Impact of the small-scale structure on the Stochastic Background of Gravitational Waves from cosmic strings

Author(s)

Auclair, Pierre G.

Abstract

Numerical simulations and analytical models suggest that infinite cosmic strings produce cosmic string loops of all sizes with a given power-law. Precise estimations of the power-law exponent are still matter of debate while numerical simulations do not incorporate all the radiation and back-reaction effects expected to affect the network at small scales. Previously it has been shown, using a Boltzmann approach, that depending on the steepness of the loop production function and the gravitational back-reaction scale, a so-called Extra Population of Small Loops (EPSL) can be generated in the loop number density. We propose a framework to study the influence of this extra population of small loops on the Stochastic Background of Gravitational Waves (SBGW). We show that this extra population can have a significant signature at frequencies higher than H0(Γ Gμ)−1 where Γ is of order 50 and H0 is the Hubble constant. We propose a complete classification of the Gravitational Wave (GW) power spectra expected from cosmic strings into four classes, including the model of Blanco-Pillado, Olum and Shlaer and the model of Lorenz, Ringeval and Sakellariadou. Finally we show that given the uncertainties on the Polchinski-Rocha exponents, two hybrid classes of GW power spectrum can be considered giving very different predictions for the SBGW.

Figures

: Radiation era

: Radiation era


: Matter era

: Matter era


The decomposition of the \gls{lnd} into two populations, the \gls{slnd} and the \gls{epsl} for $\chi=0.2$ and $G\mu = 10^{-13}$ in the radiation era. The infrared cutoff is set to $\gammai = 0.1$.

The decomposition of the \gls{lnd} into two populations, the \gls{slnd} and the \gls{epsl} for $\chi=0.2$ and $G\mu = 10^{-13}$ in the radiation era. The infrared cutoff is set to $\gammai = 0.1$.


Impact of the extra population of small loops onto the \gls{sbgw} in the parameter space $\chir,\chim$ for $G\mu=10^{-13}$. In the blue region, the high frequency plateau for $\OmegaGW$ is dominated by the extra population of small loops produced during radiation era. In the red region, the spectrum presents a peak around $\uHo {\gammac^{(m)}}^{-1}$ produced by the \gls{epsl} during the matter era. Outside those regions, the population of small loops can be neglected.

Impact of the extra population of small loops onto the \gls{sbgw} in the parameter space $\chir,\chim$ for $G\mu=10^{-13}$. In the blue region, the high frequency plateau for $\OmegaGW$ is dominated by the extra population of small loops produced during radiation era. In the red region, the spectrum presents a peak around $\uHo {\gammac^{(m)}}^{-1}$ produced by the \gls{epsl} during the matter era. Outside those regions, the population of small loops can be neglected.


: $G\mu = 10^{-13}$, $\chir = 0.5$, $\chim = 0.655$

: $G\mu = 10^{-13}$, $\chir = 0.5$, $\chim = 0.655$


: $G\mu = 10^{-13}$, $\chir = 0.2$, $\chim = 0.295$

: $G\mu = 10^{-13}$, $\chir = 0.2$, $\chim = 0.295$


: $G\mu = 10^{-13}$, $\chir = 0.45$, $\chim = 0.295$

: $G\mu = 10^{-13}$, $\chir = 0.45$, $\chim = 0.295$


: $G\mu = 10^{-13}$, $\chir = 0.2$, $\chim = 0.45$

: $G\mu = 10^{-13}$, $\chir = 0.2$, $\chim = 0.45$


: LIGO/Virgo, sensitivity of $\OmegaGW=10^{-7}$ taken at $f=20$ Hz

: LIGO/Virgo, sensitivity of $\OmegaGW=10^{-7}$ taken at $f=20$ Hz


: LIGO/Virgo constraints on $G\mu$ at $\chim=0.295$. The orange region is excluded giving non-convex constraints on $G\mu$ for a given model.

: LIGO/Virgo constraints on $G\mu$ at $\chim=0.295$. The orange region is excluded giving non-convex constraints on $G\mu$ for a given model.


: PTA, sensitivity of $\OmegaGW=10^{-12}$ taken at $f=2\times 10^{-9}$ Hz

: PTA, sensitivity of $\OmegaGW=10^{-12}$ taken at $f=2\times 10^{-9}$ Hz


: LISA, sensitivity of $\OmegaGW=10^{-13}$ taken at $f=10^{-2}$ Hz

: LISA, sensitivity of $\OmegaGW=10^{-13}$ taken at $f=10^{-2}$ Hz


References
  • LIGO Scientific, Virgo collaboration, 2016 Observation of gravitational waves from a binary black hole merger, https://doi.org/10.1103/PhysRevLett.116.061102 Phys. Rev. Lett. 116 061102 [1602.03837]
  • T.W.B. Kibble, 1976 Topology of cosmic domains and strings, https://doi.org/10.1088/0305-4470/9/8/029 J. Phys. A 9 1387
  • M.B. Hindmarsh and T.W.B. Kibble, 1995 Cosmic strings, https://doi.org/10.1088/0034-4885/58/5/001 Rept. Prog. Phys. 58 477 [hep-ph/9411342]
  • A. Vilenkin and E.P.S. Shellard, 2001 Cosmic strings and other topological defects, Cambridge University Press, Cambridge U.K.
  • T. Vachaspati, L. Pogosian and D. Steer, 2015 Cosmic strings, https://doi.org/10.4249/scholarpedia.31682 Scholarpedia 10 31682 [1506.04039]
  • T. Vachaspati and A. Vilenkin, 1984 Formation and evolution of cosmic strings, https://doi.org/10.1103/PhysRevD.30.2036 Phys. Rev. D 30 2036
  • T. Kibble, 1985 Evolution of a system of cosmic strings, https://doi.org/10.1016/0550-3213(85)90439-0 Nucl. Phys. B 252 227
  • B. Allen and R.R. Caldwell, 1991 Small scale structure on a cosmic string network, https://doi.org/10.1103/PhysRevD.43.3173 Phys. Rev. D 43 3173
  • B. Allen and R.R. Caldwell, 1991 Kinky structure on strings, https://doi.org/10.1103/PhysRevD.43.R2457 Phys. Rev. D 43 R2457
  • D. Austin, E.J. Copeland and T.W.B. Kibble, 1993 Evolution of cosmic string configurations, https://doi.org/10.1103/PhysRevD.48.5594 Phys. Rev. D 48 5594
  • J. Polchinski and J.V. Rocha, 2006 Analytic study of small scale structure on cosmic strings, https://doi.org/10.1103/PhysRevD.74.083504 Phys. Rev. D 74 083504 [hep-ph/0606205]
  • J. Polchinski, Cosmic string loops and gravitational radiation, [0707.0888]
  • J. Polchinski and J.V. Rocha, 2007 Cosmic string structure at the gravitational radiation scale, https://doi.org/10.1103/PhysRevD.75.123503 Phys. Rev. D 75 123503 [gr-qc/0702055]
  • L. Lorenz, C. Ringeval and M. Sakellariadou, 2010 Cosmic string loop distribution on all length scales and at any redshift J. Cosmol. Astropart. Phys. 2010 10 003 [1006.0931]
  • J.J. Blanco-Pillado, K.D. Olum and B. Shlaer, 2014 The number of cosmic string loops, https://doi.org/10.1103/PhysRevD.89.023512 Phys. Rev. D 89 023512 [1309.6637]
  • C.J.A.P. Martins, E.P.S. Shellard and J.P.P. Vieira, 2014 Models for small-scale structure of cosmic strings: Mathematical formalism, https://doi.org/10.1103/PhysRevD.90.043518 Phys. Rev. D 90 043518
  • J.P.P. Vieira, C.J.A.P. Martins and E.P.S. Shellard, 2016 Models for small-scale structure on cosmic strings. II. Scaling and its stability, https://doi.org/10.1103/PhysRevD.94.096005 Phys. Rev. D 94 096005 [Erratum ibid 94 (2016) 099907] [1611.06103]
  • P. Auclair, C. Ringeval, M. Sakellariadou and D. Steer, 2019 Cosmic string loop production functions J. Cosmol. Astropart. Phys. 2019 06 015 [1903.06685]
  • D.P. Bennett and F.R. Bouchet, 1989 Cosmic string evolution, https://doi.org/10.1103/PhysRevLett.63.2776 Phys. Rev. Lett. 63 2776
  • A. Albrecht and N. Turok, 1989 Evolution of cosmic string networks, https://doi.org/10.1103/PhysRevD.40.973 Phys. Rev. D 40 973
  • D.P. Bennett and F.R. Bouchet, 1990 High resolution simulations of cosmic string evolution. 1. Network evolution, https://doi.org/10.1103/PhysRevD.41.2408 Phys. Rev. D 41 2408
  • B. Allen and E.P.S. Shellard, 1990 Cosmic string evolution: a numerical simulation, https://doi.org/10.1103/PhysRevLett.64.119 Phys. Rev. Lett. 64 119
  • J.J. Blanco-Pillado, K.D. Olum and B. Shlaer, 2011 Large parallel cosmic string simulations: new results on loop production, https://doi.org/10.1103/PhysRevD.83.083514 Phys. Rev. D 83 083514 [1101.5173]
  • C.J.A.P. Martins and E.P.S. Shellard, 2006 Fractal properties and small-scale structure of cosmic string networks, https://doi.org/10.1103/PhysRevD.73.043515 Phys. Rev. D 73 043515 [astro-ph/0511792]
  • C. Ringeval, M. Sakellariadou and F. Bouchet, 2007 Cosmological evolution of cosmic string loops J. Cosmol. Astropart. Phys. 2007 02 023 [astro-ph/0511646]
  • E. Jeong and G.F. Smoot, 2005 Search for cosmic strings in CMB anisotropies, https://doi.org/10.1086/428921 Astrophys. J. 624 21 [astro-ph/0406432]
  • C. Ringeval, 2010 Cosmic strings and their induced non-gaussianities in the cosmic microwave background, https://doi.org/10.1155/2010/380507 Adv. Astron. 2010380507 [1005.4842]
  • Planck collaboration, 2014 Planck 2013 results. XXV. Searches for cosmic strings and other topological defects, https://doi.org/10.1051/0004-6361/201321621 Astron. Astrophys. 571 A25 [1303.5085]
  • J. Lizarraga, J. Urrestilla, D. Daverio, M. Hindmarsh and M. Kunz, 2016 New CMB constraints for Abelian Higgs cosmic strings J. Cosmol. Astropart. Phys. 2016 10 042 [1609.03386]
  • T. Vachaspati and A. Vilenkin, 1985 Gravitational radiation from cosmic strings, https://doi.org/10.1103/PhysRevD.31.3052 Phys. Rev. D 31 3052
  • M. Hindmarsh, 1990 Gravitational radiation from kinky infinite strings, https://doi.org/10.1016/0370-2693(90)90226-V Phys. Lett. B 251 28
  • B. Allen and E.P.S. Shellard, 1992 Gravitational radiation from cosmic strings, https://doi.org/10.1103/PhysRevD.45.1898 Phys. Rev. D 45 1898
  • T. Damour and A. Vilenkin, 2001 Gravitational wave bursts from cusps and kinks on cosmic strings, https://doi.org/10.1103/PhysRevD.64.064008 Phys. Rev. D 64 064008 [gr-qc/0104026]
  • X. Siemens and K.D. Olum, 2001 Gravitational radiation and the small-scale structure of cosmic strings, https://doi.org/10.1016/S0550-3213(01)00353-4 Nucl. Phys. B 611 125 [Erratum ibid 645 (2002) 367] [gr-qc/0104085]
  • X. Siemens, J. Creighton, I. Maor, S. Ray Majumder, K. Cannon and J. Read, 2006 Gravitational wave bursts from cosmic (super)strings: quantitative analysis and constraints, https://doi.org/10.1103/PhysRevD.73.105001 Phys. Rev. D 73 105001 [gr-qc/0603115]
  • LIGO Scientific, Virgo collaboration, 2018 Constraints on cosmic strings using data from the first Advanced LIGO observing run, https://doi.org/10.1103/PhysRevD.97.102002 Phys. Rev. D 97 102002 [1712.01168]
  • LIGO Scientific, Virgo collaboration, 2019 Search for the isotropic stochastic background using data from Advanced LIGO's second observing run, https://doi.org/10.1103/PhysRevD.100.061101 Phys. Rev. D 100 061101 [1903.02886]
  • S.A. Sanidas, R.A. Battye and B.W. Stappers, 2012 Constraints on cosmic string tension imposed by the limit on the stochastic gravitational wave background from the European Pulsar Timing Array, https://doi.org/10.1103/PhysRevD.85.122003 Phys. Rev. D 85 122003 [1201.2419]
  • J.J. Blanco-Pillado, K.D. Olum and J.M. Wachter, 2018 Gravitational backreaction near cosmic string kinks and cusps, https://doi.org/10.1103/PhysRevD.98.123507 Phys. Rev. D 98 123507 [1808.08254]
  • J.J. Blanco-Pillado, K.D. Olum and J.M. Wachter, 2019 Gravitational backreaction simulations of simple cosmic string loops, https://doi.org/10.1103/PhysRevD.100.023535 Phys. Rev. D 100 023535 [1903.06079]
  • D.F. Chernoff, E.E. Flanagan and B. Wardell, 2019 Gravitational backreaction on a cosmic string: formalism, https://doi.org/10.1103/PhysRevD.99.084036 Phys. Rev. D 99 084036 [1808.08631]
  • E.J. Copeland and T.W.B. Kibble, 2009 Kinks and small-scale structure on cosmic strings, https://doi.org/10.1103/PhysRevD.80.123523 Phys. Rev. D 80 123523 [0909.1960]
  • X. Siemens, K.D. Olum and A. Vilenkin, 2002 On the size of the smallest scales in cosmic string networks, https://doi.org/10.1103/PhysRevD.66.043501 Phys. Rev. D 66 043501 [gr-qc/0203006]
  • F. Dubath, J. Polchinski and J.V. Rocha, 2008 Cosmic string loops, large and small, https://doi.org/10.1103/PhysRevD.77.123528 Phys. Rev. D 77 123528 [0711.0994]
  • A. Vilenkin, 1984 String-dominated universe, https://doi.org/10.1103/PhysRevLett.53.1016 Phys. Rev. Lett. 53 1016
  • C. Ringeval and T. Suyama, 2017 Stochastic gravitational waves from cosmic string loops in scaling J. Cosmol. Astropart. Phys. 2017 12 027 [1709.03845]
  • J.J. Blanco-Pillado and K.D. Olum, 2017 Stochastic gravitational wave background from smoothed cosmic string loops, https://doi.org/10.1103/PhysRevD.96.104046 Phys. Rev. D 96 104046 [1709.02693]
  • J.J. Blanco-Pillado, K.D. Olum and J.M. Wachter, 2019 Energy-conservation constraints on cosmic string loop production and distribution functions, https://doi.org/10.1103/PhysRevD.100.123526 Phys. Rev. D 100 123526 [1907.09373]
  • J.J. Blanco-Pillado and K.D. Olum, 2020 Direct determination of cosmic string loop density from simulations, https://doi.org/10.1103/PhysRevD.101.103018 Phys. Rev. D 101 103018 [1912.10017]
  • T. Damour and A. Vilenkin, 2000 Gravitational wave bursts from cosmic strings, https://doi.org/10.1103/PhysRevLett.85.3761 Phys. Rev. Lett. 85 3761 [gr-qc/0004075]
  • S. Olmez, V. Mandic and X. Siemens, 2010 Gravitational-wave stochastic background from kinks and cusps on cosmic strings, https://doi.org/10.1103/PhysRevD.81.104028 Phys. Rev. D 81 104028 [1004.0890]
  • P. Auclair et al., 2020 Probing the gravitational wave background from cosmic strings with LISA J. Cosmol. Astropart. Phys. 2020 04 034 [1909.00819]
  • L. Sousa, P.P. Avelino and G.S.F. Guedes, 2020 Full analytical approximation to the stochastic gravitational wave background generated by cosmic string networks, https://doi.org/10.1103/PhysRevD.101.103508 Phys. Rev. D 101 103508 [2002.01079]
  • C. Caprini et al., 2019 Reconstructing the spectral shape of a stochastic gravitational wave background with LISA J. Cosmol. Astropart. Phys. 2019 11 017 [1906.09244]
  • Planck collaboration, 2016 Planck 2015 results. XIII. Cosmological parameters, https://doi.org/10.1051/0004-6361/201525830 Astron. Astrophys. 594 A13 [1502.01589]
  • I.S. Gradshte&ibreve;n, I.M. Ryzhik and A. Jeffrey, 2007 Table of integrals, series, and products, $7th$ edition, Academic Press, U.S.A.
  • I.S. Gradshte&ibreve;n, I.M. Ryzhik and A. Jeffrey, 2007 Table of integrals, series, and products, $7th$ edition, Academic Press, U.S.A.