., Gair, J.R., Goncharov, B., Graikou, E., Grießmeier, J.-M., Guillemot, L., Guo, Y.J., Hu, H., Iraci, F., Izquierdo-Villalba, D., Jang, J., Jawor, J., Janssen, G.H., Jessner, A., Karuppusamy, R., Keane, E.F., Keith, M.J., Kramer, M., Krishnakumar, M.A., Lackeos, K., Lee, K.J., Liu, K., Liu, Y., Lyne, A.G., McKee, J.W., Main, R.A., Mickaliger, M.B., Niţu, I.C., Parthasarathy, A., Perera, B.B.P., Perrodin, D., Petiteau, A., Porayko, N.K., Possenti, A., Samajdar, A., Sanidas, S.A., Sesana, A., Shaifullah, G., Speri, L., Spiewak, R., Stappers, B.W., Susarla, S.C., Theureau, G., Tiburzi, C., van der Wateren, E., Vecchio, A., Venkatraman Krishnan, V., Verbiest, J.P.W., Wang, J., Wang, L., Wu, Z.Abstract
We search for a stochastic gravitational wave background (SGWB) generated by a network of cosmic strings using six millisecond pulsars from Data Release 2 (DR2) of the European Pulsar Timing Array (EPTA). We perform a Bayesian analysis considering two models for the network of cosmic string loops, and compare it to a simple power-law model which is expected from the population of supermassive black hole binaries. Our main strong assumption is that the previously reported common red noise process is a SGWB. We find that the one-parameter cosmic string model is slightly favored over a power-law model thanks to its simplicity. If we assume a two-component stochastic signal in the data (supermassive black hole binary population and the signal from cosmic strings), we get a $95\%$ upper limit on the string tension of $\log_{10}(G\mu) < -9.9$ ($-10.5$) for the two cosmic string models we consider. In extended two-parameter string models, we were unable to constrain the number of kinks. We test two approximate and fast Bayesian data analysis methods against the most rigorous analysis and find consistent results. These two fast and efficient methods are applicable to all SGWBs, independent of their source, and will be crucial for analysis of extended data sets.
Figures
SGWB from a network of cosmic string loops, expressed in terms of characteristic energy density. The spectrum is computed using the BOS (resp.~LRS) loop number density model for the solid (resp.~dashed) lines. Here we have taken $N_c=2, N_k=0$ leading to $\Gamma =57$. For each model, computations using three different tension values $G\mu$ are represented. The sensitivity frequency range of EPTA corresponds to the yellow band.
Comparison of the string tension posteriors (for two string models, BOS and LRS) obtained with the Full method (dashed lines), Resampling (RS) method (dotted lines) and with the free spectrum (FS) method (solid lines). We assume here that the loops are populated by two cusps, leading to $\Gamma = 57$.
Left panel: posterior for two-dimensional (string tension and the average number of kinks on loops of the network) BOS model; different lines styles corresponding to three methods (Full, RS, FS) show full consistency. Right panel: the same for the LRS loop number density model.
Left panel: posterior for two-dimensional (string tension and the average number of kinks on loops of the network) BOS model; different lines styles corresponding to three methods (Full, RS, FS) show full consistency. Right panel: the same for the LRS loop number density model.
Posterior distributions of the 30 $\rho_k$ coefficients (in $\log_{10}$-scale). We over-plotted the best fit (using the FS likelihood of \cref{eq:FS_part_Fact_Lklhd}) for three different PSDs: powerlaw, SGWB using BOS and LRS models (in the case of smoothed loops). We see that all three spectra behave in a similar way at low frequency bins.
Marginalized red noise parameters posteriors for the pulsar J1909-3744 obtained with the Full method including HD correlation for the common red noise process. Brown dashed and solid lines were obtained using different prior on the power in the Fourier bins (passing from $-10$ to $-15$ for the $\log_{10}\rho_k$ lower bound). The solid line (restricted prior) suggests a truncated correlation of the common red noise with the spin red noise of J1909-3744. We also plotted for comparison those posteriors when using as common red noise, a SGWB from cosmic string following the BOS (blue line)/LRS (orange line) models.
References
- [1] S. Chen et al., Monthly Notices of the Royal Astronomical Society 508, 4970 (2021), https://academic.oup.com/mnras/articlepdf/508/4/4970/40979667/stab2833.pdf.
- [2] N. Arzoumanian et al, ApJ 905, L34 (2020), arXiv:2009.04496 [astro-ph.HE].
- [3] P. c. B. Goncharov et al, The Astrophysical Journal Letters 917, L19 (2021).
- [4] J. A. et al, Monthly Notices of the Royal Astronomical Society 510, 4873 (2022).
- [5] A. Sesana, Monthly Notices of the Royal Astronomical Society: Letters 433, L1 (2013).
- [6] E. S. Phinney, “A practical theorem on gravitational wave backgrounds,” (2001), arXiv:astro-ph/0108028 [astro-ph].
- [7] A. Sesana, Classical and Quantum Gravity 30, 244009 (2013).
- [8] J. Ellis and M. Lewicki, Phys. Rev. Lett. 126, 041304 (2021), arXiv:2009.06555 [astro-ph.CO].
- [9] S. Blasi, V. Brdar, and K. Schmitz, Phys. Rev. Lett. 126, 041305 (2021), arXiv:2009.06607 [astro-ph.CO].
- [10] L. Bian, J. Shu, B. Wang, Q. Yuan, and J. Zong, Phys. Rev. D 106, L101301 (2022), arXiv:2205.07293 [hep-ph].
- [11] Z.-C. Chen, Y.-M. Wu, and Q.-G. Huang, Astrophys. J. 936, 20 (2022), arXiv:2205.07194 [astro-ph.CO].
- [12] H. B. Nielsen and P. Olesen, Nucl. Phys. B 61, 45 (1973).
- [13] T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
- [14] T. W. B. Kibble, Nucl. Phys. B 252, 227 (1985), [Erratum: Nucl.Phys.B 261, 750 (1985)].
- [14] T. W. B. Kibble, Nucl. Phys. B 252, 227 (1985), [Erratum: Nucl.Phys.B 261, 750 (1985)].
- [15] R. Jeannerot, J. Rocher, and M. Sakellariadou, Phys. Rev. D 68, 103514 (2003), arXiv:hep-ph/0308134.
- [16] C. Ringeval, M. Sakellariadou, and F. Bouchet, JCAP 02, 023 (2007), arXiv:astro-ph/0511646.
- [17] C. J. A. P. Martins and E. P. S. Shellard, Phys. Rev. D 73, 043515 (2006), arXiv:astro-ph/0511792.
- [18] K. D. Olum and V. Vanchurin, Phys. Rev. D 75, 063521 (2007), arXiv:astro-ph/0610419.
- [19] M. Hindmarsh, S. Stuckey, and N. Bevis, Phys. Rev. D 79, 123504 (2009), arXiv:0812.1929 [hep-th].
- [20] D. Matsunami, L. Pogosian, A. Saurabh, and T. Vachaspati, Phys. Rev. Lett. 122, 201301 (2019), arXiv:1903.05102 [hep-ph].
- [21] M. Hindmarsh, J. Lizarraga, A. Urio, and J. Urrestilla, Phys. Rev. D 104, 043519 (2021), arXiv:2103.16248 [astro-ph.CO].
- [22] P. Auclair, D. A. Steer, and T. Vachaspati, Phys. Rev. D 101, 083511 (2020), arXiv:1911.12066 [hep-ph].
- [23] P. Auclair, K. Leyde, and D. A. Steer, JCAP 04, 005 (2023), arXiv:2112.11093 [astro-ph.CO].
- [24] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 97, 102002 (2018), arXiv:1712.01168 [gr-qc].
- [25] R. Abbott et al. (LIGO Scientific, Virgo, KAGRA), Phys. Rev. Lett. 126, 241102 (2021), arXiv:2101.12248 [gr-qc].
- [26] P. Auclair, J. J. Blanco-Pillado, D. G. Figueroa, A. C. Jenkins, M. Lewicki, M. Sakellariadou, S. Sanidas, L. Sousa, D. A. Steer, J. M. Wachter, and S. Kuroyanagi, Journal of Cosmology and Astroparticle Physics 2020, 034 (2020).
- [27] P. Auclair et al. (LISA Cosmology Working Group), (2022), arXiv:2204.05434 [astro-ph.CO].
- [28] R. W. Hellings and G. S. Downs, The Astrophysical Journal 265 (1983).
- [29] EPTA, in preparation (2023).
- [30] A. Chalumeau et al., Monthly Notices of the Royal Astronomical Society 509, 5538 (2021).
- [31] R. van Haasteren and Y. Levin, Monthly Notices of the Royal Astronomical Society 428, 1147 (2012).
- [32] R. van Haasteren and M. Vallisneri, Physical Review D 90 (2014), 10.1103/physrevd.90.104012.
- [33] S. Hourihane, P. Meyers, A. Johnson, K. Chatziioannou, and M. Vallisneri, Phys. Rev. D 107, 084045 (2023), arXiv:2212.06276 [gr-qc].
- [34] W. G. Lamb, S. R. Taylor, and R. van Haasteren, “The need for speed: Rapid refitting techniques for bayesian spectral characterization of the gravitational wave background using ptas,” (2023), arXiv:2303.15442 [astroph.HE].
- [35] C. J. Moore and A. Vecchio, Nature Astronomy 5, 1268 (2021).
- [36] J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer, Physical Review D 89 (2014), 10.1103/physrevd.89.023512.
- [37] T. Damour and A. Vilenkin, Physical Review D 64 (2001), 10.1103/physrevd.64.064008.
- [38] C. Ringeval and T. Suyama, Journal of Cosmology and Astroparticle Physics 2017, 027 (2017).
- [39] P. Binetruy, A. Bohe, T. Hertog, and D. A. Steer, Phys. Rev. D 82, 083524 (2010), arXiv:1005.2426 [hep-th].
- [40] P. Binetruy, A. Bohe, T. Hertog, and D. A. Steer, Phys. Rev. D 82, 126007 (2010), arXiv:1009.2484 [hep-th].
- [41] A. Vilenkin and E. P. S. Shellard (1995).
- [42] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO].
- [42] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO].
- [43] P. Auclair et al., JCAP 04, 034 (2020), arXiv:1909.00819 [astro-ph.CO].
- [44] J. J. Blanco-Pillado and K. D. Olum, Physical Review D 96 (2017), 10.1103/physrevd.96.104046.
- [45] L. Lorenz, C. Ringeval, and M. Sakellariadou, Journal of Cosmology and Astroparticle Physics 2010, 003 (2010).
- [46] P. G. Auclair, JCAP 11, 050 (2020), arXiv:2009.00334 [astro-ph.CO].
- [47] J. A. Ellis, M. Vallisneri, S. R. Taylor, and P. T. Baker, “ENTERPRISE: Enhanced Numerical Toolbox Enabling a Robust PulsaR Inference SuitE,” (2020).
- [48] J. Ellis and R. van Haasteren, “jellis18/ptmcmcsampler: Official release,” (2017).
- [49] S. Hee, W. J. Handley, M. P. Hobson, and A. N. Lasenby, Monthly Notices of the Royal Astronomical Society 455, 2461 (2015), https://academic.oup.com/mnras/articlepdf/455/3/2461/9377568/stv2217.pdf.
- [50] S. R. Taylor, J. Simon, L. Schult, N. Pol, and W. G. Lamb, Physical Review D 105 (2022), 10.1103/physrevd.105.084049.
- [51] D. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization (2015).
- [52] J. Skilling, in Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, American Institute of Physics Conference Series, Vol. 735, edited by R. Fischer, R. Preuss, and U. V. Toussaint (2004) pp. 395–405.
- [53] J. Skilling, Bayesian Analysis 1, 833 (2006).
- [54] S. Koposov, J. Speagle, K. Barbary, G. Ashton, E. Bennett, J. Buchner, C. Scheffler, B. Cook, C. Talbot, J. Guillochon, P. Cubillos, A. A. Ramos, B. Johnson, D. Lang, Ilya, M. Dartiailh, A. Nitz, A. McCluskey, A. Archibald, C. Deil, D. Foreman-Mackey, D. Goldstein, E. Tollerud, J. Leja, M. Kirk, M. Pitkin, P. Sheehan, P. Cargile, R. Patel, and R. Angus, “joshspeagle/dynesty: v2.1.1,” (2023).
- [55] J. S. Speagle, Monthly Notices of the Royal Astronomical Society 493, 3132 (2020).
- [56] J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer, Physical Review D 92 (2015), 10.1103/physrevd.92.063528.
- [57] L. Lentati, S. R. Taylor, C. M. F. Mingarelli, A. Sesana, S. A. Sanidas, A. Vecchio, R. N. Caballero, K. J. Lee, R. van Haasteren, S. Babak, C. G. Bassa, P. Brem, M. Burgay, D. J. Champion, I. Cognard, G. Desvignes, J. R. Gair, L. Guillemot, J. W. T. Hessels, G. H. Janssen, R. Karuppusamy, M. Kramer, A. Lassus, P. Lazarus, K. Liu, S. Oslowski, D. Perrodin, A. Petiteau, A. Possenti, M. B. Purver, P. A. Rosado, R. Smits, B. Stappers, G. Theureau, C. Tiburzi, and J. P. W. Verbiest, Monthly Notices of the Royal Astronomical Society 453, 2577 (2015).
- [58] S. A. Sanidas, R. A. Battye, and B. W. Stappers, Physical Review D 85 (2012), 10.1103/physrevd.85.122003.
- [59] T. Charnock, A. Avgoustidis, E. J. Copeland, and A. Moss, Physical Review D 93 (2016), 10.1103/physrevd.93.123503.
- [60] J. C. Mather et al., Astrophys. J. 420, 439 (1994).
- [61] D. N. Spergel et al. (WMAP), Astrophys. J. Suppl. 148, 175 (2003), arXiv:astro-ph/0302209.
- [62] P. A. R. Ade et al. (Planck), Astron. Astrophys. 571, A1 (2014), arXiv:1303.5062 [astro-ph.CO].
- [63] R. Adam et al. (Planck), Astron. Astrophys. 594, A1 (2016), arXiv:1502.01582 [astro-ph.CO].
- [64] N. Aghanim et al. (Planck), Astron. Astrophys. 641, A1 (2020), arXiv:1807.06205 [astro-ph.CO].
- [65] E. J. Copeland and N. Turok, (1986).
- [66] E. P. S. Shellard, Nucl. Phys. B 283, 624 (1987).
- [67] M. Hindmarsh, J. Lizarraga, J. Urrestilla, D. Daverio, and M. Kunz, Phys. Rev. D 96, 023525 (2017), arXiv:1703.06696 [astro-ph.CO].
- [68] J. R. C. C. C. Correia and C. J. A. P. Martins, Phys. Rev. D 100, 103517 (2019), arXiv:1911.03163 [astro-ph.CO].
- [69] L. Lentati, P. Alexander, M. P. Hobson, S. Taylor, J. Gair, S. T. Balan, and R. van Haasteren, Physical Review D 87 (2013), 10.1103/physrevd.87.104021.
- [70] S. ¨ Olmez, V. Mandic, and X. Siemens, Phys. Rev. D 81, 104028 (2010).
- [71] P. Auclair, Primordial cosmology and gravitational waves : from phase transitions to cosmic strings and primordial black holes, Theses, Universit´ e Paris Cit´ e (2021).
- [72] G. B. Cook, S. L. Shapiro, and S. A. Teukolsky, ApJ 423, L117 (1994).
- [73] C. Ringeval, M. Sakellariadou, and F. R. Bouchet, Journal of Cosmology and Astroparticle Physics 2007, 023 (2007).
- [74] J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer, Physical Review D 83 (2011), 10.1103/physrevd.83.083514.
- [75] J. J. Blanco-Pillado and K. D. Olum, Physical Review D 101 (2020), 10.1103/physrevd.101.103018.
- [76] G. Dvali and A. Vilenkin, Journal of Cosmology and Astroparticle Physics 2004, 010 (2004).
- [77] E. J. Copeland, R. C. Myers, and J. Polchinski, Journal of High Energy Physics 2004, 013 (2003).
- [78] A. R. R. Almeida and C. J. A. P. Martins, “Scaling solutions of wiggly cosmic strings,” (2022).
- [79] A. Drew and E. P. S. Shellard, “Radiation from global topological strings using adaptive mesh refinement: Massive modes,” (2022).
- [80] A. Patrascioiu, Nuclear Physics 81, 525 (1974).
- [81] M. B. Hindmarsh and T. W. B. Kibble, Reports on Progress in Physics 58, 477 (1995).