Author(s)
Auclair, Pierre, Blasi, Simone, Brdar, Vedran, Schmitz, KaiAbstract
Cosmic strings are predicted by many Standard Model extensions involving the cosmological breaking of a symmetry with nontrivial first homotopy group and represent a potential source of primordial gravitational waves (GWs).Present efforts to model the GW signal from cosmic strings are often based on minimal models, such as, e.g., the Nambu-Goto action that describes cosmic strings as exactly one-dimensional objects without any internal structure.In order to arrive at more realistic predictions, it is therefore necessary to consider nonminimal models that make an attempt at accounting for the microscopic properties of cosmic strings.With this goal in mind, we derive in this paper the GW spectrum emitted by current-carrying cosmic strings (CCCSs), which may form in a variety of cosmological scenarios.Our analysis is based on a generalized version of the velocity-dependent one-scale (VOS) model, which, in addition to the mean velocity and correlation length of the string network, also describes the evolution of a chiral (light-like) current.As we are able to show, the solutions of the VOS equations imply a temporarily growing fractional cosmic-string energy density, Ω$_{cs}$.This results in an enhanced GW signal across a broad frequency interval, whose boundaries are determined by the times of generation and decay of cosmic-string currents.Our findings have important implications for GW experiments in the Hz to MHz band and motivate the construction of realistic particle physics models that give rise to large currents on cosmic strings.
Figures
Benchmark GW spectra emitted by current-carrying cosmic strings. For spectra (A), (C), (E), we assume a cosmic-string tension of $G\mu=0.5\times 10^{-10}$, while for spectra (B) and (E), we assume $G\mu=0.5\times 10^{-17}$. In scenarios (A) and (B), the current flowing on cosmic strings decays around the time of the QCD crossover, while in scenarios (C) and (D), it decays around the time of the electroweak crossover. In scenario (E), the current decays at even earlier times (see text for details). For each scenario, the lower and upper edges of the predicted spectrum respectively correspond to $k=1$ and $k=10^6$ harmonic string modes accounted for in the computation of the GW spectrum. We also show standard (\ie, no current) spectra for string networks with $G\mu=0.5\times 10^{-10}$ and $G\mu=0.5\times 10^{-17}$ (black lines), together with existing constraints and future sensitivities of present and planned GW experiments~\cite{Schmitz:2020syl}. All spectra for $G\mu=0.5\times 10^{-10}$ can explain the PTA signal at nHz frequencies.
Streamlines derived from the autonomous system of ordinary differential equations \eqref{eq:autonomous-alpha}, \eqref{eq:autonomous-v} and \eqref{eq:autonomous-y} for $\tilde{c}=0.23$ and $\nu=1/2$. All the trajectories start from the plane $\alpha = 0.27$ and eventually fall into one of the two different attractors, one at $Y=0$ and another one at $Y\sim 1$.
Two-dimensional slices of \cref{fig:streamtube} around the $Y\sim 1$ attractor.
Two-dimensional slices of \cref{fig:streamtube} around the $Y\sim 1$ attractor.
\emph{Left panel}: Evolution of the parameters $\alpha$, $v_\infty$ and $Y$ when the current is artificially sourced to $1$ at $t=10^{-18}$ s, for $\tilde{c} = 0.23$ and $\nu=1/2$. \emph{Right panel}: Evolution of $\alpha t^{-\delta}$, $v/\alpha$ and $\epsilon/\alpha^2$ that should be approximately time independent for a steady current attractor.
\emph{Left panel}: Evolution of the parameters $\alpha$, $v_\infty$ and $Y$ when the current is artificially sourced to $1$ at $t=10^{-18}$ s, for $\tilde{c} = 0.23$ and $\nu=1/2$. \emph{Right panel}: Evolution of $\alpha t^{-\delta}$, $v/\alpha$ and $\epsilon/\alpha^2$ that should be approximately time independent for a steady current attractor.
$t^4 n(\ell,t)$ for different times $t$ as a function of $x=\ell/t$. \emph{Left panel}: The black dashed line corresponds to the standard scaling. It can be seen that during the current-carrying phase more loops are produced at shorter lengths. In the calculation, we have taken $G\mu=10^{-10}$ and assumed that the transition starts at redshift $z=10^{15}$ and ends at $z=10^{9}$. \emph{Right panel}: $t^4 n(\ell,t)$ after the end of the current-carrying phase is shown. A gap develops in the loop distribution, see text for details.
$t^4 n(\ell,t)$ for different times $t$ as a function of $x=\ell/t$. \emph{Left panel}: The black dashed line corresponds to the standard scaling. It can be seen that during the current-carrying phase more loops are produced at shorter lengths. In the calculation, we have taken $G\mu=10^{-10}$ and assumed that the transition starts at redshift $z=10^{15}$ and ends at $z=10^{9}$. \emph{Right panel}: $t^4 n(\ell,t)$ after the end of the current-carrying phase is shown. A gap develops in the loop distribution, see text for details.
Energy density in small loops, $\rho_L$, gravitational waves, $\rho_\mathrm{GW}$, and long string network, $\rho_\infty$, normalized to the critical density $\rho_c \sim 1/Gt^2$, as a function of time after the onset of the current--carrying phase, $t_\text{ini}$.
GW spectrum as a function of the time at which the current appears, $t_{\mathrm{ini}}$, and disappears, $t_\text{end}$, from the network for a string tension of $G \mu = 5\times 10^{-11}$. The parameter region labeled LVK is disfavored by searches for the stochastic gravitational wave background at ground-based interferometers \cite{KAGRA:2021kbb}. We excluded GW signals with $h^2 \Omega_\mathrm{GW} > 5\times 10^{-9} h^2$ at $20$\,Hz corresponding to the limits set on a flat power spectrum with a log-uniform prior.
References
- [1] H. Georgi, Helen R. Quinn, Steven Weinberg, "Hierarchy of Interactions in Unified Gauge Theories", Phys.Rev.Lett.,33,451-454, DOI: 10.1103/PhysRevLett.33.451
- [2] H. Georgi, S. L. Glashow, "Unity of All Elementary Particle Forces", Phys.Rev.Lett.,32,438-441, DOI: 10.1103/PhysRevLett.32.438
- [3] T. W. B. Kibble, "Topology of Cosmic Domains and Strings", J.Phys.A,9,1387-1398, DOI: 10.1088/0305-4470/9/8/029
- [4] T. W. B. Kibble, "Some Implications of a Cosmological Phase Transition", Phys.Rept.,67,183, DOI: 10.1016/0370-1573(80)90091-5
- [5] P. Sikivie, "Of Axions, Domain Walls and the Early Universe", Phys.Rev.Lett.,48,1156-1159, DOI: 10.1103/PhysRevLett.48.1156
- [6] M. B. Hindmarsh, T. W. B. Kibble, "Cosmic strings", Rept.Prog.Phys.,58,477-562, DOI: 10.1088/0034-4885/58/5/001
- [7] John Preskill, "Cosmological Production of Superheavy Magnetic Monopoles", Phys.Rev.Lett.,43,1365, DOI: 10.1103/PhysRevLett.43.1365
- [8] Robert D. Pisarski, Frank Wilczek, "Remarks on the Chiral Phase Transition in Chromodynamics", Phys.Rev.D,29,338-341, DOI: 10.1103/PhysRevD.29.338
- [9] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, "The Order of the quantum chromodynamics transition predicted by the standard model of particle physics", Nature,443,675-678, DOI: 10.1038/nature05120
- [10] Frank R. Brown, Frank P. Butler, Hong Chen, Norman H. Christ, "On the existence of a phase transition for QCD with three light quarks", Phys.Rev.Lett.,65,2491-2494, DOI: 10.1103/PhysRevLett.65.2491
- [11] K. Kajantie, M. Laine, K. Rummukainen, Mikhail E. Shaposhnikov, "A Nonperturbative analysis of the finite T phase transition in SU(2) x U(1) electroweak theory", Nucl.Phys.B,493,413-438, DOI: 10.1016/S0550-3213(97)00164-8
- [12] M. Gurtler, Ernst-Michael Ilgenfritz, A. Schiller, "Where the electroweak phase transition ends", Phys.Rev.D,56,3888-3895, DOI: 10.1103/PhysRevD.56.3888
- [13] M. Laine, K. Rummukainen, Thomas A. DeGrand, Carleton E. DeTar, "What's new with the electroweak phase transition?", Nucl.Phys.B Proc.Suppl.,73,180-185, DOI: 10.1016/S0920-5632(99)85017-8
- [14] P. A. R. Ade, "Planck 2013 results. XXV. Searches for cosmic strings and other topological defects", Astron.Astrophys.,571,A25, DOI: 10.1051/0004-6361/201321621
- [15] Pierre Auclair, "Probing the gravitational wave background from cosmic strings with LISA", JCAP,2004,034, DOI: 10.1088/1475-7516/2020/04/034
- [16] Tanmay Vachaspati, Alexander Vilenkin, "Gravitational Radiation from Cosmic Strings", Phys.Rev.D,31,3052, DOI: 10.1103/PhysRevD.31.3052
- [17] Yanou Cui, Marek Lewicki, David E. Morrissey, James D. Wells, "Probing the pre-BBN universe with gravitational waves from cosmic strings", JHEP,1901,081, DOI: 10.1007/JHEP01(2019)081
- [18] Yann Gouttenoire, Géraldine Servant, Peera Simakachorn, "BSM with Cosmic Strings: Heavy, up to EeV mass, Unstable Particles", JCAP,2007,016, DOI: 10.1088/1475-7516/2020/07/016
- [19] Simone Blasi, Vedran Brdar, Kai Schmitz, "Fingerprint of low-scale leptogenesis in the primordial gravitational-wave spectrum", Phys.Rev.Res.,2,043321, DOI: 10.1103/PhysRevResearch.2.043321
- [20] Rome Samanta, Satyabrata Datta, "Probing leptogenesis and pre-BBN universe with gravitational waves spectral shapes", JHEP,2111,017, DOI: 10.1007/JHEP11(2021)017
- [21] Yann Gouttenoire, Geraldine Servant, Peera Simakachorn: Kination cosmology from scalar fields and gravitational-wave signatures, 2021, 2021 (arXiv:, arXiv: 2111.01150)
- [22] Yann Gouttenoire, Géraldine Servant, Peera Simakachorn, "Beyond the Standard Models with Cosmic Strings", JCAP,2007,032, DOI: 10.1088/1475-7516/2020/07/032
- [23] Kai Schmitz, "New Sensitivity Curves for Gravitational-Wave Signals from Cosmological Phase Transitions", JHEP,2101,097, DOI: 10.1007/JHEP01(2021)097
- [24] Zaven Arzoumanian, "The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background", Astrophys.J.Lett.,905,L34, DOI: 10.3847/2041-8213/abd401
- [25] Boris Goncharov, "On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array", Astrophys.J.Lett.,917,L19, DOI: 10.3847/2041-8213/ac17f4
- [26] S. Chen, "Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: inferences in the stochastic gravitational-wave background search", Mon.Not.Roy.Astron.Soc.,508,4970-4993, DOI: 10.1093/mnras/stab2833
- [27] J. Antoniadis, "The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background", Mon.Not.Roy.Astron.Soc.,510,4873-4887, DOI: 10.1093/mnras/stab3418
- [28] Simone Blasi, Vedran Brdar, Kai Schmitz, "Has NANOGrav found first evidence for cosmic strings?", Phys.Rev.Lett.,126,041305, DOI: 10.1103/PhysRevLett.126.041305
- [29] John Ellis, Marek Lewicki, "Cosmic String Interpretation of NANOGrav Pulsar Timing Data", Phys.Rev.Lett.,126,041304, DOI: 10.1103/PhysRevLett.126.041304
- [30] Wilfried Buchmuller, Valerie Domcke, Kai Schmitz, "From NANOGrav to LIGO with metastable cosmic strings", Phys.Lett.B,811,135914, DOI: 10.1016/j.physletb.2020.135914
- [31] Ligong Bian, Jing Shu, Bo Wang, Qiang Yuan, "Searching for cosmic string induced stochastic gravitational wave background with the Parkes Pulsar Timing Array", Phys.Rev.D,106,L101301, DOI: 10.1103/PhysRevD.106.L101301
- [32] Zu-Cheng Chen, Yu-Mei Wu, Qing-Guo Huang, "Search for the Gravitational-wave Background from Cosmic Strings with the Parkes Pulsar Timing Array Second Data Release", Astrophys.J.,936,20, DOI: 10.3847/1538-4357/ac86cb
- [33] H. Middleton, A. Sesana, S. Chen, A. Vecchio, "Massive black hole binary systems and the NANOGrav 12.5 yr results", Mon.Not.Roy.Astron.Soc.,502,L99-L103, DOI: 10.1093/mnrasl/slab008
- [34] Andreas Albrecht, Neil Turok, "Evolution of Cosmic String Networks", Phys.Rev.D,40,973-1001, DOI: 10.1103/PhysRevD.40.973
- [35] Christophe Ringeval, Mairi Sakellariadou, Francois Bouchet, "Cosmological evolution of cosmic string loops", JCAP,0702,023, DOI: 10.1088/1475-7516/2007/02/023
- [36] Jose J. Blanco-Pillado, Ken D. Olum, Benjamin Shlaer, "Large parallel cosmic string simulations: New results on loop production", Phys.Rev.D,83,083514, DOI: 10.1103/PhysRevD.83.083514
- [37] Jose J. Blanco-Pillado, Ken D. Olum, Benjamin Shlaer, "The number of cosmic string loops", Phys.Rev.D,89,023512, DOI: 10.1103/PhysRevD.89.023512
- [38] Jose J. Blanco-Pillado, Ken D. Olum, "Stochastic gravitational wave background from smoothed cosmic string loops", Phys.Rev.D,96,104046, DOI: 10.1103/PhysRevD.96.104046
- [39] Jose J. Blanco-Pillado, Ken D. Olum, "Direct determination of cosmic string loop density from simulations", Phys.Rev.D,101,103018, DOI: 10.1103/PhysRevD.101.103018
- [40] Graham Vincent, Nuno D. Antunes, Mark Hindmarsh, "Numerical simulations of string networks in the Abelian Higgs model", Phys.Rev.Lett.,80,2277-2280, DOI: 10.1103/PhysRevLett.80.2277
- [41] Ken D. Olum, J. J. Blanco-Pillado, "Field theory simulation of Abelian Higgs cosmic string cusps", Phys.Rev.D,60,023503, DOI: 10.1103/PhysRevD.60.023503
- [42] Mark Hindmarsh, Stephanie Stuckey, Neil Bevis, "Abelian Higgs Cosmic Strings: Small Scale Structure and Loops", Phys.Rev.D,79,123504, DOI: 10.1103/PhysRevD.79.123504
- [43] Mark Hindmarsh, Joanes Lizarraga, Jon Urrestilla, David Daverio, "Scaling from gauge and scalar radiation in Abelian Higgs string networks", Phys.Rev.D,96,023525, DOI: 10.1103/PhysRevD.96.023525
- [44] Daiju Matsunami, Levon Pogosian, Ayush Saurabh, Tanmay Vachaspati, "Decay of Cosmic String Loops Due to Particle Radiation", Phys.Rev.Lett.,122,201301, DOI: 10.1103/PhysRevLett.122.201301
- [45] Mark Hindmarsh, Joanes Lizarraga, Ander Urio, Jon Urrestilla, "Loop decay in Abelian-Higgs string networks", Phys.Rev.D,104,043519, DOI: 10.1103/PhysRevD.104.043519
- [46] M. F. Oliveira, A. Avgoustidis, C. J. A. P. Martins, "Cosmic string evolution with a conserved charge", Phys.Rev.D,85,083515, DOI: 10.1103/PhysRevD.85.083515
- [47] C. J. A. P. Martins, Patrick Peter, I. Yu Rybak, E. P. S. Shellard, "Generalized velocity-dependent one-scale model for current-carrying strings", Phys.Rev.D,103,043538, DOI: 10.1103/PhysRevD.103.043538
- [48] A. R. R. Almeida, C. J. A. P. Martins, "Scaling solutions of wiggly cosmic strings", Phys.Rev.D,104,043524, DOI: 10.1103/PhysRevD.104.043524
- [49] J. P. Ostriker, Arthur Christopher Thompson, Edward Witten, "Cosmological Effects of Superconducting Strings", Phys.Lett.B,180,231-239, DOI: 10.1016/0370-2693(86)90301-1
- [50] Edward Witten, "Superconducting Strings", Nucl.Phys.B,249,557-592, DOI: 10.1016/0550-3213(85)90022-7
- [51] Betti Hartmann, Florent Michel, Patrick Peter, "Excited cosmic strings with superconducting currents", Phys.Rev.D,96,123531, DOI: 10.1103/PhysRevD.96.123531
- [52] Robert Brandenberger, Bryce Cyr, Rui Shi, "Constraints on Superconducting Cosmic Strings from the Global 21-cm Signal before Reionization", JCAP,1909,009, DOI: 10.1088/1475-7516/2019/09/009
- [53] Batool Imtiaz, Rui Shi, Yi-Fu Cai, "Updated constraints on superconducting cosmic strings from the astronomy of fast radio bursts", Eur.Phys.J.C,80,500, DOI: 10.1140/epjc/s10052-020-8064-x
- [54] Roxane Thériault, Jordan T. Mirocha, Robert Brandenberger, "Global 21cm absorption signal from superconducting cosmic strings", JCAP,2110,046, DOI: 10.1088/1475-7516/2021/10/046
- [55] C. J. A. P. Martins, Patrick Peter, I. Yu. Rybak, E. P. S. Shellard, "Charge-velocity-dependent one-scale linear model", Phys.Rev.D,104,103506, DOI: 10.1103/PhysRevD.104.103506
- [56] Bryce Cyr, Hao Jiao, Robert Brandenberger, "Massive black holes at high redshifts from superconducting cosmic strings", Mon.Not.Roy.Astron.Soc.,517,2221-2230, DOI: 10.1093/mnras/stac1939
- [57] Paola Arias, Ariel Arza, Fidel A. Schaposnik, Diego Vargas-Arancibia, "Vortex solutions in the presence of dark portals", Int.J.Mod.Phys.A,37,2250087, DOI: 10.1142/S0217751X22500877
- [58] C. J. A. P. Martins, E. P. S. Shellard, "Quantitative string evolution", Phys.Rev.D,54,2535-2556, DOI: 10.1103/PhysRevD.54.2535
- [59] C. J. A. P. Martins, E. P. S. Shellard, "Extending the velocity dependent one scale string evolution model", Phys.Rev.D,65,043514, DOI: 10.1103/PhysRevD.65.043514
- [60] Helder Chavez, Luis Masperi, "A Possible origin of superconducting currents in cosmic strings", New J.Phys.,4,65, DOI: 10.1088/1367-2630/4/1/365
- [61] Anne-Christine Davis, Stephen C. Davis, "Microphysics of SO(10) cosmic strings", Phys.Rev.D,55,1879-1895, DOI: 10.1103/PhysRevD.55.1879
- [62] R. L. Davis, E. P. S. Shellard, "COSMIC VORTONS", Nucl.Phys.B,323,209-224, DOI: 10.1016/0550-3213(89)90594-4
- [63] Robert H. Brandenberger, Brandon Carter, Anne-Christine Davis, Mark Trodden, "Cosmic vortons and particle physics constraints", Phys.Rev.D,54,6059-6071, DOI: 10.1103/PhysRevD.54.6059
- [64] C. J. A. P. Martins, E. P. S. Shellard, "Vorton formation", Phys.Rev.D,57,7155-7176, DOI: 10.1103/PhysRevD.57.7155
- [65] Brandon Carter, Anne-Christine Davis, "Chiral vortons and cosmological constraints on particle physics", Phys.Rev.D,61,123501, DOI: 10.1103/PhysRevD.61.123501
- [66] Y. Lemperiere, E. P. S. Shellard, "Vorton existence and stability", Phys.Rev.Lett.,91,141601, DOI: 10.1103/PhysRevLett.91.141601
- [67] Pierre Auclair, Patrick Peter, Christophe Ringeval, Danièle Steer, "Irreducible cosmic production of relic vortons", JCAP,2103,098, DOI: 10.1088/1475-7516/2021/03/098
- [68] R. A. Battye, S. J. Cotterill, "Stable Cosmic Vortons in Bosonic Field Theory", Phys.Rev.Lett.,127,241601, DOI: 10.1103/PhysRevLett.127.241601
- [69] R. Abbott, "Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run", Phys.Rev.D,104,022004, DOI: 10.1103/PhysRevD.104.022004
- [70] I. Yu. Rybak, L. Sousa, "Emission of gravitational waves by superconducting cosmic strings", JCAP,2211,024, DOI: 10.1088/1475-7516/2022/11/024
- [71] David Shoemaker: Gravitational wave astronomy with LIGO and similar detectors in the next decade, 2019, 2019 (arXiv:, arXiv: 1904.03187)
- [72] R. Abbott, "Constraints on Cosmic Strings Using Data from the Third Advanced LIGO-Virgo Observing Run", Phys.Rev.Lett.,126,241102, DOI: 10.1103/PhysRevLett.126.241102
- [73] Vincent Corbin, Neil J. Cornish, "Detecting the cosmic gravitational wave background with the big bang observer", Class.Quant.Grav.,23,2435-2446, DOI: 10.1088/0264-9381/23/7/014
- [74] Seiji Kawamura, "Current status of space gravitational wave antenna DECIGO and B-DECIGO", PTEP,2021,05, DOI: 10.1093/ptep/ptab019
- [75] Nancy Aggarwal, "Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies", Living Rev.Rel.,24,4, DOI: 10.1007/s41114-021-00032-5
- [76] Pau Amaro-Seoane: Laser Interferometer Space Antenna, 2017, 2017 (arXiv:, arXiv: 1702.00786)
- [77] Pierre Auclair: Cosmology with the Laser Interferometer Space Antenna, 2022, 2022 (arXiv:, arXiv: 2204.05434)