Author(s)
Auclair, Pierre G.Abstract
Numerical simulations and analytical models suggest that infinite cosmic strings produce cosmic string loops of all sizes with a given power-law. Precise estimations of the power-law exponent are still matter of debate while numerical simulations do not incorporate all the radiation and back-reaction effects expected to affect the network at small scales. Previously it has been shown, using a Boltzmann approach, that depending on the steepness of the loop production function and the gravitational back-reaction scale, a so-called Extra Population of Small Loops (EPSL) can be generated in the loop number density. We propose a framework to study the influence of this extra population of small loops on the Stochastic Background of Gravitational Waves (SBGW). We show that this extra population can have a significant signature at frequencies higher than H0(Γ Gμ)−1 where Γ is of order 50 and H0 is the Hubble constant. We propose a complete classification of the Gravitational Wave (GW) power spectra expected from cosmic strings into four classes, including the model of Blanco-Pillado, Olum and Shlaer and the model of Lorenz, Ringeval and Sakellariadou. Finally we show that given the uncertainties on the Polchinski-Rocha exponents, two hybrid classes of GW power spectrum can be considered giving very different predictions for the SBGW.
Figures
: Radiation era
: Matter era
The decomposition of the \gls{lnd} into two populations, the \gls{slnd} and the \gls{epsl} for $\chi=0.2$ and $G\mu = 10^{-13}$ in the radiation era. The infrared cutoff is set to $\gammai = 0.1$.
Impact of the extra population of small loops onto the \gls{sbgw} in the parameter space $\chir,\chim$ for $G\mu=10^{-13}$. In the blue region, the high frequency plateau for $\OmegaGW$ is dominated by the extra population of small loops produced during radiation era. In the red region, the spectrum presents a peak around $\uHo {\gammac^{(m)}}^{-1}$ produced by the \gls{epsl} during the matter era. Outside those regions, the population of small loops can be neglected.
: $G\mu = 10^{-13}$, $\chir = 0.5$, $\chim = 0.655$
: $G\mu = 10^{-13}$, $\chir = 0.2$, $\chim = 0.295$
: $G\mu = 10^{-13}$, $\chir = 0.45$, $\chim = 0.295$
: $G\mu = 10^{-13}$, $\chir = 0.2$, $\chim = 0.45$
: LIGO/Virgo, sensitivity of $\OmegaGW=10^{-7}$ taken at $f=20$ Hz
: LIGO/Virgo constraints on $G\mu$ at $\chim=0.295$. The orange region is excluded giving non-convex constraints on $G\mu$ for a given model.
: PTA, sensitivity of $\OmegaGW=10^{-12}$ taken at $f=2\times 10^{-9}$ Hz
: LISA, sensitivity of $\OmegaGW=10^{-13}$ taken at $f=10^{-2}$ Hz
References
- LIGO Scientific, Virgo collaboration, 2016 Observation of gravitational waves from a binary black hole merger, https://doi.org/10.1103/PhysRevLett.116.061102 Phys. Rev. Lett. 116 061102 [1602.03837]
- T.W.B. Kibble, 1976 Topology of cosmic domains and strings, https://doi.org/10.1088/0305-4470/9/8/029 J. Phys. A 9 1387
- M.B. Hindmarsh and T.W.B. Kibble, 1995 Cosmic strings, https://doi.org/10.1088/0034-4885/58/5/001 Rept. Prog. Phys. 58 477 [hep-ph/9411342]
- A. Vilenkin and E.P.S. Shellard, 2001 Cosmic strings and other topological defects, Cambridge University Press, Cambridge U.K.
- T. Vachaspati, L. Pogosian and D. Steer, 2015 Cosmic strings, https://doi.org/10.4249/scholarpedia.31682 Scholarpedia 10 31682 [1506.04039]
- T. Vachaspati and A. Vilenkin, 1984 Formation and evolution of cosmic strings, https://doi.org/10.1103/PhysRevD.30.2036 Phys. Rev. D 30 2036
- T. Kibble, 1985 Evolution of a system of cosmic strings, https://doi.org/10.1016/0550-3213(85)90439-0 Nucl. Phys. B 252 227
- B. Allen and R.R. Caldwell, 1991 Small scale structure on a cosmic string network, https://doi.org/10.1103/PhysRevD.43.3173 Phys. Rev. D 43 3173
- B. Allen and R.R. Caldwell, 1991 Kinky structure on strings, https://doi.org/10.1103/PhysRevD.43.R2457 Phys. Rev. D 43 R2457
- D. Austin, E.J. Copeland and T.W.B. Kibble, 1993 Evolution of cosmic string configurations, https://doi.org/10.1103/PhysRevD.48.5594 Phys. Rev. D 48 5594
- J. Polchinski and J.V. Rocha, 2006 Analytic study of small scale structure on cosmic strings, https://doi.org/10.1103/PhysRevD.74.083504 Phys. Rev. D 74 083504 [hep-ph/0606205]
- J. Polchinski, Cosmic string loops and gravitational radiation, [0707.0888]
- J. Polchinski and J.V. Rocha, 2007 Cosmic string structure at the gravitational radiation scale, https://doi.org/10.1103/PhysRevD.75.123503 Phys. Rev. D 75 123503 [gr-qc/0702055]
- L. Lorenz, C. Ringeval and M. Sakellariadou, 2010 Cosmic string loop distribution on all length scales and at any redshift J. Cosmol. Astropart. Phys. 2010 10 003 [1006.0931]
- J.J. Blanco-Pillado, K.D. Olum and B. Shlaer, 2014 The number of cosmic string loops, https://doi.org/10.1103/PhysRevD.89.023512 Phys. Rev. D 89 023512 [1309.6637]
- C.J.A.P. Martins, E.P.S. Shellard and J.P.P. Vieira, 2014 Models for small-scale structure of cosmic strings: Mathematical formalism, https://doi.org/10.1103/PhysRevD.90.043518 Phys. Rev. D 90 043518
- J.P.P. Vieira, C.J.A.P. Martins and E.P.S. Shellard, 2016 Models for small-scale structure on cosmic strings. II. Scaling and its stability, https://doi.org/10.1103/PhysRevD.94.096005 Phys. Rev. D 94 096005 [Erratum ibid 94 (2016) 099907] [1611.06103]
- P. Auclair, C. Ringeval, M. Sakellariadou and D. Steer, 2019 Cosmic string loop production functions J. Cosmol. Astropart. Phys. 2019 06 015 [1903.06685]
- D.P. Bennett and F.R. Bouchet, 1989 Cosmic string evolution, https://doi.org/10.1103/PhysRevLett.63.2776 Phys. Rev. Lett. 63 2776
- A. Albrecht and N. Turok, 1989 Evolution of cosmic string networks, https://doi.org/10.1103/PhysRevD.40.973 Phys. Rev. D 40 973
- D.P. Bennett and F.R. Bouchet, 1990 High resolution simulations of cosmic string evolution. 1. Network evolution, https://doi.org/10.1103/PhysRevD.41.2408 Phys. Rev. D 41 2408
- B. Allen and E.P.S. Shellard, 1990 Cosmic string evolution: a numerical simulation, https://doi.org/10.1103/PhysRevLett.64.119 Phys. Rev. Lett. 64 119
- J.J. Blanco-Pillado, K.D. Olum and B. Shlaer, 2011 Large parallel cosmic string simulations: new results on loop production, https://doi.org/10.1103/PhysRevD.83.083514 Phys. Rev. D 83 083514 [1101.5173]
- C.J.A.P. Martins and E.P.S. Shellard, 2006 Fractal properties and small-scale structure of cosmic string networks, https://doi.org/10.1103/PhysRevD.73.043515 Phys. Rev. D 73 043515 [astro-ph/0511792]
- C. Ringeval, M. Sakellariadou and F. Bouchet, 2007 Cosmological evolution of cosmic string loops J. Cosmol. Astropart. Phys. 2007 02 023 [astro-ph/0511646]
- E. Jeong and G.F. Smoot, 2005 Search for cosmic strings in CMB anisotropies, https://doi.org/10.1086/428921 Astrophys. J. 624 21 [astro-ph/0406432]
- C. Ringeval, 2010 Cosmic strings and their induced non-gaussianities in the cosmic microwave background, https://doi.org/10.1155/2010/380507 Adv. Astron. 2010380507 [1005.4842]
- Planck collaboration, 2014 Planck 2013 results. XXV. Searches for cosmic strings and other topological defects, https://doi.org/10.1051/0004-6361/201321621 Astron. Astrophys. 571 A25 [1303.5085]
- J. Lizarraga, J. Urrestilla, D. Daverio, M. Hindmarsh and M. Kunz, 2016 New CMB constraints for Abelian Higgs cosmic strings J. Cosmol. Astropart. Phys. 2016 10 042 [1609.03386]
- T. Vachaspati and A. Vilenkin, 1985 Gravitational radiation from cosmic strings, https://doi.org/10.1103/PhysRevD.31.3052 Phys. Rev. D 31 3052
- M. Hindmarsh, 1990 Gravitational radiation from kinky infinite strings, https://doi.org/10.1016/0370-2693(90)90226-V Phys. Lett. B 251 28
- B. Allen and E.P.S. Shellard, 1992 Gravitational radiation from cosmic strings, https://doi.org/10.1103/PhysRevD.45.1898 Phys. Rev. D 45 1898
- T. Damour and A. Vilenkin, 2001 Gravitational wave bursts from cusps and kinks on cosmic strings, https://doi.org/10.1103/PhysRevD.64.064008 Phys. Rev. D 64 064008 [gr-qc/0104026]
- X. Siemens and K.D. Olum, 2001 Gravitational radiation and the small-scale structure of cosmic strings, https://doi.org/10.1016/S0550-3213(01)00353-4 Nucl. Phys. B 611 125 [Erratum ibid 645 (2002) 367] [gr-qc/0104085]
- X. Siemens, J. Creighton, I. Maor, S. Ray Majumder, K. Cannon and J. Read, 2006 Gravitational wave bursts from cosmic (super)strings: quantitative analysis and constraints, https://doi.org/10.1103/PhysRevD.73.105001 Phys. Rev. D 73 105001 [gr-qc/0603115]
- LIGO Scientific, Virgo collaboration, 2018 Constraints on cosmic strings using data from the first Advanced LIGO observing run, https://doi.org/10.1103/PhysRevD.97.102002 Phys. Rev. D 97 102002 [1712.01168]
- LIGO Scientific, Virgo collaboration, 2019 Search for the isotropic stochastic background using data from Advanced LIGO's second observing run, https://doi.org/10.1103/PhysRevD.100.061101 Phys. Rev. D 100 061101 [1903.02886]
- S.A. Sanidas, R.A. Battye and B.W. Stappers, 2012 Constraints on cosmic string tension imposed by the limit on the stochastic gravitational wave background from the European Pulsar Timing Array, https://doi.org/10.1103/PhysRevD.85.122003 Phys. Rev. D 85 122003 [1201.2419]
- J.J. Blanco-Pillado, K.D. Olum and J.M. Wachter, 2018 Gravitational backreaction near cosmic string kinks and cusps, https://doi.org/10.1103/PhysRevD.98.123507 Phys. Rev. D 98 123507 [1808.08254]
- J.J. Blanco-Pillado, K.D. Olum and J.M. Wachter, 2019 Gravitational backreaction simulations of simple cosmic string loops, https://doi.org/10.1103/PhysRevD.100.023535 Phys. Rev. D 100 023535 [1903.06079]
- D.F. Chernoff, E.E. Flanagan and B. Wardell, 2019 Gravitational backreaction on a cosmic string: formalism, https://doi.org/10.1103/PhysRevD.99.084036 Phys. Rev. D 99 084036 [1808.08631]
- E.J. Copeland and T.W.B. Kibble, 2009 Kinks and small-scale structure on cosmic strings, https://doi.org/10.1103/PhysRevD.80.123523 Phys. Rev. D 80 123523 [0909.1960]
- X. Siemens, K.D. Olum and A. Vilenkin, 2002 On the size of the smallest scales in cosmic string networks, https://doi.org/10.1103/PhysRevD.66.043501 Phys. Rev. D 66 043501 [gr-qc/0203006]
- F. Dubath, J. Polchinski and J.V. Rocha, 2008 Cosmic string loops, large and small, https://doi.org/10.1103/PhysRevD.77.123528 Phys. Rev. D 77 123528 [0711.0994]
- A. Vilenkin, 1984 String-dominated universe, https://doi.org/10.1103/PhysRevLett.53.1016 Phys. Rev. Lett. 53 1016
- C. Ringeval and T. Suyama, 2017 Stochastic gravitational waves from cosmic string loops in scaling J. Cosmol. Astropart. Phys. 2017 12 027 [1709.03845]
- J.J. Blanco-Pillado and K.D. Olum, 2017 Stochastic gravitational wave background from smoothed cosmic string loops, https://doi.org/10.1103/PhysRevD.96.104046 Phys. Rev. D 96 104046 [1709.02693]
- J.J. Blanco-Pillado, K.D. Olum and J.M. Wachter, 2019 Energy-conservation constraints on cosmic string loop production and distribution functions, https://doi.org/10.1103/PhysRevD.100.123526 Phys. Rev. D 100 123526 [1907.09373]
- J.J. Blanco-Pillado and K.D. Olum, 2020 Direct determination of cosmic string loop density from simulations, https://doi.org/10.1103/PhysRevD.101.103018 Phys. Rev. D 101 103018 [1912.10017]
- T. Damour and A. Vilenkin, 2000 Gravitational wave bursts from cosmic strings, https://doi.org/10.1103/PhysRevLett.85.3761 Phys. Rev. Lett. 85 3761 [gr-qc/0004075]
- S. Olmez, V. Mandic and X. Siemens, 2010 Gravitational-wave stochastic background from kinks and cusps on cosmic strings, https://doi.org/10.1103/PhysRevD.81.104028 Phys. Rev. D 81 104028 [1004.0890]
- P. Auclair et al., 2020 Probing the gravitational wave background from cosmic strings with LISA J. Cosmol. Astropart. Phys. 2020 04 034 [1909.00819]
- L. Sousa, P.P. Avelino and G.S.F. Guedes, 2020 Full analytical approximation to the stochastic gravitational wave background generated by cosmic string networks, https://doi.org/10.1103/PhysRevD.101.103508 Phys. Rev. D 101 103508 [2002.01079]
- C. Caprini et al., 2019 Reconstructing the spectral shape of a stochastic gravitational wave background with LISA J. Cosmol. Astropart. Phys. 2019 11 017 [1906.09244]
- Planck collaboration, 2016 Planck 2015 results. XIII. Cosmological parameters, https://doi.org/10.1051/0004-6361/201525830 Astron. Astrophys. 594 A13 [1502.01589]
- I.S. Gradshte&ibreve;n, I.M. Ryzhik and A. Jeffrey, 2007 Table of integrals, series, and products, $7th$ edition, Academic Press, U.S.A.
- I.S. Gradshte&ibreve;n, I.M. Ryzhik and A. Jeffrey, 2007 Table of integrals, series, and products, $7th$ edition, Academic Press, U.S.A.