The missing link in gravitational-wave astronomy: discoveries waiting in the decihertz range

Author(s)

Sedda, Manuel Arca, Berry, Christopher P.L., Jani, Karan, Amaro-Seoane, Pau, Auclair, Pierre, Baird, Jonathon, Baker, Tessa, Berti, Emanuele, Breivik, Katelyn, Burrows, Adam, Caprini, Chiara, Chen, Xian, Doneva, Daniela, Ezquiaga, Jose M., Ford, K E Saavik, Katz, Michael L., Kolkowitz, Shimon, McKernan, Barry, Mueller, Guido, Nardini, Germano, Pikovski, Igor, Rajendran, Surjeet, Sesana, Alberto, Shao, Lijing, Tamanini, Nicola, Vartanyan, David, Warburton, Niels, Witek, Helvi, Wong, Kaze, Zevin, Michael

Abstract

The gravitational-wave astronomical revolution began in 2015 with LIGO’s observation of the coalescence of two stellar-mass black holes. Over the coming decades, ground-based detectors like laser interferometer gravitational-wave observatory (LIGO), Virgo and KAGRA will extend their reach, discovering thousands of stellar-mass binaries. In the 2030s, the space-based laser interferometer space antenna (LISA) will enable gravitational-wave observations of the massive black holes in galactic centres. Between ground-based observatories and LISA lies the unexplored dHz gravitational-wave frequency band. Here, we show the potential of a decihertz observatory (DO) which could cover this band, and complement discoveries made by other gravitational-wave observatories. The dHz range is uniquely suited to observation of intermediate-mass (∼102–104 M ⊙) black holes, which may form the missing link between stellar-mass and massive black holes, offering an opportunity to measure their properties. DOs will be able to detect stellar-mass binaries days to years before they merge and are observed by ground-based detectors, providing early warning of nearby binary neutron star mergers, and enabling measurements of the eccentricity of binary black holes, providing revealing insights into their formation. Observing dHz gravitational-waves also opens the possibility of testing fundamental physics in a new laboratory, permitting unique tests of general relativity (GR) and the standard model of particle physics. Overall, a DO would answer outstanding questions about how black holes form and evolve across cosmic time, open new avenues for multimessenger astronomy, and advance our understanding of gravitation, particle physics and cosmology.

Figures

Eccentricity distributions of binary black holes formed in globular clusters when observed at different gravitational-wave frequencies. Binary binary black hole mergers in globular clusters form $3$ distinct populations: binaries that are ejected from the cluster due to a strong encounter, binaries that leave a strong encounter in a hardened state and merge before the next encounter, and binaries that merge during the strong encounter itself~\citep{Samsing:2017rat,Rodriguez:2018pss,Zevin:2018kzq}. The first $2$ populations make up the broad peak at lower eccentricity, and the third results in the distribution at $e \lesssim 10^{-2}$ seen for the gravitational-wave frequencies of $f_\mathrm{ref} = 10.0~\mathrm{Hz}$ and $f_\mathrm{ref} = 1.0~\mathrm{Hz}$. At lower frequencies it is easier to distinguish between the ejected and in-cluster merger populations~\citep{DOrazio:2018jnv,Samsing:2018nxk}; the dashed and dotted green lines differentiate the ejected and in-cluster populations, respectively, at $f_\mathrm{ref} = 0.1~\mathrm{Hz}$. The peak near $e \sim 1$ in the $f_\mathrm{ref} = 10.0~\mathrm{Hz}$ histogram is populated by systems that form in-band and merge on the timescale of days--years.

Eccentricity distributions of binary black holes formed in globular clusters when observed at different gravitational-wave frequencies. Binary binary black hole mergers in globular clusters form $3$ distinct populations: binaries that are ejected from the cluster due to a strong encounter, binaries that leave a strong encounter in a hardened state and merge before the next encounter, and binaries that merge during the strong encounter itself~\citep{Samsing:2017rat,Rodriguez:2018pss,Zevin:2018kzq}. The first $2$ populations make up the broad peak at lower eccentricity, and the third results in the distribution at $e \lesssim 10^{-2}$ seen for the gravitational-wave frequencies of $f_\mathrm{ref} = 10.0~\mathrm{Hz}$ and $f_\mathrm{ref} = 1.0~\mathrm{Hz}$. At lower frequencies it is easier to distinguish between the ejected and in-cluster merger populations~\citep{DOrazio:2018jnv,Samsing:2018nxk}; the dashed and dotted green lines differentiate the ejected and in-cluster populations, respectively, at $f_\mathrm{ref} = 0.1~\mathrm{Hz}$. The peak near $e \sim 1$ in the $f_\mathrm{ref} = 10.0~\mathrm{Hz}$ histogram is populated by systems that form in-band and merge on the timescale of days--years.


Three-dimensional map illustrating the gravitational-wave strain $h$ (multiplied by distance $D$) generated by neutrino emission anisotropies $253~\mathrm{ms}$ after the SN bounce, assuming a stellar progenitor with mass $M = 19 \Ms$~\citep{Vartanyan:2020nmt}. The signal is shown for both $h_+$ (\emph{left}) and $h_\times$ (\emph{right}) polarization, and as a function of the viewing angle. Hotter colors (yellow to red; convex surfaces), indicate positive strains, whereas cooler colors (blue to yellow; concave surfaces) indicate negative strains.

Three-dimensional map illustrating the gravitational-wave strain $h$ (multiplied by distance $D$) generated by neutrino emission anisotropies $253~\mathrm{ms}$ after the SN bounce, assuming a stellar progenitor with mass $M = 19 \Ms$~\citep{Vartanyan:2020nmt}. The signal is shown for both $h_+$ (\emph{left}) and $h_\times$ (\emph{right}) polarization, and as a function of the viewing angle. Hotter colors (yellow to red; convex surfaces), indicate positive strains, whereas cooler colors (blue to yellow; concave surfaces) indicate negative strains.


Ability to detect a stochastic gravitational-wave background, characterised by the power-law sensitivity $h^2 \Omega_\mathrm{GW}(f)$~\citep{Thrane:2013oya,Caprini:2019pxz,Mohamadnejad:2019vzg}. Sensitivities are calculated assuming a $4~\mathrm{yr}$ mission with a $70\%$ efficiency, and a required signal-to-noise ratio threshold of $10$.

Ability to detect a stochastic gravitational-wave background, characterised by the power-law sensitivity $h^2 \Omega_\mathrm{GW}(f)$~\citep{Thrane:2013oya,Caprini:2019pxz,Mohamadnejad:2019vzg}. Sensitivities are calculated assuming a $4~\mathrm{yr}$ mission with a $70\%$ efficiency, and a required signal-to-noise ratio threshold of $10$.


References
  • Longair M 2006 The Cosmic Century (Cambridge: Cambridge University Press)
  • Hewish A, Bell S J, Pilkington J D H, Scott P F and Collins R A 1968 Nature 217 709–13
  • Beskin V S, Chernov S V, Gwinn C R and Tchekhovskoy A 2015 Space Sci. Rev. 191 207–37
  • Klebesadel R W, Strong I B and Olson R A 1973 Astrophys. J. 182 L85–8
  • Mészáros P 2006 Rep. Prog. Phys. 69 2259–322
  • Berger E 2014 Ann. Rev. Astron. Astrophys. 52 43–105
  • Sathyaprakash B S and Schutz B F 2009 Living Rev. Relativ. 12 2
  • Abbott B P et al and LIGO Scientific, Virgo 2016 Phys. Rev. Lett. 116 061102
  • Abbott B P et al and LIGO Scientific, Virgo 2016 Phys. Rev. Lett. 116 241102
  • Abbott B P et al and LIGO Scientific, Virgo 2019 Phys. Rev. X 9 031040
  • Abbott B P et al and LIGO Scientific, Virgo 2016 Astrophys. J. 818 L22
  • Abbott B P et al and LIGO Scientific, Virgo 2019 Astrophys. J. Lett. 882 L24
  • Abbott B P et al and LIGO Scientific, Virgo 2016 Phys. Rev. Lett. 116 221101
  • Abbott B P et al and LIGO Scientific, Virgo 2018 Phys. Rev. Lett. 121 129902 Erratum
  • Abbott B P et al and LIGO Scientific, Virgo 2019 Phys. Rev. D 100 104036
  • Aasi J et al and LIGO Scientific 2015 Class. Quantum Grav. 32 074001
  • Acernese F et al and Virgo 2015 Class. Quantum Grav. 32 024001
  • Akutsu T et al and KAGRA 2019 Nature Astron. 3 35–40
  • Abbott B P et al and LIGO Scientific, Virgo 2020 Astrophys. J. Lett. 892 L3
  • Abbott R et al and LIGO Scientific, Virgo 2020 arXiv:2004.08342
  • Abbott R et al and LIGO Scientific, Virgo 2020 Astrophys. J. 896 L44
  • Abbott B P et al and LIGO Scientific 2017 Class. Quantum Grav. 34 044001
  • Sathyaprakash B et al 2012 Class. Quantum Grav. 29 124013
  • Sathyaprakash B et al 2013 Class. Quant. Grav. 30 079501 Erratum
  • Amaro-Seoane P et al and LISA 2017 arXiv:1702.00786
  • Klein A et al 2016 Phys. Rev. D 93 024003
  • Babak S et al 2017 Phys. Rev. D 95 103012
  • Berry C P L, Hughes S A, Sopuerta C F, Chua A J K, Heffernan A, Holley-Bockelmann K, Mihaylov D P, Miller M C and Sesana A 2019 Bull. Am. Astron. Soc. 51 42
  • Kormendy J and Richstone D 1995 Ann. Rev. Astron. Astrophys. 33 581
  • Ferrarese L and Ford H 2005 Space Sci. Rev. 116 523–624
  • Abuter R et al and GRAVITY 2018 Astron. Astrophys. 615 L15
  • Sesana A 2016 Phys. Rev. Lett. 116 231102
  • Breivik K, Rodriguez C L, Larson S L, Kalogera V and Rasio F A 2016 Astrophys. J. 830 L18
  • Nishizawa A, Berti E, Klein A and Sesana A 2016 Phys. Rev. D 94 064020
  • Vitale S 2016 Phys. Rev. Lett. 117 051102
  • Liu C, Shao L, Zhao J and Gao Y 2020 Mon. Not. R. Astron. Soc. 496 182
  • Manchester R N 2013 Class. Quantum Grav. 30 224010
  • Mingarelli C M F, Lazio T J W, Sesana A, Greene J E, Ellis J A, Ma C P, Croft S, Burke-Spolaor S and Taylor S R 2017 Nat. Astron. 1 886–92
  • Pitkin M, Clark J, Hendry M A, Heng I S, Messenger C, Toher J and Woan G 2008 J. Phys. Conf. Ser. 122 012004
  • Colpi M et al 2019 Bull. Am. Astron. Soc. 51 432
  • Bender P L, Begelman M C and Gair J R 2013 Class. Quantum Grav. 30 165017
  • Mueller G, Baker J et al 2019 Bull. Am. Astron. Soc. 51 243
  • Sato S et al 2017 J. Phys. Conf. Ser. 840 012010
  • Kawamura S et al 2020 arXiv:2006.13545
  • Kimball C, Talbot C, Berry C P L, Carney M, Zevin M, Thrane E and Kalogera V 2020 arXiv:2005.00023
  • Fishbach M, Essick R and Holz D E 2020 arXiv:2006.13178
  • Dominik M, Belczynski K, Fryer C, Holz D, Berti E, Bulik T, Mandel I and O’Shaughnessy R 2012 Astrophys. J. 759 52
  • Belczynski K, Holz D E, Bulik T and O’Shaughnessy R 2016 Nature 534 512
  • Stevenson S, Vigna-Gómez A, Mandel I, Barrett J W, Neijssel C J, Perkins D and de Mink S E 2017 Nat. Commun. 8 14906
  • Eldridge J J, Stanway E R and Tang P N 2019 Mon. Not. R. Astron. Soc. 482 870–80
  • Zevin M, Spera M, Berry C P L and Kalogera V 2020 Astrophys. J. Lett. 899 L1
  • van den Heuvel E P J, Portegies Zwart S F and de Mink S E 2017 Mon. Not. R. Astron. Soc. 471 4256–64
  • Klencki J and Nelemans G 2019 High mass x-ray binaries as progenitors of gravitational wave sources Proc., IAU Symp. 346: High-Mass X-Ray Binaries: Illuminating the Passage from Massive Binaries to Merging Compact Objects (Vienna, Austria, August 27–31 2018) 417–25
  • Mandel I and de Mink S E 2016 Mon. Not. R. Astron. Soc. 458 2634–47
  • Marchant P, Langer N, Podsiadlowski P, Tauris T M and Moriya T J 2016 Astron. Astrophys. 588 A50
  • Downing J M B, Benacquista M J, Giersz M and Spurzem R 2010 Mon. Not. R. Astron. Soc. 407 1946
  • Rodriguez C L, Chatterjee S and Rasio F A 2016 Phys. Rev. D 93 084029
  • Askar A, Szkudlarek M, Gondek-Rosińska D, Giersz M and Bulik T 2017 Mon. Not. R. Astron. Soc. 464 L36–40
  • Rodriguez C L et al 2020 Astrophys. J. 896 L10
  • Zwart S F P and McMillan S 2000 Astrophys. J. 528 L17
  • Banerjee S 2017 Mon. Not. R. Astron. Soc. 467 524–39
  • Rastello S, Amaro-Seoane P, Arca-Sedda M, Capuzzo-Dolcetta R, Fragione G and Tosta e Melo I 2019 Mon. Not. R. Astron. Soc. 483 1233–46
  • Di Carlo U N, Giacobbo N, Mapelli M, Pasquato M, Spera M, Wang L and Haardt F 2019 Mon. Not. R. Astron. Soc. 487 2947–60
  • Kumamoto J, Fujii M S and Tanikawa A 2020 Mon. Not. R. Astron. Soc. 495 4268–78
  • Miller M C and Lauburg V M 2009 Astrophys. J. 692 917–23
  • Antonini F and Rasio F A 2016 Astrophys. J. 831 187
  • Hoang B M, Naoz S, Kocsis B, Rasio F A and Dosopoulou F 2018 Astrophys. J. 856 140
  • Arca-Sedda M and Gualandris A 2018 Mon. Not. R. Astron. Soc. 477 4423–42
  • Zhang F, Shao L and Zhu W 2019 Astrophys. J. 877 87
  • Samsing J 2018 Phys. Rev. D 97 103014
  • Arca-Sedda M, Li G and Kocsis B 2018 arXiv:1805.06458
  • D’Orazio D J and Samsing J 2018 Mon. Not. R. Astron. Soc. 481 4775–85
  • Zevin M, Samsing J, Rodriguez C, Haster C J and Ramirez-Ruiz E 2019 Astrophys. J. 871 91
  • Silsbee K and Tremaine S 2017 Astrophys. J. 836 39
  • Rodriguez C L and Antonini F 2018 Astrophys. J. 863 7
  • Arca-Sedda M 2020 Astrophys. J. 891 47
  • Mandel I and O’Shaughnessy R 2010 Class. Quantum Grav. 27 114007
  • Stevenson S, Berry C P L and Mandel I 2017 Mon. Not. R. Astron. Soc. 471 2801–11
  • Talbot C and Thrane E 2017 Phys. Rev. D 96 023012
  • Zevin M, Pankow C, Rodriguez C L, Sampson L, Chase E, Kalogera V and Rasio F A 2017 Astrophys. J. 846 82
  • Arca Sedda M and Benacquista M 2019 Mon. Not. R. Astron. Soc. 482 2991–3010
  • Kalogera V et al 2019 Bull. Am. Astron. Soc. 51 242
  • Arca Sedda M, Mapelli M, Spera M, Benacquista M and Giacobbo N 2020 Astrophys. J. 894 133
  • Farmer R, Renzo M, de Mink S, Fishbach M and Justham S 2020 arXiv:2006.06678
  • Moore C J, Gerosa D and Klein A 2019 Mon. Not. R. Astron. Soc. 488 L94–8
  • Jani K, Shoemaker D and Cutler C 2019 Nat. Astron. 4 260–5
  • Liu S, Hu Y M, Zhang J d and Mei J 2020 Phys. Rev. D 101 103027
  • Barrett J W, Gaebel S M, Neijssel C J, Vigna-Gómez A, Stevenson S, Berry C P L, Farr W M and Mandel I 2018 Mon. Not. R. Astron. Soc. 477 4685–95
  • Abbott B P et al and KAGRA, LIGO Scientific, Virgo 2018 Living Rev. Relativ. 21 3
  • Madau P and Dickinson M 2014 Ann. Rev. Astron. Astrophys. 52 415–86
  • Belczynski K et al 2018 arXiv:1812.10065
  • Safarzadeh M, Berger E, Ng K K Y, Chen H Y, Vitale S, Whittle C and Scannapieco E 2019 Astrophys. J. 878 L13
  • Arca Sedda M 2020 Commun. Phys. 3 43
  • Abbott B P et al and LIGO Scientific, Virgo 2017 Phys. Rev. Lett. 119 161101
  • Blanchet L 2014 Living Rev. Relativ. 17 2
  • Isoyama S, Nakano H and Nakamura T 2018 Prog. Theor. Exp. Phys. 2018 073E01
  • Cutler C et al 2019 Bull. Am. Astron. Soc. 51 109
  • Marsat S, Baker J G and Dal Canton T 2020 arXiv:2003.00357
  • Damour T 2001 Phys. Rev. D 64 124013
  • Abbott B P et al and LIGO Scientific, Virgo 2017 Phys. Rev. Lett. 118 221101
  • Abbott B P et al and LIGO Scientific, Virgo 2018 Phys. Rev. Lett. 121 129901 Erratum
  • Apostolatos T A, Cutler C, Sussman G J and Thorne K S 1994 Phys. Rev. D 49 6274–97
  • Chatziioannou K, Cornish N, Klein A and Yunes N 2015 Astrophys. J. Lett. 798 L17
  • Antonini F, Toonen S and Hamers A S 2017 Astrophys. J. 841 77
  • Gondán L, Kocsis B, Raffai P and Frei Z 2018 Astrophys. J. 860 5
  • Peters P C 1964 Phys. Rev. 136 B1224–32
  • Samsing J and Ramirez-Ruiz E 2017 Astrophys. J. 840 L14
  • Rodriguez C L, Amaro-Seoane P, Chatterjee S, Kremer K, Rasio F A, Samsing J, Ye C S and Zevin M 2018 Phys. Rev. D 98 123005
  • Nishizawa A, Sesana A, Berti E and Klein A 2017 Mon. Not. R. Astron. Soc. 465 4375–80
  • Canuel B et al 2018 Sci. Rep. 8 14064
  • Kremer K, Chatterjee S, Breivik K, Rodriguez C L, Larson S L and Rasio F A 2018 Phys. Rev. Lett. 120 191103
  • Randall L and Xianyu Z Z 2019 arXiv:1907.02283
  • Randall L and Xianyu Z Z 2019 Astrophys. J. 878 75
  • Kremer K et al 2019 Phys. Rev. D 99 063003
  • Chen X and Amaro-Seoane P 2017 Astrophys. J. 842 L2
  • Samsing J, D’Orazio D J, Kremer K, Rodriguez C L and Askar A 2019 arxiv:1907.11231
  • Samsing J and D’Orazio D J 2019 Phys. Rev. D 99 063006
  • Takahashi R and Nakamura T 2003 Astrophys. J. Lett. 596 L231–4
  • Wen L and Chen Y 2010 Phys. Rev. D 81 082001
  • Mandel I, Sesana A and Vecchio A 2018 Class. Quantum Grav. 35 054004
  • Vecchio A 2004 Phys. Rev. D 70 042001
  • Del Pozzo W, Sesana A and Klein A 2018 Mon. Not. R. Astron. Soc. 475 3485–92
  • Schutz B F 1986 Nature 323 310–1
  • MacLeod C L and Hogan C J 2008 Phys. Rev. D 77 043512
  • Chen H Y, Fishbach M and Holz D E 2018 Nature 562 545–7
  • Abbott B P et al and LIGO Scientific, Virgo 2019 arXiv:1908.06060
  • Kyutoku K and Seto N 2017 Phys. Rev. D 95 083525
  • Abbott B P et al and LIGO Scientific, Virgo, Fermi GBM, INTEGRAL, IceCube, AstroSat Cadmium Zinc Telluride Imager Team, IPN, Insight-Hxmt, ANTARES, Swift, AGILE Team, 1M2H Team, Dark Energy Camera GW-EM, DES, DLT40, GRAWITA, Fermi-LAT, ATCA, ASKAP, Las Cumbres Observatory Group, OzGrav, DWF (Deeper Wider Faster Program), AST3, CAASTRO, VINROUGE, MASTER, J-GEM, GROWTH, JAGWAR, CaltechNRAO, TTU-NRAO, NuSTAR, Pan-STARRS, MAXI Team, TZAC Consortium, KU, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS, BOOTES, MWA, CALET, IKI-GW Follow-up, H.E.S.S., LOFAR, LWA, HAWC, Pierre Auger, ALMA, Euro VLBI Team, Pi of Sky, Chandra Team at McGill University, DFN, ATLAS Telescopes, High Time Resolution Universe Survey, RIMAS, RATIR, SKA South Africa/MeerKAT 2017 Astrophys. J. 848 L12
  • Cutler C and Holz D E 2009 Phys. Rev. D 80 104009
  • Nishizawa A, Taruya A and Saito S 2011 Phys. Rev. D 83 084045
  • Arcavi I 2018 Astrophys. J. 855 L23
  • Abbott B P et al and LIGO Scientific, Virgo 2018 Phys. Rev. Lett. 121 161101
  • Montana G, Tolos L, Hanauske M and Rezzolla L 2019 Phys. Rev. D 99 103009
  • Most E R, Weih L R, Rezzolla L and Schaffner-Bielich J 2018 Phys. Rev. Lett. 120 261103
  • Coughlin M W, Dietrich T, Margalit B and Metzger B D 2019 Mon. Not. R. Astron. Soc. 489 L91–6
  • Margalit B and Metzger B D 2019 Astrophys. J. 880 L15
  • Abbott B P et al and LIGO Scientific, Virgo 2017 Astrophys. J. 850 L39
  • Chornock R et al 2017 Astrophys. J. 848 L19
  • Tanvir N R et al 2017 Astrophys. J. 848 L27
  • Wanajo S 2018 Astrophys. J. 868 65
  • Siegel D M, Barnes J and Metzger B D 2019 Nature 569 241–4
  • Abbott B P et al and LIGO Scientific, Virgo, Fermi-GBM, INTEGRAL 2017 Astrophys. J. 848 L13
  • Abbott B P et al and LIGO Scientific, Virgo 2019 Phys. Rev. Lett. 123 011102
  • Belgacem E, Dirian Y, Foffa S and Maggiore M 2018 Phys. Rev. D 98 023510
  • Belgacem E et al and LISA Cosmology Working Group 2019 J. Cosmol. Astropart. Phys. JCAP07(2019)024
  • Baker J et al 2019 arXiv:1908.11410
  • Bonvin C, Caprini C, Sturani R and Tamanini N 2017 Phys. Rev. D 95 044029
  • Wong K W K, Baibhav V and Berti E 2019 Mon. Not. R. Astron. Soc. 488 5665–70
  • Tamanini N, Klein A, Bonvin C, Barausse E and Caprini C 2020 Phys. Rev. D 101 063002
  • Seto N, Kawamura S and Nakamura T 2001 Phys. Rev. Lett. 87 221103
  • Nishizawa A, Yagi K, Taruya A and Tanaka T 2012 Phys. Rev. D 85 044047
  • Robson T, Cornish N J, Tamanini N and Toonen S 2018 Phys. Rev. D 98 064012
  • Tamanini N and Danielski C 2019 Nat. Astron. 3 858–66
  • Danielski C, Korol V, Tamanini N and Rossi E M 2019 Astron. Astrophys. 632 A113
  • Inayoshi K, Tamanini N, Caprini C and Haiman Z 2017 Phys. Rev. D 96 063014
  • Littenberg T B, Breivik K, Brown W R, Eracleous M, Hermes J J, Holley-Bockelmann K, Kremer K, Kupfer T and Larson S L 2019 Bull. Am. Astron. Soc. 51 34
  • Nelemans G 2005 ASP Conf. Ser. 330 27
  • Marsh T R, Nelemans G and Steeghs D 2004 Mon. Not. R. Astron. Soc. 350 113
  • Gokhale V, Peng X M and Frank J 2007 Astrophys. J. 655 1010–24
  • Kremer K, Breivik K, Larson S L and Kalogera V 2017 Astrophys. J. 846 95
  • Hillebrandt W, Kromer M, Röpke F K and Ruiter A J 2013 Front. Phys. 8 116–43
  • Maoz D, Mannucci F and Nelemans G 2014 Ann. Rev. Astron. Astrophys. 52 107–70
  • Badenes C and Maoz D 2012 Astrophys. J. 749 L11
  • Toonen S, Nelemans G and Portegies Zwart S 2012 Astron. Astrophys. 546 A70
  • Shen K J 2015 Astrophys. J. 805 L6
  • Benacquista M 2011 Astrophys. J. 740 L54
  • Piro A L 2011 Astrophys. J. 740 L53
  • Fuller J and Lai D 2012 Mon. Not. R. Astron. Soc. 420 3126
  • Fuller J and Lai D 2013 Mon. Not. R. Astron. Soc. 430 274
  • McNeill L O, Mardling R A and Müller B 2020 Mon. Not. R. Astron. Soc. 491 3000–12
  • Kuns K A, Yu H, Chen Y and Adhikari R X 2019 arXiv:1908.06004
  • Murphy J W, Ott C D and Burrows A 2009 Astrophys. J. 707 1173–90
  • Morozova V, Radice D, Burrows A and Vartanyan D 2018 Astrophys. J. 861 10
  • Radice D, Morozova V, Burrows A, Vartanyan D and Nagakura H 2019 Astrophys. J. 876 L9
  • Burrows A and Hayes J 1996 Phys. Rev. Lett. 76 352–5
  • Holgado A M and Ricker P M 2019 Mon. Not. R. Astron. Soc. 490 5560–6
  • Epstein R 1978 Astrophys. J. 223 1037–45
  • Turner M S 1978 Nature 274 565–6
  • Muller E, Janka H-T and Wongwathanarat A 2012 Astron. Astrophys. 537 A63
  • Burrows A, Radice D, Vartanyan D, Nagakura H, Skinner M A and Dolence J 2020 Mon. Not. R. Astron. Soc. 491 2715–35
  • Vartanyan D, Burrows A and Radice D 2019 Mon. Not. R. Astron. Soc. 489 2227–46
  • Vartanyan D and Burrows A 2020 arXiv:2007.07261
  • Christodoulou D 1991 Phys. Rev. Lett. 67 1486–9
  • Thorne K S 1992 Phys. Rev. D 45 520–4
  • Diehl R et al 2006 Nature 439 45–7
  • Li W, Chornock R, Leaman J, Filippenko A V, Poznanski D, Wang X, Ganeshalingam M and Mannucci F 2011 Mon. Not. R. Astron. Soc. 412 1473
  • Mueller E, Rampp M, Buras R, Janka H T and Shoemaker D H 2004 Astrophys. J. 603 221–30
  • Maggiore M 2018 Gravitational Waves vol 2: Astrophysics and Cosmology (Oxford: Oxford University Press)
  • Giersz M, Leigh N, Hypki A, Lützgendorf N and Askar A 2015 Mon. Not. R. Astron. Soc. 454 3150–65
  • Arca Sedda M, Askar A and Giersz M 2019 arXiv:1905.00902
  • Mezcua M 2017 Int. J. Mod. Phys. D 26 1730021
  • Lanzoni B et al 2013 Astrophys. J. 769 107
  • Lin D et al 2018 Nat. Astron. 2 656–61
  • Colpi M, Mapelli M and Possenti A 2003 Astrophys. J. 599 1260–71
  • Konstantinidis S, Amaro-Seoane P and Kokkotas K D 2013 Astron. Astrophys. 557 A135
  • MacLeod M, Trenti M and Ramirez-Ruiz E 2016 Astrophys. J. 819 70
  • Chen J H and Shen R F 2018 Astrophys. J. 867 20
  • Eracleous M, Gezari S, Sesana A, Bogdanovic T, MacLeod M, Roth N and Dai L 2019 Bull. Am. Astron. Soc. 51 10
  • Amaro-Seoane P, Gair J R, Freitag M, Coleman Miller M, Mandel I, Cutler C J and Babak S 2007 Class. Quantum Grav. 24 R113–69
  • Brown D A, Fang H, Gair J R, Li C, Lovelace G, Mandel I and Thorne K S 2007 Phys. Rev. Lett. 99 201102
  • Rodriguez C L, Mandel I and Gair J R 2012 Phys. Rev. D 85 062002
  • Amaro-Seoane P 2018 Living Rev. Relativ. 21 4
  • Amaro-Seoane P, Gair J R, Pound A, Hughes S A and Sopuerta C F 2015 J. Phys. Conf. Ser. 610 012002
  • Alexander T 2017 Ann. Rev. Astron. Astrophys. 55 17–57
  • Amaro-Seoane P, Sopuerta C F and Freitag M D 2013 Mon. Not. R. Astron. Soc. 429 3155–65
  • Heggie D and Hut P 2003 The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics (Cambridge: Cambridge University Press)
  • Spitzer L 1987 Dynamical Evolution of Globular Clusters (Princeton: Princeton University Press)
  • Leigh N W C, Lützgendorf N, Geller A M, Maccarone T J, Heinke C and Sesana A 2014 Mon. Not. R. Astron. Soc. 444 29–42
  • Hong J and Lee H M 2015 Mon. Not. R. Astron. Soc. 448 754–70
  • Haster C J, Antonini F, Kalogera V and Mandel I 2016 Astrophys. J. 832 192
  • Amaro-Seoane P and Santamaria L 2010 Astrophys. J. 722 1197–206
  • Katz H and Ricotti M 2013 Mon. Not. R. Astron. Soc. 432 3250
  • Chen H Y, Holz D E, Miller J, Evans M, Vitale S and Creighton J 2017 arXiv:1709.08079
  • Toubiana A, Marsat S, Babak S, Baker J and Dal Canton T 2020 arXiv:2007.08544
  • Haster C J, Wang Z, Berry C P L, Stevenson S, Veitch J and Mandel I 2016 Mon. Not. R. Astron. Soc. 457 4499–506
  • Duez M D and Zlochower Y 2019 Rep. Prog. Phys. 82 016902
  • Amaro-Seoane P 2018 Phys. Rev. D 98 063018
  • Hinderer T and Flanagan E E 2008 Phys. Rev. D 78 064028
  • Pound A 2012 Phys. Rev. Lett. 109 051101
  • Gralla S E 2012 Phys. Rev. D 85 124011
  • Pound A and Miller J 2014 Phys. Rev. D 89 104020
  • Wardell B and Warburton N 2015 Phys. Rev. D 92 084019
  • Miller J, Wardell B and Pound A 2016 Phys. Rev. D 94 104018
  • Pound A, Wardell B, Warburton N and Miller J 2020 Phys. Rev. Lett. 124 021101
  • Taracchini A et al 2014 Phys. Rev. D 89 061502
  • Bohé A et al 2017 Phys. Rev. D 95 044028
  • Nagar A et al 2018 Phys. Rev. D 98 104052
  • Sesana A, Vecchio A, Eracleous M and Sigurdsson S 2008 Mon. Not. R. Astron. Soc. 391 718–26
  • Zalamea I, Menou K and Beloborodov A M 2010 Mon. Not. R. Astron. Soc. 409 25
  • MacLeod M, Goldstein J, Ramirez-Ruiz E, Guillochon J and Samsing J 2014 Astrophys. J. 794 9
  • Volonteri M and Natarajan P 2009 Mon. Not. R. Astron. Soc. 400 1911
  • Dai L, McKinney J C, Roth N, Ramirez-Ruiz E and Miller M C 2018 Astrophys. J. 859 L20
  • Morris M 1993 Astrophys. J. 408 496–506
  • Miralda-Escude J and Gould A 2000 Astrophys. J. 545 847–53
  • Antonini F 2014 Astrophys. J. 794 106
  • Generozov A, Stone N C, Metzger B D and Ostriker J P 2018 Mon. Not. R. Astron. Soc. 478 4030–51
  • Fragione G, Loeb A, Kremer K and Rasio F A 2020 Astrophys. J. 897 46
  • Bahcall J N and Wolf R A 1976 Astrophys. J. 209 214–32
  • Amaro-Seoane P, Freitag M and Spurzem R 2004 Mon. Not. R. Astron. Soc. 352 655
  • Freitag M, Amaro-Seoane P and Kalogera V 2006 Astrophys. J. 649 91–117
  • Hopman C and Alexander T 2006 Astrophys. J. 645 L133–6
  • Alexander T and Hopman C 2009 Astrophys. J. 697 1861–9
  • Berry C P L and Gair J R 2013 Mon. Not. R. Astron. Soc. 435 3521–40
  • Panamarev T, Just A, Spurzem R, Berczik P, Wang L and Arca Sedda M 2019 Mon. Not. R. Astron. Soc. 484 3279–90
  • Lee H M 1995 Mon. Not. R. Astron. Soc. 272 605
  • Rasskazov A and Kocsis B 2019 Astrophys. J. 881 20
  • Hopman C 2009 Astrophys. J. 700 1933–51
  • O’Leary R M, Kocsis B and Loeb A 2009 Mon. Not. R. Astron. Soc. 395 2127–46
  • Leigh N W C et al 2018 Mon. Not. R. Astron. Soc. 474 5672–83
  • Syer D, Clarke C J and Rees M J 1991 Mon. Not. R. Astron. Soc. 250 505–12
  • McKernan B, Ford K E S, Lyra W and Perets H B 2012 Mon. Not. R. Astron. Soc. 425 460
  • McKernan B, Ford K E S, Kocsis B, Lyra W and Winter L M 2014 Mon. Not. R. Astron. Soc. 441 900–9
  • Secunda A, Bellovary J, Low M M M, Ford K E S, McKernan B, Leigh N, Lyra W and Sándor Z 2019 Astrophys. J. 878 85
  • Bartos I, Kocsis B, Haiman Z and Márka S 2017 Astrophys. J. 835 165
  • Stone N C, Metzger B D and Haiman Z 2017 Mon. Not. R. Astron. Soc. 464 946–54
  • McKernan B et al 2018 Astrophys. J. 866 66
  • Yang Y, Bartos I, Haiman Z, Kocsis B, Marka Z, Stone N C and Marka S 2019 Astrophys. J. 876 122
  • Derdzinski A M, D’Orazio D, Duffell P, Haiman Z and MacFadyen A 2019 Mon. Not. R. Astron. Soc. 486 2754–65
  • Bellovary J M, Mac Low M M, McKernan B and Ford K E S 2016 Astrophys. J. 819 L17
  • McKernan B, Ford K E S, O’Shaughnessy R and Wysocki D 2020 Mon. Not. R. Astron. Soc. 494 1203–16
  • Yang Y et al 2019 Phys. Rev. Lett. 123 181101
  • McKernan B et al 2019 Astrophys. J. Lett. 884 L50
  • Ebisuzaki T et al 2001 Astrophys. J. 562 L19
  • Zwart S F P, Baumgardt H, McMillan S L W, Makino J, Hut P and Ebisuzaki T 2006 Astrophys. J. 641 319
  • Mastrobuono-Battisti A, Perets H B and Loeb A 2014 Astrophys. J. 796 40
  • Arca-Sedda M and Capuzzo-Dolcetta R 2019 Mon. Not. R. Astron. Soc. 483 152–71
  • Addison E, Laguna P and Larson S 2015 arXiv:1501.07856
  • Chen X and Han W B 2018 Commun. Phys. 1 53
  • Antonini F and Perets H B 2012 Astrophys. J. 757 27
  • Prodan S, Antonini F and Perets H B 2015 Astrophys. J. 799 118
  • Stephan A P, Naoz S, Ghez A M, Witzel G, Sitarski B N, Do T and Kocsis B 2016 Mon. Not. R. Astron. Soc. 460 3494–504
  • VanLandingham J H, Miller M C, Hamilton D P and Richardson D C 2016 Astrophys. J. 828 77
  • Liu B, Wang Y H and Yuan Y F 2017 Mon. Not. R. Astron. Soc. 466 3376–86
  • Petrovich C and Antonini F 2017 Astrophys. J. 846 146
  • Bradnick B, Mandel I and Levin Y 2017 Mon. Not. R. Astron. Soc. 469 2042–8
  • Hamers A S, Bar-Or B, Petrovich C and Antonini F 2018 Astrophys. J. 865 2
  • Fragione G, Grishin E, Leigh N W C, Perets H and Perna R 2019 Mon. Not. R. Astron. Soc. 488 47–63
  • Miller M C 2002 Astrophys. J. 581 438–50
  • Hoang B M, Naoz S, Kocsis B, Farr W and McIver J 2019 Astrophys. J. 875 L31
  • Meiron Y, Kocsis B and Loeb A 2017 Astrophys. J. 834 200
  • Chamberlain K, Moore C J, Gerosa D and Yunes N 2019 Phys. Rev. D 99 024025
  • Fang Y and Huang Q G 2019 Phys. Rev. D 99 103005
  • Chen X and Shen Z F 2019 Retrieving the true masses of gravitational-wave sources Recent Progress in Relativistic Astrophysics (Shanghai, China, May 6-8, 2019)
  • Chen X, Li S and Cao Z 2019 Mon. Not. R. Astron. Soc. 485 L141–5
  • Centrella J, Baker J G, Kelly B J and van Meter J R 2010 Rev. Mod. Phys. 82 3069
  • Han W B and Chen X 2019 Mon. Not. R. Astron. Soc. 485 L29–33
  • Gair J R, Vallisneri M, Larson S L and Baker J G 2013 Living Rev. Relativ. 16 7
  • Will C M 2018 Theory and Experiment in Gravitational Physics (Cambridge: Cambridge University Press)
  • Yagi K 2013 Int. J. Mod. Phys. D 22 1341013
  • Ezquiaga J M and Zumalacárregui M 2018 Front. Astron. Space Sci. 5 44
  • Shao L 2020 Phys. Rev. D 101 104019
  • Will C M 2014 Living Rev. Relativ. 17 4
  • Berti E et al 2015 Class. Quantum Grav. 32 243001
  • Yunes N, Yagi K and Pretorius F 2016 Phys. Rev. D 94 084002
  • Clifton T, Ferreira P G, Padilla A and Skordis C 2012 Phys. Rep. 513 1–189
  • Ishak M et al 2019 arXiv:1905.09687
  • Amendola L et al 2018 Living Rev. Relativ. 21 2
  • Ballardini M, Sapone D, Umiltà C, Finelli F and Paoletti D 2019 J. Cosmol. Astropart. Phys. JCAP05(2019)049
  • Sotiriou T P and Faraoni V 2010 Rev. Mod. Phys. 82 451–97
  • Berry C P L and Gair J R 2011 Phys. Rev. D 83 104022
  • Berry C P L and Gair J R 2012 Phys. Rev. D 85 089906 Erratum
  • Belgacem E, Dirian Y, Foffa S and Maggiore M 2018 J. Cosmol. Astropart. Phys. JCAP03(2018)002
  • Kanti P, Mavromatos N E, Rizos J, Tamvakis K and Winstanley E 1996 Phys. Rev. D 54 5049–58
  • Sotiriou T P and Zhou S Y 2014 Phys. Rev. D 90 124063
  • Maselli A, Silva H O, Minamitsuji M and Berti E 2015 Phys. Rev. D 92 104049
  • Benkel R, Sotiriou T P and Witek H 2017 Class. Quantum Grav. 34 064001
  • Jacobson T 2007 PoS QG-PH 020
  • Schmidt-May A and von Strauss M 2016 J. Phys. A 49 183001
  • Seymour B C and Yagi K 2018 Phys. Rev. D 98 124007
  • Yagi K and Stein L C 2016 Class. Quantum Grav. 33 054001
  • Yagi K 2012 Phys. Rev. D 86 081504
  • Okounkova M, Stein L C, Scheel M A and Hemberger D A 2017 Phys. Rev. D 96 044020
  • Witek H, Gualtieri L, Pani P and Sotiriou T P 2019 Phys. Rev. D 99 064035
  • Ramazanoğlu F M and Pretorius F 2016 Phys. Rev. D 93 064005
  • Yazadjiev S S, Doneva D D and Popchev D 2016 Phys. Rev. D 93 084038
  • Staykov K V, Popchev D, Doneva D D and Yazadjiev S S 2018 Eur. Phys. J. C 78 586
  • Alsing J, Berti E, Will C M and Zaglauer H 2012 Phys. Rev. D 85 064041
  • Sagunski L, Zhang J, Johnson M C, Lehner L, Sakellariadou M, Liebling S L, Palenzuela C and Neilsen D 2018 Phys. Rev. D 97 064016
  • Doneva D D and Yazadjiev S S 2018 Phys. Rev. Lett. 120 131103
  • Silva H O, Sakstein J, Gualtieri L, Sotiriou T P and Berti E 2018 Phys. Rev. Lett. 120 131104
  • Andreou N, Franchini N, Ventagli G and Sotiriou T P 2019 Phys. Rev. D 99 124022
  • Barausse E, Palenzuela C, Ponce M and Lehner L 2013 Phys. Rev. D 87 081506
  • Shibata M, Taniguchi K, Okawa H and Buonanno A 2014 Phys. Rev. D 89 084005
  • Sennett N and Buonanno A 2016 Phys. Rev. D 93 124004
  • Khalil M, Sennett N, Steinhoff J and Buonanno A 2019 Phys. Rev. D 100 124013
  • Carson Z and Yagi K 2020 Class. Quantum Grav. 37 02LT01
  • Gnocchi G, Maselli A, Abdelsalhin T, Giacobbo N and Mapelli M 2019 Phys. Rev. D 100 064024
  • Toubiana A, Marsat S, Babak S, Barausse E and Baker J 2020 Phys. Rev. D 101 104038
  • Hughes S A and Menou K 2005 Astrophys. J. 623 689–99
  • Ghosh A et al 2016 Phys. Rev. D 94 021101
  • Tso R, Gerosa D and Chen Y 2019 Phys. Rev. D 99 124043
  • Barausse E, Yunes N and Chamberlain K 2016 Phys. Rev. Lett. 116 241104
  • Damour T and Esposito-Farese G 1993 Phys. Rev. Lett. 70 2220–3
  • Barausse E and Yagi K 2015 Phys. Rev. Lett. 115 211105
  • Yagi K, Stein L C and Yunes N 2016 Phys. Rev. D 93 024010
  • Joyce A, Jain B, Khoury J and Trodden M 2015 Phys. Rept. 568 1–98
  • Vainshtein A I 1972 Phys. Lett. B 39 393–4
  • Babichev E and Deffayet C 2013 Class. Quantum Grav. 30 184001
  • Jimenez J B, Piazza F and Velten H 2016 Phys. Rev. Lett. 116 061101
  • Baker T, Bellini E, Ferreira P G, Lagos M, Noller J and Sawicki I 2017 Phys. Rev. Lett. 119 251301
  • Sakstein J and Jain B 2017 Phys. Rev. Lett. 119 251303
  • Ezquiaga J M and Zumalacárregui M 2017 Phys. Rev. Lett. 119 251304
  • Creminelli P and Vernizzi F 2017 Phys. Rev. Lett. 119 251302
  • Nicolis A, Rattazzi R and Trincherini E 2009 Phys. Rev. D 79 064036
  • Horndeski G W 1974 Int. J. Theor. Phys. 10 363–84
  • De Felice A, Kobayashi T and Tsujikawa S 2011 Phys. Lett. B 706 123–33
  • Skordis C 2009 Class. Quantum Grav. 26 143001
  • Heisenberg L 2017 Generalised Proca theories Proc., 52nd Rencontres de Moriond on Gravitation (Moriond Gravitation 2017) (La Thuile, Italy, March 25–April 1, 2017) 233–41
  • Hui L, Ostriker J P, Tremaine S and Witten E 2017 Phys. Rev. D 95 043541
  • Arvanitaki A, Dimopoulos S, Dubovsky S, Kaloper N and March-Russell J 2010 Phys. Rev. D 81 123530
  • Press W H and Teukolsky S A 1972 Nature 238 211–2
  • Dolan S R 2007 Phys. Rev. D 76 084001
  • Brito R, Cardoso V and Pani P 2015 Lect. Notes Phys. 906 1–237
  • Arvanitaki A and Dubovsky S 2011 Phys. Rev. D 83 044026
  • Pani P, Cardoso V, Gualtieri L, Berti E and Ishibashi A 2012 Phys. Rev. D 86 104017
  • Brito R, Cardoso V and Pani P 2015 Class. Quantum Grav. 32 134001
  • Ficarra G, Pani P and Witek H 2019 Phys. Rev. D 99 104019
  • Witek H, Cardoso V, Ishibashi A and Sperhake U 2013 Phys. Rev. D 87 043513
  • Okawa H, Witek H and Cardoso V 2014 Phys. Rev. D 89 104032
  • Hannuksela O A, Wong K W K, Brito R, Berti E and Li T G F 2019 Nat. Astron. 3 447–51
  • Isi M, Sun L, Brito R and Melatos A 2019 Phys. Rev. D 99 084042
  • Baumann D, Chia H S and Porto R A 2019 Phys. Rev. D 99 044001
  • Wong L K, Davis A C and Gregory R 2019 Phys. Rev. D 100 024010
  • Caprini C and Figueroa D G 2018 Class. Quantum Grav. 35 163001
  • Abbott B P et al and LIGO Scientific, Virgo 2018 Phys. Rev. Lett. 120 091101
  • Cutler C and Harms J 2006 Phys. Rev. D 73 042001
  • Pan Z and Yang H 2019 arXiv:1910.09637
  • Pieroni M and Barausse E 2020 J. Cosmol. Astropart. Phys. JCAP07(2020)021
  • Durrer R 2008 The Cosmic Microwave Background (Cambridge: Cambridge University Press)
  • Aghanim N et al and Planck 2018 arXiv:1807.06209
  • Aguirre J et al and Simons Observatory 2019 J. Cosmol. Astropart. Phys. JCAP02(2019)056
  • Abazajian K N et al and CMB-S4 2016 arXiv:1610.02743
  • Hazumi M et al 2019 J. Low Temp. Phys. 194 443–52
  • Hanany S et al and NASA PICO 2019 arXiv:1902.10541
  • Delabrouille J et al and CORE 2018 J. Cosmol. Astropart. Phys. JCAP04(2018)014
  • Cook J L and Sorbo L 2012 Phys. Rev. D 85 023534
  • Cook J L and Sorbo L 2012 Phys. Rev. D 86 069901 Erratum
  • Bartolo N et al 2016 J. Cosmol. Astropart. Phys. JCAP12(2016)026
  • Campeti P, Komatsu E, Poletti D and Baccigalupi C 2020 arXiv:2007.04241
  • Kosowsky A and Turner M S 1993 Phys. Rev. D 47 4372
  • Kamionkowski M, Kosowsky A and Turner M S 1994 Phys. Rev. D 49 2837–51
  • Gogoberidze G, Kahniashvili T and Kosowsky A 2007 Phys. Rev. D 76 083002
  • Caprini C, Durrer R and Servant G 2009 J. Cosmol. Astropart. Phys. JCAP12(2009)024
  • Hindmarsh M, Huber S J, Rummukainen K and Weir D J 2014 Phys. Rev. Lett. 112 041301
  • Hindmarsh M, Huber S J, Rummukainen K and Weir D J 2015 Phys. Rev. D 92 123009
  • Caprini C et al 2016 J. Cosmol. Astropart. Phys. JCAP04(2016)001
  • Kajantie K, Laine M, Rummukainen K and Shaposhnikov M E 1996 Nucl. Phys. B 466 189–258
  • Csikor F, Fodor Z and Heitger J 1999 Phys. Rev. Lett. 82 21–4
  • Delaunay C, Grojean C and Wells J D 2008 J. High Energy Phys. JHEP04(2008)029
  • Kozaczuk J 2015 J. High Energy Phys. JHEP10(2015)135
  • Kakizaki M, Kanemura S and Matsui T 2015 Phys. Rev. D 92 115007
  • Chala M, Nardini G and Sobolev I 2016 Phys. Rev. D 94 055006
  • Dorsch G C, Huber S J, Konstandin T and No J M 2017 J. Cosmol. Astropart. Phys. JCAP05(2017)052
  • Bernon J, Bian L and Jiang Y 2018 J. High Energy Phys. JHEP05(2018)151
  • Bruggisser S, Von Harling B, Matsedonskyi O and Servant G 2018 J. High Energy Phys. JHEP12(2018)099
  • Chala M, Ramos M and Spannowsky M 2019 Eur. Phys. J. C 79 156
  • Ayazi S Y and Mohamadnejad A 2019 J. High Energy Phys. JHEP03(2019)181
  • Fujii K et al 2017 arXiv:1710.07621
  • Abada A et al and FCC 2019 Eur. Phys. J. Spec. Top. 228 755–1107
  • Caprini C et al 2020 J. Cosmol. Astropart. Phys. JCAP03(2020)024
  • Espinosa J R, Konstandin T, No J M and Servant G 2010 J. Cosmol. Astropart. Phys. JCAP06(2010)028
  • Megevand A and Membiela F A 2014 Phys. Rev. D 89 103503
  • Huber S J and Sopena M 2013 arXiv:1302.1044
  • Konstandin T, Nardini G and Rues I 2014 J. Cosmol. Astropart. Phys. JCAP09(2014)028
  • Dorsch G C, Huber S J and Konstandin T 2018 J. Cosmol. Astropart. Phys. JCAP12(2018)034
  • Thrane E and Romano J D 2013 Phys. Rev. D 88 124032
  • Caprini C, Figueroa D G, Flauger R, Nardini G, Peloso M, Pieroni M, Ricciardone A and Tasinato G 2019 J. Cosmol. Astropart. Phys. JCAP11(2019)017
  • Mohamadnejad A 2020 Eur. Phys. J. C 80 197
  • Espinosa J R, Konstandin T and Riva F 2012 Nucl. Phys. B 854 592–630
  • Chen C Y, Kozaczuk J and Lewis I M 2017 J. High Energy Phys. JHEP08(2017)096
  • Huber S J, Konstandin T, Nardini G and Rues I 2016 J. Cosmol. Astropart. Phys. JCAP03(2016)036
  • Garcia-Pepin M and Quiros M 2016 J. High Energy Phys. JHEP05(2016)177
  • Bian L, Guo H K and Shu J 2018 Chin. Phys. C 42 093106
  • Demidov S V, Gorbunov D S and Kirpichnikov D V 2018 Phys. Lett. B 779 191–4
  • Randall L and Servant G 2007 J. High Energy Phys. JHEP05(2007)054
  • Nardini G, Quiros M and Wulzer A 2007 J. High Energy Phys. JHEP09(2007)077
  • Konstandin T, Nardini G and Quiros M 2010 Phys. Rev. D 82 083513
  • Konstandin T and Servant G 2011 J. Cosmol. Astropart. Phys. JCAP12(2011)009
  • Bruggisser S, Von Harling B, Matsedonskyi O and Servant G 2018 Phys. Rev. Lett. 121 131801
  • Megías E, Nardini G and Quirós M 2018 J. High Energy Phys. JHEP09(2018)095
  • Arkani-Hamed N, Han T, Mangano M and Wang L T 2016 Phys. Rept. 652 1–49
  • Graham P W, Kaplan D E, Mardon J, Rajendran S and Terrano W A 2016 Phys. Rev. D 93 075029
  • Kibble T W B 1976 J. Phys. A 9 1387
  • Vachaspati T and Vilenkin A 1985 Phys. Rev. D 31 3052
  • Jeannerot R, Rocher J and Sakellariadou M 2003 Phys. Rev. D 68 103514
  • Sarangi S and Tye S H H 2002 Phys. Lett. B 536 185–92
  • Damour T and Vilenkin A 2001 Phys. Rev. D 64 064008
  • Blanco-Pillado J J, Olum K D and Shlaer B 2014 Phys. Rev. D 89 023512
  • Blanco-Pillado J J and Olum K D 2017 Phys. Rev. D 96 104046
  • Auclair P et al 2020 J. Cosmol. Astropart. Phys. JCAP04(2020)034
  • Abbott B P et al and LIGO Scientific, Virgo 2019 Phys. Rev. D 100 061101
  • Abbott B P et al and LIGO Scientific, Virgo 2018 Phys. Rev. D 97 102002
  • Sanidas S A, Battye R A and Stappers B W 2012 Phys. Rev. D 85 122003
  • Blanco-Pillado J J, Olum K D and Siemens X 2018 Phys. Lett. B 778 392–6
  • Reitze D et al 2019 Bull. Am. Astron. Soc. 51 35
  • Punturo M et al 2010 Class. Quantum Grav. 27 194002
  • Hu W R and Wu Y L 2017 Natl. Sci. Rev. 4 685–6
  • Luo J et al and TianQin 2016 Class. Quantum Grav. 33 035010
  • Wang H T et al 2019 Phys. Rev. D 100 043003
  • Shi C, Bao J, Wang H, Zhang J d, Hu Y, Sesana A, Barausse E, Mei J and Luo J 2019 Phys. Rev. D 100 044036
  • Huang S J, Hu Y M, Korol V, Li P C, Liang Z C, Lu Y, Wang H T, Yu S and Mei J 2020 arXiv:2005.07889
  • Fan H M, Hu Y M, Barausse E, Sesana A, Zhang J-d, Zhang X, Zi T G and Mei J 2020 arXiv:2005.08212
  • Crowder J and Cornish N J 2005 Phys. Rev. D 72 083005
  • McWilliams S T 2011 arXiv:1111.3708
  • Tinto M, de Araujo J C N, Aguiar O D and da Silva Alves M E 2011 arXiv:1111.2576
  • Tinto M, DeBra D, Buchman S and Tilley S 2015 Rev. Sci. Instrum. 86 014501
  • Lacour S et al 2019 Class. Quantum Grav. 36 195005
  • Tino G M et al 2019 Eur. Phys. J. D 73 228
  • Norcia M A, Cline J R K and Thompson J K 2017 Phys. Rev. A 96 042118
  • Graham P W, Hogan J M, Kasevich M A and Rajendran S 2016 Phys. Rev. D 94 104022
  • Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043
  • Graham P W, Hogan J M, Kasevich M A, Rajendran S, Romani R W and MAGIS 2017 arXiv:1711.02225
  • El-Neaj Y A et al and AEDGE 2020 EPJ Quantum Technol. 7 6
  • Su J, Wang Q, Wang Q and Jetzer P 2018 Class. Quantum Grav. 35 085010
  • Su J, Wang Q, Wang Q and Jetzer P 2018 Class. Quantum Grav. 35 249501 Erratum
  • Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637–701
  • Campbell S L et al 2017 Science 358 90–4
  • Oelker E et al 2019 Nat. Photon. 13 714–9
  • Hosten O, Engelsen N J, Krishnakumar R and Kasevich M A 2016 Nature 529 505–8
  • Braverman B et al 2019 Phys. Rev. Lett. 122 223203
  • Pedrozo-Peñafiel E et al 2020 arXiv:2006.07501
  • Becker D et al 2018 Nature 562 391–5
  • Aveline D C et al 2020 Nature 582 193–7
  • Koller S B, Grotti J, Vogt S, Al-Masoudi A, Dörscher S, Häfner S, Sterr U and Lisdat C 2017 Phys. Rev. Lett. 118 073601
  • Origlia S et al 2018 Phys. Rev. A 98 053443
  • Grotti J et al 2018 Nat. Phys. 14 437–41
  • Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H and Katori H 2020 Nat. Photon. 14 411–5
  • Coleman J and MAGIS-100 2018 MAGIS-100 at Fermilab 39th Int. Conf. on High Energy Physics (ICHEP 2018) (Seoul, Korea, July 4–11 2018)
  • Zhan M S et al 2019 Int. J. Mod. Phys. D 29 1940005
  • Badurina L et al 2020 J. Cosmol. Astropart. Phys. JCAP05(2020)011
  • Canuel B et al 2019 arXiv:1911.03701
  • Robson T, Cornish N J and Liug C 2019 Class. Quantum Grav. 36 105011
  • Armano M et al 2016 Phys. Rev. Lett. 116 231101
  • Arca Sedda M et al 2019 arXiv:1908.11375v1
  • Sesana A et al 2019 arXiv:1908.11391
  • Baibhav V et al 2019 arXiv:1908.11390