Author(s)
Auclair, Pierre, Steer, Danièle A., Vachaspati, TanmayAbstract
A characteristic observational signature of cosmic strings are short duration gravitational wave (GW) bursts. These have been searched for by the LIGO-Virgo-KAGRA (LVK) collaboration, and will be searched for with LISA. We point out that these burst signals are repeated, since cosmic string loops evolve quasi-periodically in time, and will always appear from essentially the same position in the sky. We estimate the number of GW repeaters for LVK and LISA, and show that the string tension that can be probed scales as detector sensitivity to the sixth power, which raises hope for detection in future GW detectors. The observation of repeated GW bursts from the same cosmic string loop helps distinguish between the GW waveform parameters and the sky-localization.
Figures
Number of repeaters per logarithmic bin of the period, $T=\ell/2$, as seen in GW detectors for different values for $G\mu=10^{-10}$. The solid line shows \cref{eq:rate-nogain}, ignoring repetitions. The dashed line shows \cref{eq:rate-gain}, namely including the sensitivity gain due to repetition. If not all repeaters are observed, one would expect a rate somewhere in the shaded regions. (Assuming $T_O = 4$ years for each detector.)
Modulation of the SNR in the reference frame of LISA for a repeating burst of amplitude $A = 10^{-21}$ in the equatorial plane (red) and at colatitude $\pi / 4$ (orange) and with same longitude. Left panel: Antenna pattern of LISA in its own reference frame using Time Delay Interferometry (TDI) and generation 1.5 variables~ \cite{Tinto:2020fcc,Auclair:2023brk}. Right panel: Evolution of the SNR over the course of one year.
Modulation of the SNR in the reference frame of LISA for a repeating burst of amplitude $A = 10^{-21}$ in the equatorial plane (red) and at colatitude $\pi / 4$ (orange) and with same longitude. Left panel: Antenna pattern of LISA in its own reference frame using Time Delay Interferometry (TDI) and generation 1.5 variables~ \cite{Tinto:2020fcc,Auclair:2023brk}. Right panel: Evolution of the SNR over the course of one year.
References
- [1] A. Vilenkin and E. S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, 2000), ISBN 978-0-521-65476-0.
- [2] T. Kibble, J. Phys. A 9, 1387 (1976).
- [3] M. B. Hindmarsh and T. W. B. Kibble, Rept. Prog. Phys. 58, 477 (1995), hep-ph/9411342.
- [4] T. Vachaspati, L. Pogosian, and D. Steer, Scholarpedia 10, 31682 (2015), 1506.04039.
- [5] C. Ringeval, Adv. Astron. 2010, 380507 (2010), 1005.4842.
- [6] P. Auclair, J. J. Blanco-Pillado, D. G. Figueroa, A. C. Jenkins, M. Lewicki, M. Sakellariadou, S. Sanidas, L. Sousa, D. A. Steer, J. M. Wachter, et al., Journal of Cosmology and Astroparticle Physics 2020, 034 (2020), URL https://doi.org/10.1088%2F1475-7516%2F2020% 2F04%2F034.
- [7] R. Abbott et al. (LIGO Scientific, Virgo, KAGRA), Phys. Rev. Lett. 126, 241102 (2021), 2101.12248.
- [8] J. Ellis and M. Lewicki, Phys. Rev. Lett. 126, 041304 (2021), 2009.06555.
- [9] S. Blasi, V. Brdar, and K. Schmitz, Phys. Rev. Lett. 126, 041305 (2021), 2009.06607.
- [10] L. Bian, J. Shu, B. Wang, Q. Yuan, and J. Zong, Phys. Rev. D 106, L101301 (2022), 2205.07293.
- [11] Z.-C. Chen, Y.-M. Wu, and Q.-G. Huang, Astrophys. J. 936, 20 (2022), 2205.07194.
- [12] H. Quelquejay Leclere, P. Auclair, S. Babak, D. A. Steer, and E. collaboration, to appear (2023).
- [13] T. Damour and A. Vilenkin, Phys. Rev. Lett. 85, 3761 (2000), gr-qc/0004075.
- [14] T. Damour and A. Vilenkin, Phys. Rev. D 64, 064008 (2001), gr-qc/0104026.
- [15] C. J. Copi, F. Ferrer, T. Vachaspati, and A. Achucarro, Phys. Rev. Lett. 101, 171302 (2008), 0801.3653.
- [16] J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer, Phys. Rev. D 92, 063528 (2015), 1508.02693.
- [17] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 97, 102002 (2018), 1712.01168.
- [18] X. Siemens, J. Creighton, I. Maor, S. Ray Majumder, K. Cannon, and J. Read, Phys. Rev. D 73, 105001 (2006), gr-qc/0603115.
- [19] P. Auclair, S. Babak, H. Q. Leclere, and D. A. Steer (2023), 2305.11653.
- [20] J. J. Blanco-Pillado and K. D. Olum, Phys. Rev. D 59, 063508 (1999), [Erratum: Phys.Rev.D 103, 029902 (2021)], gr-qc/9810005.
- [20] J. J. Blanco-Pillado and K. D. Olum, Phys. Rev. D 59, 063508 (1999), [Erratum: Phys.Rev.D 103, 029902 (2021)], gr-qc/9810005.
- [21] K. D. Olum and J. J. Blanco-Pillado, Phys. Rev. D 60, 023503 (1999), gr-qc/9812040.
- [22] J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer, Phys. Rev. D 89, 023512 (2014), 1309.6637.
- [23] M. Tinto and S. V. Dhurandhar, Living Rev. Rel. 24, 1 (2021).
- [24] V. Morello, E. D. Barr, B. W. Stappers, E. F. Keane, and A. G. Lyne, Monthly Notices of the Royal Astronomical Society 497, 4654 (2020), URL https://doi.org/10. 1093%2Fmnras%2Fstaa2291.
- [25] S. Babak et al., Class. Quant. Grav. 25, 184026 (2008), 0806.2110.
- [26] M. I. Cohen, C. Cutler, and M. Vallisneri, Class. Quant. Grav. 27, 185012 (2010), 1002.4153.
- [27] J. Shapiro Key and N. J. Cornish, Phys. Rev. D 79, 043014 (2009), 0812.1590.
- [28] S. Babak et al. (Mock LISA Data Challenge Task Force), Class. Quant. Grav. 27, 084009 (2010), 0912.0548.
- [29] D. A. Steer and T. Vachaspati, Phys. Rev. D 83, 043528 (2011), 1012.1998.
- [30] T. Vachaspati, Phys. Rev. D 81, 043531 (2010), 0911.2655.
- [31] T. Vachaspati, Phys. Rev. Lett. 101, 141301 (2008), 0802.0711.
- [32] Y.-F. Cai, E. Sabancilar, D. A. Steer, and T. Vachaspati, Phys. Rev. D 86, 043521 (2012), 1205.3170.
- [33] D. Garfinkle and T. Vachaspati, Phys. Rev. D 36, 2229 (1987).